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Abstract. In order to design a quantum circuit that performs a desired
quantum computation, it is necessary to find a decomposition of the
unitary matrix that represents that computation in terms of a sequence
of quantum gate operations. To date, such designs have either been found
by hand or by exhaustive enumeration of all possible circuit topologies. In
this paper we propose an automated approach to quantum circuit design
using search heuristics based on principles abstracted from evolutionary
genetics, i.e. using a genetic programming algorithm adapted specially
for this problem. We demonstrate the method on the task of discovering
quantum circuit designs for quantum teleportation. We show that to find
a given known circuit design (one which was hand-crafted by a human),
the method considers roughly an order of magnitude fewer designs than
naive enumeration. In addition, the method finds novel circuit designs
superior to those previously known.

1 Introduction: Quantum Circuit Design

1.1 Quantum Computation

Quantum computation is an emerging area of study, which considers the pro-
cessing of quantum information, rather than the familiar classical information.
The state of a quantum computer is defined as a superposition of qubits. A com-
putation on such a computer is the unitary evolution of this state, i.e. the action
of a unitary matrix operator U upon the state |Ψ〉. More detailed background
on the framework of quantum information processing may be found in [13], [14],
and [15].

1.2 Quantum Gates and Circuits

Much recent work has been devoted to the construction of unitary transforma-
tions from sequences of more primitive ones. Deutsch ([6]) introduced the notion
that such simple unitary operators can be thought of as elementary gates per-
forming logical operations, and more sophisticated operators can be thought of
as circuits composed of gates, in analogy to the standard formalism for classical
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Boolean electrical circuits. This is sometimes called the network model of com-
putation. Following the classical computation line of analysis, in which certain
small sets of gates (as small as one gate) are known to be sufficient to represent
all possible circuits, several researchers have proposed such universal gate sets
(as small as a single parametrized gate family) for quantum circuits ([8], [2]).
Besides the identification of such sets, some attempts have been made to char-
acterize the minimal number of gates drawn from a given universal set required
to implement a given operator U ([7]).

1.3 Circuit Design

Now assume we would like build a circuit to implement a certain computation,
represented by U . Most likely our mechanisms for manufacturing quantum com-
puters will begin with allowing us to implement certain very specific primitive
quantum operations more effectively than others, for a variety of reasons which
will be peculiar to the technology. Given that we have a reasonable set of gates
from which to select circuit elements, and perhaps some theoretical ammunition
regarding the minimum number we will need, we are still left with the following
practical question: What is a specific sequence of those gates that will implement
the operation? After we have an efficient and flexible method for answering this
question, we will want to answer the following: What is a specific sequence of
those gates that will implement the operation using only the minimum number
of gates necessary? As the enterprise of building quantum circuits matures, we
may eventually wish to find circuits meeting other measures of optimality aside
from parsimony. This paper presents a solution to the first (and most important)
problem, which also indirectly addresses the issue of parsimony by allowing the
size of the circuits considered to vary.

2 Searching the Space of Circuit Designs

2.1 Automated Circuit Design

In this paper we are concerned not with the theoretical analysis of minimality of
representation, but rather with the practical automated discovery of a correct
circuit for a target unitary transformation U . We characterize the problem as a
search over the space of possible circuit designs. We focus foremost on demon-
strating a search algorithm which finds a correct circuit in less time than it
would take to try every possibility. Parsimony of representations will be encour-
aged through the thoughtful definition of heuristics in the search procedure. It
is useful to state here that to avoid exhaustive enumeration, we give up any
worst-case guarantee of finding a correct circuit design; so far this is the state of
the art in combinatorial optimization ([5]).
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2.2 The Search Space

There are two components to a quantum circuit design. One is the topology of
the circuit – the gate elements and the connections between them. This is a
discrete entity. An important complication enters when we wish to allow topolo-
gies to have different sizes, i.e. numbers of gates, which we would prefer to leave
unspecified when automating circuit design, leaving the algorithm to find the
appropriate size. The second is the assignment of angle values within the gates,
if applicable; when our gate selection set includes gates which are actually para-
metric families of gates, there are continuous parameters to be found.

