
Accepted to ICCAD ’02

1

ABSTRACT
Optimized solvers for the Boolean Satisfiability (SAT) prob-
lem have many applications in areas such as hardware and
software verification, FPGA routing, planning, etc. Further
uses are complicated by the need to express “counting con-
straints” in conjunctive normal form (CNF). Expressing such
constraints by pure CNF leads to more complex SAT
instances. Alternatively, those constraints can be handled by
Integer Linear Programming (ILP), but generic ILP solvers
may ignore the Boolean nature of 0-1 variables. Therefore
specialized 0-1 ILP solvers extend SAT solvers to handle
these so-called “pseudo-Boolean” constraints.

This work provides an update on the on-going competi-
tion between generic ILP techniques and specialized 0-1 ILP
techniques. To make a fair comparison, we generalize recent
ideas for fast SAT-solving to more general 0-1 ILP problems
that may include counting constraints and optimization.
Another aspect of our comparison is evaluation on 0-1 ILP
benchmarks that originate in Electronic Design Automation
(EDA), but that cannot be directly solved by a SAT solver.
Specifically, we solve instances of the Max-SAT and Max-
ONEs optimization problems which seek to maximize the
number of satisfied clauses and the “true” values over all sat-
isfying assignments, respectively. Those problems have
straightforward applications to SAT-based routing and are
additionally important due to reductions from Max-Cut,
Max-Clique, and Min Vertex Cover. Our experimental results
show that specialized 0-1 techniques tend to outperform
generic ILP techniques on Boolean optimization problems as
well as on general EDA SAT problems.

1 INTRODUCTION
Recent algorithmic advances in backtrack Boolean Satisfi-
ability (SAT), along with highly-efficient solver implementa-
tions, have enabled the successful deployment of SAT
technology in a wide range of application domains, and par-
ticularly in electronic design automation (EDA). Modern
SAT solvers [17, 18, 26] have either displaced or have become
essential companions to binary decision diagram (BDD)
packages as the Boolean reasoning engines in such applica-
tions as formal hardware verification [21], routing of field-
programmable gate arrays [19], and automatic test-pattern
generation [14]. Their ability to readily solve SAT instances
with tens of thousands of variables and millions of conjunc-
tive normal form (CNF) clauses in a matter of seconds or
minutes—an impressive feat that would have been impossible
to even contemplate just a few years ago—has also encour-
aged their adaptation to solve some Boolean optimization
problems that were traditionally handled as instances of

Integer Linear Programming (ILP) [3, 16, 23]. These so-
called 0-1 ILP problems call for the minimization or maximi-
zation of a linear objective function subject to a set of
m linear constraints1 where ,

, and . These constraints are com-
monly referred to as pseudo-Boolean (PB) inequalities (to
distinguish them from those that admit unrestricted integer
variables) and represent a natural generalization of the CNF
constraints typically handled by SAT solvers. For example,
the CNF clause is equivalent to the PB
constraint . PB constraints are more
expressive, however; a single PB constraint may in some
cases correspond to an exponential number of CNF clauses.

Common examples of 0-1 ILPs include Min-COVER [9],
Max-SAT and Max-ONEs [6]. In Min-COVER, we have a
collection of subsets of a given set and seek to find a cover of
the set using the fewest number of subsets. Logic minimiza-
tion of Boolean functions as well as state minimization of
finite-state machines are two important instances of this
problem. In the Max-SAT problem, the goal is to find a vari-
able assignment that maximizes the number of satisfied CNF
clauses in an unsatisfiable SAT instance. Finally, in Max-
ONEs we seek a satisfying variable assignment that maxi-
mizes the number of variables set to 1. Max-SAT has direct
application in routing and routability estimation [24], and
both Max-SAT and Max-ONEs are important due to reduc-
tions from Max-Cut, Max-Clique, and Min Vertex Cover.

Adapting a SAT solver for optimization purposes poses
two questions: 1) what should be done with the objective
function? and 2) how should the PB constraints be handled?
An obvious answer to the first question is to use some form
of branch-and-bound around the SAT engine, and to prune
the search space with best estimates of the objective function
value. Alternatively, the objective function can be treated as
an auxiliary PB constraint with an adjustable right-hand-
side, or goal. Starting with an easy-to-satisfy goal, a sequence
of SAT instances, each with a successively tighter goal, is
then constructed and solved. The process continues until an
unsatisfiable instance is encountered, indicating that we have
converged on the optimal value of the objective function,
namely the goal reached in the last satisfiable instance.

There are also two choices for dealing with the PB con-
straints: each PB constraint can be converted into a set of
equivalent CNF clauses, or the SAT engine is modified to
handle PB constraints directly. Conversion to CNF has the

1 Greater-than-or-equal and equality constraints are easily
accommodated by the equivalences
and .

Tc x
≤Ax b , n∈b c

≥ ⇔ − ≤ −Ax b Ax b
() ()= ⇔ ≤ ∧ ≥Ax b Ax b Ax b

m n∈ ×A { }0,1 n∈x

()1 2 kx x x∨ ∨ ∨
1 2 1kx x x+ + + ≥

Generic ILP versus Specialized 0-1 ILP: An Update
Fadi A. Aloul, Arathi Ramani, Igor L. Markov, Karem A. Sakallah

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122
{faloul, ramania, imarkov, karem}@eecs.umich.edu

Accepted to ICCAD ’02

2

advantage of using the SAT solver as a black box, but, as
mentioned above, suffers from a potential exponential explo-
sion in problem size. This is particularly true of “counting”
constraints that impose upper or a lower bounds on the num-
ber of certain objects, e.g. capacity constraints in routing
applications. The increase in size can be reduced from expo-
nential to linear by introducing auxiliary variables that,
effectively, decompose a PB constraint into a “structure” of
smaller constraints.

Given these various choices, the main question we address
in this paper is whether and in what circumstances can the
currently-best generic ILP techniques compete with special-
ized SAT-powered 0-1 ILP techniques. Since both generic
ILP solvers and specialized 0-1 ILP solvers have consistently
improved since Barth's work [3] on the subject, we must
ensure up-to-date comparisons. For example, ILOG [11]
advertises great ILP performance improvements in CPLEX
7.* over 6.*. On the other hand, the Chaff SAT solver [18],
viewed as a narrowly-specialized 0-1 ILP solver, outperforms
earlier competitors by an order of magnitude on many
benchmarks. Therefore, in order to convincingly compare the
state-of-the-art in generic ILP to that in specialized 0-1 ILP,
we need to ensure that the latest techniques are used. In par-
ticular, we generalize algorithms used in Chaff to solve 0-1
ILP problems that may include counting constraints and
optimization. Our new specialized 0-1 ILP solver, PBS, han-
dles CNF constraints and PB inequalities. Unlike previously
proposed stochastic local search solvers [22], this solver is
complete and is based on a backtrack search algorithm. We
believe that our proposed algorithms to handle PB con-
straints can be added to any backtrack SAT solver.

The remainder of the paper is organized in five sections.
In Section 2 we briefly review the latest enhancements in
backtrack CNF-SAT solvers. Section 3 introduces PB con-
straints and describes how they might be incorporated in a
SAT solving scenario. The new PBS solver is described in
Section 4, and its performance against best-of-class ILP, spe-
cialized 0-1 ILP, and CNF-SAT solvers is analyzed in
Section 5. We conclude, in Section 6, with a few general
observations and suggestions for further work.

2 ANATOMY OF A MODERN
CNF-SAT SOLVER

The power of modern CNF-SAT solvers can be attributed to
a few key algorithmic advances and implementation optimi-
zations to the basic Davis-Logemann-Loveland [7] backtrack
procedure which we summarize below.

2.1 Conflict Diagnosis and Clause Recording
A major advance in backtrack CNF-SAT solvers was the
introduction of conflict diagnosis [17] and its tight integra-
tion with Boolean constraint propagation (BCP), non-chro-
nological backtracking, and clause recording. Conflict
diagnosis refers to analysis of the implication chains, initi-
ated by elective variables assignments, that cause one or
more clauses to become unsatisfied. Such an analysis can
identify a small subset of variables whose current assign-
ments can be blamed for the conflict. In addition, these
assignments can be turned into a conflict-induced clause
that, when added to the clause database, prevents the future

occurrence of the same conflict, and can be viewed as a form
of on-demand learning. Finally, recognizing that the current
conflict is caused by variable assignments from earlier levels
in the decision tree enables non-chronological backtracking,
potentially pruning large portions of the search space.

Conflict diagnosis is implemented in most modern back-
track SAT solvers and its effectiveness in pruning the search
space has been amply demonstrated empirically. A number
of variations have also been studied, including alternative
ways of generating conflict clauses and schemes that learn
several clauses at each conflict [17, 18]. Recent experimental
evidence [27], however, has shown that creating a single con-
flict clause—based on the unique implication point closest to
the conflict—outperforms other schemes on hard instances.

Notwithstanding its effectiveness in pruning the search
space, conflict-based learning runs the risk of exponentially
increasing the size of the clause database. This is typically
avoided by either 1) recording only those conflict-induced
clauses with k or fewer literals, or 2) deleting conflict-induced
clauses after k or more of their literals become unassigned.
This clause addition/deletion threshold k is typically
between 100 and 200, indicating that fairly large clauses are
created and kept.

2.2 Random Restarts and Backtracking
Besides conflict-based learning, recent studies have shown
that using random restarts can be very effective in solving
hard SAT instances [2, 18]. A SAT solver may often get stuck
in a “bad” region of the search space because of the sequence
of decision assignments it had made. The restart process
helps to extricate the solver from such regions by periodically
resetting all decision and implication assignments and ran-
domly selecting a new sequence of decisions, thus insuring
that different subtrees are explored each time. Additionally,
all conflict-learned clauses in the various probes of the search
space are kept and help boost the effectiveness of subsequent
restarts.

Recently, Lynce et al. [15] proposed and empirically eval-
uated combining random restarts with random backtracking.
In this scheme, the diagnosis engine periodically backtracks
non-chronologically to a decision level involving any literal in
the conflict-induced clause. The completeness of the search is
preserved by monotonically increasing the clause addition/
deletion threshold between random backtracks.

2.3 Improved BCP
On the implementation side, it was observed that a signifi-
cant fraction of a SAT solver’s run time is spent in the BCP
procedure [18]. In a conventional implementation of BCP, an
assignment to a variable triggers a traversal of all clauses
that contain literals of that variable to check whether they
have become unit or are in conflict. In other words, an impli-
cation step requires time bounded by the number of literals
of the assigned variable. This overhead can be significantly
reduced by adopting a form of “lazy” evaluation that avoids
unnecessary traversals of the clause database. Specifically,
rather than keep track of all literals in each clause, the
enhanced procedure picks and updates only two unassigned
literals per clause (the “watched” literals), and yields a very
efficient mechanism for detecting unit clauses [18, 28]. In a
SAT instance consisting of n k-literal clauses, this enhance-

Accepted to ICCAD ’02

3

ment reduces BCP overhead from kn to 2n, which is substan-
tial for typical instances with .