The paper of DiVincenzo and Smolin ([7]) discussed numerical optimization
for the discovery of parameters for two-qubit gates, within a fixed circuit topol-
ogy, which lead to a desired unitary computation. They used this technique to
show that certain gates of interest (the Toffoli gate and arbitrary three-qubit
gates) could themselves be represented as circuits of two-qubit gates, by finding
the necessary two-qubit gate parameters. In order to find the necessary circuit
topologies, however, all possible topologies were tried. The focus of that paper
was to show the possibility of decomposing particular computations into circuits
of simpler gates; thus exhaustive enumeration was sufficient as a tool to prove
the point. We are interested here in a practical and general method for efficiently
finding correct circuit topologies for any given operator, in other words avoid-
ing exhaustive enumeration. We return to the continuous aspect of the search
problem later in Section 6.

3 Genetic Programming: A Set of Search Heuristics

3.1 Why Genetic Programming?

Our search problem makes a difficult demand on any search method we might
think to employ. First, the search method must be amenable to problems in
which it is difficult to characterize the structure of the solution space exactly. To
clarify this point, consider that our formulation of the problem leaves the form of
the target unitary transformation U completely unspecified; no deep knowledge
of U ’s substructure, behavior, relationship to the gates used, or nature otherwise
can be used to advantage to eliminate invalid possibilities in the search problem.
This very general stance is appropriate for quantum circuit design since human
techniques and intuitions about quantum circuits have not reached a mature
stage yet; once specific classes of quantum circuits can be delineated, it may be
fruitful to design search methods which take advantage of their extra constraints.
Furthermore, the quantum circuit design problem is one in which it is difficult
to evaluate the best next local move to make at any given point in the search;
the entire solution must then be evaluated in order to evaluate the effect of a
local change in a circuit candidate. Genetic programming is appropriate in this
setting since it relies only on evaluations of entire circuits.

Second, it must be capable of considering solution structures of variable
length. This is crucial if it is to have any hope of finding small designs; it must
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be given the latitude to explore solution candidates of different sizes. A par-
ticular set of search heuristics, the so-called genetic programming method [12],
has the distinction of being the only search technique having the capability of
searching over solutions of varying structure and size. Genetic programming is a
type of genetic algorithm [9], which in turn is a type of stochastic hill-climbing,
or “go with the winners” algorithm ([1]), along with simulated annealing ([10]).
Genetic programming is the kind of genetic algorithm which is concerned with
non-fixed-length topological structures, rather than the simpler case of fixed-
length solutions.

3.2 The Parts of Genetic Programming

Genetic programming is a simple set of search heuristics based loosely on the
principles of evolutionary genetics. One of its most distinctive traits is that it is
a population-based method, or one which maintains multiple solution candidates
simultaneously, whose ’evolution’ paths may interact with each other. In partic-
ular, they may trade substructures in an operation called “crossover”, in analogy
to sexual reproduction. The method is heavily stochastic, sometimes perform-
ing random perturbations on solution candidates (“mutations”), and greedily
selecting the current best solutions to continue pursuing via random sampling
weighted by solution quality (“fitness”, “survival of the fittest”). A typical ge-
netic programming algorithm has this form:

Initialize population with random solutions.

Until the stopping criterion has been reached,
1.Evaluate the quality of each solution in the population.
2.Sample from the population, weighted by solution quality, to
form the ‘breeding pool’.