2.4 Decision Strategy
Numerous decision (or branching) heuristics have been pro-
posed over the years, with no single heuristic emerging as a
clear winner in most cases. One that has been found to be
particularly effective in a variety of problems is the Variable
State Independent Decaying Sum (VSIDS) heuristic intro-
duced in [18]. The heuristic maintains two counters for every
variable that are incremented if a positive (resp. negative)
literal of that variable is identified in a new conflict-induced
clause. The variable with the highest counter is selected for
the next decision. Counters are also periodically divided by a
constant to emphasize variables identified in recent conflicts.

3 PROCESSING OF PB CONSTRAINTS
A PB constraint is in normal form if it is expressed as:

(1)

where and denotes either or . We will
say that is a true literal if it evaluates to 1 under the cur-
rent assignment to its associated variable. An arbitrary PB
constraint can be converted to normal form by noting that

. For example, is first
transformed to the “≤” inequality
which, upon substituting and re-arranging
terms, yields .

The two choices for handling PB constraints in a SAT
solver are 1) to convert them, in a pre-processing step, to
equivalent CNF constraints, and 2) to process them directly
within the SAT solver.

3.1 PB-to-CNF Conversion
The PB constraint in (1) corresponds to a threshold Boolean
function [12]. Such functions are unate (monotone) in each of
their variables and have unique minimal CNF representa-
tions. Minimality here refers to the smallest CNF formula,
among all functionally-equivalent CNF formulas, namely the
formula that has the fewest number of clauses provided there
is no other such formula with the same number of clauses but
with fewer literals. This minimal formula can be derived by
recursive application of Boole’s expansion theorem [5, p. 36].
Let denote the function of the PB constraint
in (1). Expanding around we get:

(2)

where and are, respectively, the positive and nega-
tive cofactors of with respect to . Noting further that

 is either negative or positive unate in allows (2) to be
simplified to:

(3)

Repeated application of (3), distributing ∨ over ∧, and mak-
ing obvious simplifications yields the desired CNF formula.
For example, conversion of proceeds as
follows:

As mentioned earlier, however, the minimal CNF repre-
sentation of a PB constraint may have an exponential num-
ber of clauses. Specifically, a counting constraint that

chooses at most k out of n objects yields -lit-

eral clauses [25]. For example, choosing at most 15 out of 30
objects yields 150 million 16-literal clauses, and clearly dem-
onstrates the infeasibility of this type of transformation.

The associativity of addition suggests an alternative
transformation that yields a CNF formula whose size is lin-
ear in . This transformation can be obtained by introduc-
ing auxiliary “partial sum” variables that decompose the
monolithic PB constraint into a set of smaller constraints.

Letting , , we can re-write

(1) as follows:

(4)

Schematically, (4) can be viewed as a multi-level prefix com-
putation [13] “circuit” (see Figure 1) whose modules repre-
sent AND gates, adders, and an output comparator. From
this construction it should be evident that the truth assign-
ments that satisfy (1) are precisely those assignments that
set the circuit output z to 1. Specifically,

(5)

where is the circuit consistency function

(6)

2k

1 1 2 2 n na x a x a x b+ + + ≤

,ia b +∈ ix ix ix
ix

1i ix x= − 1 2 33 2 1x x x− + − ≥ −
1 2 33 2 1x x x− + ≤

2 21x x= −
1 2 33 2 3x x x+ + ≤

()1 2, , , nx x xϕ
ix

()()i ii x i xx xϕ ϕ ϕ= ∨ ∨

ixϕ ixϕ
ϕ ix

ϕ ix

()()
()()

if
if

i i

i i

x i x i i

x i x i i

x x x
x x x

ϕ ϕ
ϕ

ϕ ϕ
 ∨ == ∨ =

1 2 33 2 3x x x+ + ≤

()
() ()()
() () ()()[]()

()()[]()
()()[]()

()()

1 2 3

2 3 1 2 3

1 3 2 3

1 3 2

1 3 2

1 3 1 2

3 2 3
2 3 2 0
1 0 2

0

x x x
x x x x x

x x x x
x x x
x x x
x x x x

ϕ = + + ≤
= + ≤ ∨ + ≤
= ∨ ≤ ∨ ≤ −
= ∨ ∨
= ∨
= ∨ ∨

()1n
k + ()1k +

1 ns →

1 2s →1 1s →

2a

∧

z

+ +

+
∧

∧

≤

2x
1a

na
b

1x

nx

Figure 1: Circuit representation of (4). Single- and multi-bit
signals are denoted, respectively, by thin and bold lines.

n

i i
i is a x→ ≡ i j k k

i k j
s s→ →

≤ ≤≡ ∑

()()()1 1 2 2 3 3 n ns s s s b→ → → →+ + + + ≤

1 2s →

1 3s →

1 ns →

()1 1 1 2 1, , , , , ,n n nz s s s s zϕ ψ→ → → →= ∃ ∧

ψ

()
() ()

1

1 1 1

2 1

n

i i i i i i
i i

i n i n

z s b

s s s s a x

ψ →

→ → − → →

≤ ≤ ≤ ≤

= ↔ ≤ ∧

↔ + ∧ ↔∧ ∧

Accepted to ICCAD ’02

4

In other words, the satisfiability of the formula is
equivalent to the satisfiability of the PB formula .

The final step in this transformation is the translation of
each conjunct in (6) to a set of CNF clauses. This is accom-
plished by expressing each multi-bit coefficient and variable
in terms of a suitable number of binary encoding variables
and invoking the module function (AND, add, and compare)
to relate those variables.

There are obvious simplifications in this construction that
can eliminate redundant variables and clauses (e.g., some of
the equivalences in (6) can be replaced by one-way implica-
tions). Furthermore, unlike the first transformation in (3),
this construction is not unique: associativity of addition
allows the terms in (4) to be grouped in other ways that may
reduce the number of CNF variables and yield fewer clauses.
Finally, we should point out that this construction is very
similar to those described in [24] and [25].

3.2 PB-SAT Algorithms
Even when conversion to CNF is feasible, it might be advan-
tageous to process PB constraints directly within a SAT
solver. The required bookkeeping is fairly inexpensive, con-
sisting mainly of updating the value of a PB constraint’s left-
hand side (LHS) to reflect the current truth assignment. Ini-
tially set to 0, LHS is updated as follows:

If , increment LHS by when is set to 1, and
decrement it by when is unassigned from 1;
otherwise, leave LHS unchanged.
If , increment LHS by when is set to 0, and
decrement it by when is unassigned from 0;
otherwise, leave LHS unchanged.

Implications. Implications are triggered by a PB constraint
for each literal whose coefficient satisfies

. Note that, unlike CNF clauses, a PB con-
straint can cause the simultaneous implication of several
variables. For example, after setting to 1 in the constraint

, and are immediately implied to
1 and 0, respectively. In general, implications follow the tem-

plate where True is the set of true

literals and Large is the set of literals whose coefficients
exceed (b − LHS).
Conflicts. Conflicts are indicated when the current variable
assignment causes LHS to exceed b. In this case, we need to

choose a subset C of the true literals such that

and return it as a conflicting assignment to the diagnosis
engine. Ideally, it is desirable to find the smallest such sub-
set, but this is an instance of the KNAPSACK NP-complete
problem. Alternatively, a near-minimal subset can be quickly
found using the classic heuristic that packs starting from the
largest coefficient towards the smallest.

4 THE PSEUDO-BOOLEAN SOLVER PBS
PBS is a new SAT solver/optimizer, written in C++, that
incorporates all of the modern CNF-SAT solver features
described in Section 2. In addition, it handles PB constraints
in both optimization and decision (i.e., SAT) applications. It
uses the “watched literal” data structure from Chaff [18] for

CNF constraints, and a structure similar to that in SATIRE
[23] for PB constraints. Specifically, every PB constraint is
represented internally by a record with the following fields:

A list of the coefficients and their respective literals .
For efficiency, this list is sorted in the order of increasing
coefficient values.
The right-hand side b.
LHS which stores the value of the left-hand side under the
current variable assignment.

In addition, PBS maintains, for each variable, a list of PB
constraints in which the variable occurs positively and
another in which it occurs negatively. These lists are used to
facilitate the update (according to the rules described in
Section 3.2) of the LHS of each relevant PB constraint when-
ever a variable is assigned or unassigned.

In optimization mode, PBS converts the objective func-
tion to a PB constraint with a sliding right-hand-side goal
(see Section 1) and proceeds to solve a sequence of SAT
instances that differ only in the value of that goal. To illus-
trate, assume a maximization scenario, denote the sequence
of SAT instances by I0, I1, I2, . . . and let be the goal for
the ith instance. If the instance is satisfiable, substituting its
solution in the objective function constraint should yield a
new goal value . The goal for instance Ii+1 is now set
to and the process is repeated. The goal reached in
the last satisfiable instance is returned by PBS as the opti-
mal value of the objective function.

5 EXPERIMENTAL RESULTS
In this section we report the results of an empirical evalua-
tion of PBS and several other leading-edge solvers on a set of
Boolean satisfiability and Boolean optimization benchmarks.

5.1 Benchmarks
We evaluated the various algorithms on three sets of bench-
marks. For SAT, we used a set of difficult global routing
instances that involve both CNF and PB counting con-
straints. For Boolean optimization, we chose Max-ONEs and
Max-SAT instances from a variety of CNF families.
Global Routing. A set of difficult satisfiable global routing
benchmarks was introduced in [1]. Each instance in this fam-
ily entails the routing of a random set of n two-pin connec-
tions (nets) over a two-dimensional grid of cells (see
Figure 2). An r-by-c grid has m = r(c − 1) + c(r − 1) inter-

z ψ∧
ϕ

i ix x= ia ix
ia ix

i ix x= ia ix
ia ix

ix ia

LHSia b> −

1x

1 2 33 2 3x x x+ + ≤ 2x 3x

i i
i ix True x Largex x∈ ∈→∧ ∧

i
ix C

a b
∈ >∑

ia ix

îg

ˆi ig g≥
1ig +

2,2
ix2,1

ix

3,1
ix 3,2

ix

1,2
ix

1,1
iy 1,3

iy

2,3
iy2,1

iy

1 2 3

1

2

3

Figure 2: A 3-by-3 global routing grid with 12 inter-cell rout-
ing channels. Horizontal and vertical channels are labeled, re-
spectively, with x and y net-to-channel assignment variables.
For example, the highlighted 2-pin connection from S in cell
(1,1) to E in cell (3,2), is specified by
and 0 for the nine remaining channel variables.

1,1 1,2 2,2 1i i ix y y= = =

S

E

1,2
iy

1,1
ix

2,2
iy

Net i

Accepted to ICCAD ’02

5

cell routing channels. The maximum number of routes that
can pass through any channel is referred to as the channel
capacity and denoted by C. For each net, a set of m Boolean
variables (one per channel) is used to indicate how the net is
routed through the grid. In addition, for each channel a set
of C variables per net is introduced to indicate how the net is
routed through the channel (i.e., the net’s “track” assign-
ment in the channel). Thus, the CNF formulation of these
instances requires a total of (1 + C)mn variables and con-
sists of two sets of constraints: route definition constraints to
express the possible routes that each net can take, and
capacity constraints to insure that no more than C nets are
routed in each channel. These two sets are similar, respec-
tively, to the connectivity and exclusivity constraints for
SAT-based FPGA routing [19].