3.For each member of this subset of the population, choose one
of the following operations to perform on it:
a.Mutation (choose with probability p(M))
b.Crossover(choose with probability p(C); requires a partner)

Each iteration of the algorithm is called a “generation”.
Because its directional guidance is based on evaluations of entire solutions, all

that is necessary to apply the algorithm to a problem is a well-defined measure of
solution quality; it is thus amenable to problems in which it is difficult to evaluate
the best local move to make at each partial solution (such as the circuit design
problem). The main power of the method, which distinguishes it from simple
stochastic local perturbation, is in the crossover operation. If the problem is one
in which we expect substructures to contain localized information, i.e. represent
meaningful subsolutions (an analogy to subroutines of a program is useful here),
then crossover has a hope of successfully transferring a subsolution to a different
solution, perhaps increasing its overall quality. In the circuit design problem, it
seems reasonable to expect that transferable subcircuits exist. Crossover is also
the main mechanism for obtaining topology candidates of different sizes.
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4 A Genetic Programming Algorithm for Quantum
Circuit Design

For this investigation we designed a genetic programming algorithm tailored
specifically for the problem of quantum circuit design.
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S

Fig. 1. An example circuit.

4.1 Representation

Circuit Representation. An anonymous quantum circuit is shown in Figure
1 as an example of the representation we use. It is represented as the following
nested list data structure, which encodes with each circuit element, its name,
parameters if any, and embedding (the wires to which it is connected, followed
by the number of wires in the circuit: three in this case):
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(1)
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Gate Selection Set. The algorithm chooses gates from a prespecified selection
set. These gates may have unspecified continuous angle parameters associated
with them, which must be adjusted by the search algorithm. The gates may
also be fixed, or parameterless, gates. In a general setting where little is known
about the target transformation, it is sensible to select the gate set such that
it forms a universal gate set. It may also be sensible to choose an overcomplete
set, one which includes a number of gates beyond a computation-universal core
subset. This may be useful for obtaining more compact representations, yet may
be more costly than having a smaller number of gate types, depending on the
technological practicalities of quantum hardware manufacture which hold at the
time of the design. An undercomplete set may make sense when some known
properties of the target computation allow it.

4.2 Evaluation

Solution Quality Measure. To evaluate the quality of a circuit candidate, we
compare its matrix form S to the target matrix U using the objective function

f(S, U) =
2N∑
i=1

2N∑
j=1

|Uij − Sij |, S, U ∈ U(2N) (2)

This is similar to the objective function used in [7]:

f(S, U) =
2N∑
i=1

2N∑
j=1

|Uij − Sij |2, S, U ∈ U(2N ) (3)

We call f the fitness or the discrepancy; our goal is to find circuits which
minimize the discrepancy between the circuits in our population and the target.
When f = 0, we have found a circuit which implements U exactly. Otherwise,
we have found an approximation to U .

We regard the most sensible evaluation measure as an open question. A
paper by Knill [11] considers several measures, many of which are not practically
computable, since they take into account all possible states on which the operator
may act. One requirement of the measure chosen is that it yields a minimum
(maximum) when S = U ; this property is true of all of Knill’s measures. There
is a degree of arbitrariness in specifying the proper qualitative behavior of the
metric when S differs from U .

While a measure such as f allows the discovery of approximate circuits in a
well-defined way, in this paper we focus only upon unitary operations which we
can represent exactly.

4.3 Selection

Selection is the choosing of a subset from the population to modify in some way.
Sampling is weighted by a factor derived from a circuit candidate’s discrepancy
score, in the way described below, and is performed at the beginning of each
generation.
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A Ranking-Based Scheme. Rather than translate the discrepancy score of a
circuit into its selection probability such that the latter is directly proportional to
the score, we instead first order the circuits according to their discrepancies, then
determine selection probabilities based directly on the resulting rankings. This
procedure has the effect of desensitizing the process with respect to the exact
discrepancy distribution, which tends to exhibit extreme ratios between the best
candidates and the worst ones; we would like to deemphasize such differences in
order to avoid complete domination of the selection process by a few candidates
too early in the evolution, which corresponds to entrapment in a local optimum.