A quick calculation shows that the number of CNF
clauses needed to express channel capacity constraints in the
above formulation is (n2C + nC2)m. Using PB modeling,
this can be reduced to just m PB inequalities (one per chan-
nel) of the form:

where denotes the variable that associates net i with
channel ch. The PB formulation also eliminates the need for
the extra track assignment variables, bringing down the total
number of variables to just mn.

In the experimental results reported below, the global
routing instances are modeled using CNF clauses for route
definition and PB inequalities for channel capacity. In addi-
tion, we also report on a CNF-only formulation derived by
converting the PB capacity constraints using the linear
transformation described in Section 3.1.
Max-ONEs. Max-ONEs instances are easily constructed by
adding a single PB constraint to any

satisfiable CNF instance, where the goal b is monotonically
increased until the instance becomes unsatisfiable. We con-
structed such instances for representative members from the
DIMACS [8], Bejing [10], quasi-group [26], and sat-planning
[10] benchmark families.
Max-SAT. Given an unsatisfiable CNF-SAT instance with
m clauses , a Max-SAT instance is constructed
by introducing m auxiliary variables , m addi-
tional predicates , and a single objective function
PB constraint . Each added predicate

 introduces binary clauses and a single
-literal clause, where is the number of literals

in clause . We constructed Max-SAT instances for repre-
sentative unsatisfiable DIMACS and FPGA switch-box rout-
ing [1] benchmarks.

5.2 Experimental Setup
We conducted several experiments to compare the perfor-
mance of the new PBS solver against:

The 0-1 ILP solvers OPBDP [4] and SATIRE [23]
The generic commercial ILP solver CPLEX 7.0 [11]
The CNF-SAT solver Chaff [18]
The Chaff-based Max-SAT solver sub-SAT [24]

Chaff was used only in the global routing SAT comparisons,
and sub-SAT was only used in the Max-SAT comparisons.
Except for the CPLEX runs, all experiments were done on a
Pentium-II 333MHz workstation running Linux and
equipped with 512 MB of RAM. The CPLEX experiments
were conducted on a 440 MHz UltraSPARC workstation
with a 2MB cache running SunOS 5.8. We used the default
settings for Chaff, OPBDP, and CPLEX, and the DLCS
decision heuristic for SATIRE. PBS was configured to use all
of the features described in Section 2 except for clause dele-
tion and random backtracking. A time-out limit of 5,000 sec-
onds was used for each run.

Table 1: Run time results for various global routing instances.

Instance
Instance Size Time, sec.

PBS Speedup
CNF + PB CNF Only CNF + PB CNF

Name Nets |V| |C| |PB| |V| |C| PBS

grout-3.3-1 18 216 572 12 864 3692 1.72 0.41 4.51 0.05 3.25 0.24 2.62 0.03 1.9
grout-3.3-2 22 264 700 12 1056 4540 0.33 0.96 4.65 0.05 1.15 2.9 14.1 0.16 3.5
grout-3.3-3 20 240 636 12 960 4116 0.09 1.1 6.65 0.05 1.63 12 74 0.58 18
grout-3.3-4 19 228 604 12 912 3904 1.29 0.2 4.73 0.05 1.30 0.16 3.67 0.04 1.01
grout-3.3-5 20 240 634 12 960 4114 0.84 0.35 6.88 0.04 1.50 0.42 8.19 0.05 1.8
grout-4.3-1 28 672 2004 24 2688 11844 3.46 109.7 5000 0.29 254 32 >1445 0.08 73
grout-4.3-2 27 648 1928 24 2592 11408 1.92 32.13 5000 0.81 203 17 >2604 0.42 106
grout-4.3-3 27 648 1930 24 2592 11410 5.52 319.47 5000 1.52 145 58 >906 0.28 26
grout-4.3-4 29 696 2072 24 2784 12272 16.3 3772 5000 0.31 74.4 231 >307 0.02 4.6
grout-4.3-5 30 720 2144 24 2880 12704 2.06 567.12 5000 0.47 274 275 >2427 0.23 133
grout-4.3-6 26 624 1860 24 2496 10980 27 5000 5000 1.04 117 >185 >185 0.04 4.3
grout-4.3-7 28 672 2006 24 2688 11846 55 5000 5000 0.23 743 >91 >91 0.01 13.5
grout-4.3-8 18 432 1280 24 1728 7520 2.9 177.8 5000 0.38 60 61 >1724 0.13 21
grout-4.3-9 35 840 2502 24 3360 14862 58 5000 5000 0.29 271 >86 >86 0.01 4.7
grout-4.3-10 35 840 2504 24 3360 14864 7.4 5000 5000 0.21 159 >676 >676 0.03 21.5

SA
TI

RE

OPB
DP

CPL
EX

Cha
ff

SA
TI

RE

OPB
DP

CPL
EX

Cha
ff

1 2 nch ch ch C+ + + ≤
ich

1 2 nx x x b+ + + ≥

1 2, , , mC C C
1 2, , , my y y

i iy C↔
1 2 my y y b+ + + ≥

i iy C↔ iC
()1 iC+ iC

iC

Accepted to ICCAD ’02

6

5.3 Results for Global Routing Benchmarks
Table 1 lists the results of solving fifteen global routing
instances. The ith routing instance on an x-by-x grid with
channel capacity y is named grout-x.y-i. For each instance
the table indicates the number of nets, the instance size
(number of variables |V|, CNF clauses |C|, and PB con-
straints |PB|) for the hybrid CNF+PB as well as for the pure
CNF formulations, the run times of PBS, SATIRE, OPBDP,
CPLEX, and Chaff, and the ratio of PBS’s run time to that
of the other solvers. The pure CNF formulation was tested
only on Chaff.

Clearly, the size of instances, in terms of both variables
and clauses, increases significantly for the CNF-only formula-
tion. Pure CNF formulations, thus, are likely to run out of
memory for more realistic routing grid sizes, leaving the
hybrid CNF+PB formulations as the only viable alternative
for this type of SAT problem. Still, it is remarkable that,
even when problem size increases four-to-five fold, Chaff
manages in some cases to match PBS’s run time within a
factor of two or three.

Compared with the two other 0-1 ILP solvers, PBS comes
out ahead: it solves all fifteen instances whereas SATIRE
solves only eleven, and OPBDP just five. This can be easily
attributed to PBS’s incorporation of the latest algorithmic
and implementation features of modern CNF-SAT solvers.
Compared with CPLEX, on the other hand, PBS does quite
poorly; CPLEX beats PBS on all instances, in some cases
with a substantial margin.

5.4 Results for Max-ONEs Benchmarks
The results of the Max-ONEs experiment are listed in
Table 2. For each tested instance, the table indicates the
instance size (number of variables |V|, and clauses |C|), the
maximum (i.e., optimal) number of 1s in the solution, the
run times of each of the solvers, and PBS’s speedup ratio. In
this set of experiments, PBS outperforms all other solvers
including CPLEX. The only exception is the jnh1 instance
which both PBS and CPLEX solve in a fraction of a second.

5.5 Results for Max-SAT Benchmarks
The results of the Max-SAT experiment are shown in
Table 3. For each unsatisfiable instance the table lists the
instance name and size (number of variables |V| and clauses
|C|), the size of the corresponding companion satisfiable
instance (i.e., the satisfiable instance created by adding aux-
iliary variables and clauses as described earlier) and the min-
imum (i.e., optimal) number of original unsatisfiable clauses
(#UnSAT). The remaining columns show the run times of
the various solvers and PBS’s speedup ratio.

In order to speed up the search process for all solvers,
WalkSAT [20] was executed for 10 tries as a pre-processing
step (with negligible run time), and the number of unsatis-
fied clauses it found was used as the initial solution for the
optimization runs. It turned out that WalkSAT was able to
identify the optimal solution for all tested instances. Thus,
only a single run was required for each solver to prove the
optimality of that solution.

Again, PBS outperformed all other solvers in most cases.
The only exception this time was that sub-SAT was signifi-
cantly faster on the FPGA routing benchmarks. This should
not be surprising since sub-SAT was designed, mainly, for
FPGA routing applications. We conjecture, further, that
modeling channel capacity constraints using PB inequalities
rather than CNF clauses, might give PBS a performance
edge even in these cases.

5.6 Summary
The above results suggest that combining PB modeling with
state-of-the-art SAT algorithms gives PBS a definite perfor-
mance advantage against other solvers in both optimization
and SAT applications. The only anomaly is the unexpectedly
good showing of CPLEX on the global routing SAT bench-
marks. Unfortunately, lacking knowledge of CPLEX’s algo-
rithms it is difficult to explain why it performs so well on
these benchmarks. To better understand its behavior, we
tested it on a variety of easy SAT instances from the
DIMACS set [8]. The results of those tests are reported in
Table 4. In this case, PBS outperforms CPLEX with an even

Table 2: Results of the Max-ONEs experiment

Benchmark
Family

Satisfiable Instance Time, sec. PBS Speedup
Name |V| |C| Max-ONEs PBS SATIRE OPBDP CPLEX SATIRE OPBDP CPLEX

DIMACS
[8]

aim-50-1_6-yes1-1 50 80 29 0.01 0.01 0.02 0.11 1 2 11
aim-100-1_6-yes1-1 100 160 43 0.01 0.02 7.19 41 2 719 4100
aim-200-2_0-yes1_1 200 400 96 0.01 0.06 5000 5000 6 >500K >500K
ii8b1 336 2068 275 4.69 3180 56.2 8.85 678 12 1.89
jnh1 100 850 55 0.32 2.2 0.12 85.56 6.88 0.38 267.4
par8-1 350 1149 79 0.01 0.06 0.05 1.03 6 5 103

Bejing [10] 3blocks 283 9690 63 4.83 49.53 4494 5000 10.3 930 1035
QG [26] qg7-09 729 22060 81 0.1 5.41 9.8 17.92 54.1 98 179.2

qg6-09 729 21844 81 0.21 5.56 45 564.65 26.5 214 2689

Satplan-sat
[10]

bw_a 459 4675 73 0.03 0.43 0.21 0.51 14.3 7 17
bw_b 1087 13772 136 0.58 6.39 17.86 66.16 11 31 114
bw_c 3016 50457 272 24.37 315.5 5000 986.2 13 >205 40.5

Accepted to ICCAD ’02

7

higher margin than that of CPLEX over PBS in the global
routing experiments. The only exception is the hole7
instance which has similar characteristics to the grout
instances. This leads us to conjecture that CPLEX incorpo-
rates algorithms that recognize and simplify certain struc-
tured problems (such as the pigeon-hole and global routing
instances) but not general structured EDA problems (such as
the bridging fault bf0432-007 and stuck-at-fault ssa7552-038
instances).

In summary, generic ILP solvers, such as CPLEX, seem
to be inadequate for solving Boolean optimization problems
and the majority of Boolean satisfiability problems. Simi-
larly, previous specialized 0-1 ILP solvers, such as SATIRE
and OPBDP, perform poorly on almost all problems due to
the limited SAT enhancements implemented in these solvers.
The latest specialized 0-1 ILP solver, PBS, outperforms all of
the presented solvers, except for some specific structured
problems, in which the commercial CPLEX solver wins. Fur-
thermore, expressing problems in CNF and PB allows for a
significant reduction in memory and substantial speedup. It
also allows for optimization problems to be efficiently solved
using SAT-based techniques.

6 CONCLUSIONS
In this work we studied discrete optimization and decision
problems related to Boolean satisfiability that can be tackled
with (i) generic ILP solvers, and (ii) specialized 0-1 ILP solv-
ers. We showed that the trade-offs between these methods
are sensitive to the current state-of-the-art, which consider-
ably changed over the last several years. Additionally, our
work further pushes the performance envelope of 0-1 ILP
techniques. We implemented a new 0-1 ILP solver, PBS, that
uses the latest advances in Boolean satisfiability and com-
pared it against four previously existing implementations,
including the leading generic commercial ILP solver CPLEX

[11], the currently-fastest CNF-SAT solver Chaff [18] and
two specialized 0-1 ILP solvers [4, 23].

In Particular, we evaluated PBS on instances of the Max-
SAT and Max-ONEs optimization problems, whose signifi-
cance is due to a reduction from the Max-Cut and Max-
Clique problems, respectively, as well as applications to min-
wirelength routing. We also experimented with SAT prob-
lems that appear in global routing and other EDA domains.

Algorithmic and benchmarking contributions aside, our
two most important suggestions for the EDA community are:

consider generic ILP solvers in the context of highly-
structured 0-1 constraint satisfaction (i.e., Boolean SAT)
problems, and
consider specialized 0-1 ILP techniques in the context of 0-
1 optimization problems.
While we did not find a universal “rule of thumb”, we did

identify relevant trends for most types of instances that we
worked with. Additionally, tool developers may benefit from
learning techniques used by their colleagues, although we do
not know what techniques are currently used by the commer-
cial tool, CPLEX, to solve ILP problems. Furthermore,
encodings that utilize CNF and pseudo-Boolean constraints,
in applications such as routing, can be much more compact
than pure CNF and generally lead to faster run times.

By significantly improving the efficiency of SAT-based
applications, particularly routing, we hope to facilitate new
uses of 0-1 techniques. Our on-going work in this direction
includes embedding SAT-based routers into realistic algorith-
mic flows and benchmarking them against best known geo-
metric algorithms.

Our progress on the Max-ONEs problem—a fundamental,
but unfortunately overlooked formulation—also opens new
applications of SAT-based solvers. Our future work will
study applications to Max-Clique, Max Independent Set and
Min Vertex Cover, which are fairly popular problems in logic

Table 3: Results of the Max-SAT experiment

Unsatisfiable Instance Satisfiable
Instance

#
U

nS
A

T

Time, sec. PBS Speedup

Name |V| |C| |V| |C| PBS SATIRE OPBDP CPLEX SubSAT SATIRE OPBDP CPLEX Sub-SAT
aim-100-1_6-no-1 100 160 260 640 1 0.01 0.02 5000 8.7 0.02 2 >500K 870 2.0
bf0432-007 1040 3668 4708 13242 1 0.35 7.88 5000 5000 0.86 22 >14K >14K 2.5
dubois30 90 240 330 960 1 0.02 0.5 5000 5000 0.05 25 >250K >250K 2.5
hole7 56 204 260 652 1 0.24 11.92 22.54 0.01 1.8 50 94 0.04 7.5
jnh14 100 850 950 5013 2 3.43 291.27 5000 461.3 26.2 85 >1458 134 7.6
jnh211 100 800 900 4688 2 2.94 196.25 5000 154.3 27.2 67 >1701 52 9.3
jnh307 100 900 1000 5265 3 30.44 5000 5000 5000 146.2 >164 >164 >164 4.8
jnh308 100 900 1000 5310 2 6.51 600.16 5000 5000 70.2 92 >768 >768 10.8
jnh8 100 850 950 4997 2 2.69 271.16 5000 193.5 11 101 >1858 72 4.1
jnh9 100 850 950 5006 2 4.36 349.7 5000 624.7 29.4 80 >1147 143 6.7
pret150_25 150 400 551 1601 1 0.02 0.02 5000 5000 385 1.0 >250K >250K 19K
ssa0432-003 435 1027 1462 3391 1 0.01 0.25 5000 4.52 0.09 25 >500K 452 9
fpga3_4 24 44 68 140 2 0.01 0.4 0.01 0.18 0.01 40 1.0 18 1.0
fpga4_5 40 90 130 290 2 0.1 11.97 1.46 3.91 0.03 120 15 39 0.30
fpga5_6 60 162 222 522 2 7.04 485.27 91.12 220.8 0.09 69 13 31 0.01
fpga6_7 84 266 350 854 2 319 5000 5000 5000 1.42 >15.7 >15.7 >15.7 0.00

Accepted to ICCAD ’02

8

synthesis and other areas of design automation. In addition,
we plan to enhance the optimization capabilities of PBS by
incorporating lower/upper bound estimations of the value of
the objective function to further prune the search space.

ACKNOWLEDGMENTS
This work is funded by the DARPA/MARCO Gigascale Sili-
con Research Center, an Agere Systems/SRC Research fel-
lowship, and a DAC graduate scholarship.

REFERENCES
[1] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, “Solv-

ing Difficult SAT instances in the Presence of Symme-
try,” in Proc. of the Design Automation Conference,
pp. 731-736, 2002.

[2] L. Baptista and J. P. Marques-Silva, “Using Randomiza-
tion and Learning to Solve Hard Real-World Instances
of Satisfiability,” in Proc. of the 6th International Con-
ference on Principles and Practice of Constraint Pro-
gramming (CP), 2000.

[3] P. Barth, “A Davis-Putnam based Enumeration Algo-
rithm for Linear Pseudo-Boolean Optimization,” Tech-
nical Report MPI-I-95-2-003, Max-Planck-Institut Für
Informatik, 1995.

[4] P. Barth, “OPBDP: A Davis-Putnam based Enumera-
tion Algorithm for Linear Pseudo-Boolean Optimiza-
tion,” http://www.mpi-sb.mpg.de/units/ag2/software/
opbdp.

[5] F. M. Brown, “Boolean Reasoning,” Kluwer Academic
Publishers, 1990.

[6] N. Creignou, S. Kanna, and M. Sudan, “Complexity
Classifications of Boolean Constraint Satisfaction Prob-
lems”, Society for Industrial and Applied Mathematics
(SIAM), 2001.

[7] M. Davis, G. Logemann, and D. Loveland, “A Machine
Program for Theorem Proving,” Communications of the
ACM, 5(7), pp. 394-397, 1962.

[8] DIMACS Challenge benchmarks, ftp://Dimacs.rut-
gers.EDU/pub/challenge/sat/benchmarks/cnf.

[9] M. R. Garey and D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-Complete-
ness,” W. H. Freeman and Company, 1979.

[10] H. Hoos and T. Stützle, http://www.satlib.org.

[11] ILOG CPLEX, http://www.ilog.com/products/cplex.
[12] Z. Kohavi, “Switching and Finite Automata Theory,”

Second ed. McGraw-Hill, 1978.
[13] R. E. Ladner and R. E. Fischer, “Parallel Prefix Compu-

tation”, J. of the ACM (JACM), 27(4), pp. 831-838,
1980.

[14] T. Larrabee, “Test Pattern Generation Using Boolean
Satisfiability,” IEEE Trans. on CAD, 11(1), pp. 4-15,
1992.

[15] I. Lynce, L. Baptista, and J. P. Marques-Silva, “Sto-
chastic Systematic Search Algorithms for Satisfiability,”
in the LICS Workshop on Theory and Apps of Satisfi-
ability Testing, 2001.

[16] V. Manquinho and J. P. Marques-Silva, “On Using Sat-
isfiability-Based Pruning Techniques in Covering Algo-
rithms,” in Proc. of the Design Automation and Test
Conference in Europe, pp. 356-363, 2000.

[17] J. P. Marques-Silva and K. Sakallah, “GRASP: A
Search Algorithm for Propositional Satisfiability,” IEEE
Trans. on Computers, 48(5), pp. 506-521, 1999.

[18] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering an Efficient SAT Solver,” in
Proc. of the Design Automation Conference, pp. 530-
535, 2001.

[19] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar, “A
Comparative Study of Two Boolean Formulations of
FPGA Detailed Routing Constraints,” in Proc. of the
Int’l Symposium on Physical Design, pp. 222-227, 2001.

[20] B. Selman, H. Kautz, and B. Cohen. “Noise strategies
for local search,” in Proc. of the National Conference on
Artificial Intelligence, pp. 337-343, 1994.

[21] M. Velev and R. Bryant, “Effective use of Boolean Satis-
fiability Procedure in the Formal Verification of Super-
scalar and VLIW Mircroprocessors,” in Proc. of the
Design Automation Conference, pp. 226-231, 2001.

[22] J. Walsor, “Solving Linear Pseudo-Boolean Constraint
Problems with Local Search,” in Proc. of the National
Conference on Artificial Intelligence, pp. 269-274, 1997.

[23] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A
New Incremental Satisfiability Engine,” in Proc. of the
Design Automation Conference, pp. 542-545, 2001.

[24] H. Xu, R. Rutenbar, K. Sakallah, “sub-SAT: A Formula-
tion for Relaxed Boolean Satisfiability with Applications
in Routing,” in Proc. of the Int’l Symposium on Physical
Design, 2002.

[25] J. P. Warners, “A linear-time transformation of linear
inequalities into conjunctive normal form,” in Informa-
tion Processing Letters, 68(2), pp. 63-69, 1998.

[26] H. Zhang, “SATO: An Efficient Propositional Prover,”
in Int’l Conference on Automated Deduction, pp. 272-
275, 1997.

[27] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik,
“Efficient Conflict Driven Learning in a Boolean Satisfi-
ability Solver,” in Proc. of the Int’l Conference on Com-
puter-Aided Design, pp. 279-285, 2001.

[28] H. Zhang, and M. Stickel, “An efficient algorithm for
unit-propagation,” in Proc. of the Int’l Symposium on
Artificial Intelligence and Mathematics, pp. 166-169,
1996.

Table 4: PBS vs. CPLEX on DIMACS SAT Instances

Instance SAT/UNS
Time, sec. PBS

SpeedupPBS CPLEX
aim-50-1_6-no-1 U 0.01 0.24 24
aim-50-1_6-yes1-1 S 0.01 0.36 36
bf0432-007 U 0.38 5000 >13K
dubois20 U 0.02 5000 >250K
hole7 U 3.73 0.01 0.002
ii8c1 S 0.01 1.22 122
jnh1 S 0.03 27.91 930
par8-1-c S 0.01 0.14 14
pret60_25 U 0.03 5000 >166K
ssa0432-003 U 0.02 9.47 474
ssa7552-038 S 0.01 64.2 6420