Selection Probability Distribution. The circuits are ranked from 1 to N , the
number of circuits in the population, 1 denoting the best. Probabilities are de-
fined with which to select members of the population for breeding (i.e. crossover),
mutation, and other operations which yield modified solution candidates. We de-
sire a functional form yielding probabilities of selection which decrease as the
ranking increases (i.e. gets worse), choosing a quadratic form as a compromise
between a form yielding a very weak selection effect (which makes the algorithm
closer to a purely random search) such a linear decrease, and a form yielding
a very aggressive selection effect (making the algorithm more ’greedy’, or sus-
ceptible to short-term gains which might cause it to become trapped in a local
optimum), such as an exponential decrease.

The probability P (r) of selecting the circuit having ranking r is then ar2+br+
c for some a, b, and c. To determine some values for these variables we set up some
constraints, namely that P (r) is a true probability, i.e.

∑N
r=1 ar2 + br + c = 1,

that the lowest ranked member is never picked, i.e. aN2 + bN + c = 0, and that
the derivative of the probability goes to zero as r goes to N , guaranteeing that
the probability function is monotonic decreasing. This set of equations yields
values of a, b, and c such that

P (r) =
6N

1 − 3N + 2N2
r2 +

6
N(1 − 3N + 2N2)

r − 12
1 − 3N + 2N2

. (4)

To derive the new generation’s population from the last generation’s mem-
bers, selection from the described probability distribution is performed N times
with replacement; note that the population size stays constant and that on av-
erage circuits are multiply represented in the next generation a number of times
proportional to their fitness. This process yields the parents which are fit enough
to draw upon for the various modifications (i.e. search operations) that follow.

To finish the activity of this generation, each parent is replaced by a new cir-
cuit resulting from an operation performed on it; the operation to be performed
on each circuit is chosen from a discrete probability distribution determined by
the user of the algorithm.
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4.4 Search Operators

Mutation. Mutation is the random perturbation of a single gate, chosen uni-
formly at random from the gates within the operand circuit. In the case of fixed
gates, i.e. gates without parameters which can vary, the selected gate’s embed-
ding is changed by uniformly randomly selecting new connecting lines to replace
the old ones.

Substitution. Substitution is similar to mutation, but is the replacement of
an existing gate chosen uniformly randomly from the gates within the operand
circuit, with another one selected from the gate selection set uniformly randomly.
Though replacement can be achieved through an appropriate insertion-deletion
pair of operations, described below, its inclusion as a separate operation allows
its probability of occurence to be more explicitly controlled.

Crossover. The circuit resulting from the crossover, or mating, operation is
obtained by considering two parent circuits, A and B. A split point is chosen
uniformly randomly somewhere along each of the two parent circuits. The circuit
resulting from crossover has the first part of the circuit A attached to the second
part of the circuit B, or the first part of the circuit B attached to the second
part of the circuit A, each with probability 0.5. Note that crossover allows the
size of the resulting circuit to change from that of either A or B.

Transposition. Transposition is an operation obtained by generalizing cross-
over; its result is also defined by considering two parents A and B. A subcircuit
is first defined by the selection of beginning and end points in parent A. The
beginning point is chosen uniformly randomly along the length of A, and the
end point is chosen uniformly randomly from the region between the that point
and the end of A. The resulting circuit is found by inserting the subcircuit at a
uniformly randomly chosen point along the length of parent circuit B. This also
allows the size of the resulting circuit to change from that of either A or B.

Insertion. Insertion is similar to transposition, except that only one parent
need be considered; a randomly constructed sequence of gates is inserted at a
random point in the parent, resulting in a larger circuit. The beginning and end
points of a subcircuit of the parent are chosen as described for the transposition
operator, only so that the length of this subcircuit can be used as the length
of the random gate sequence to be inserted. This sequence is constructed by
choosing uniformly randomly from the gate selection set the described number
of gates.

Deletion. Deletion is the inverse of insertion, in that a random subcircuit is
chosen from within the parent; this sequence is deleted from the parent, resulting
in a smaller circuit.
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5 Experimental Results: Quantum Teleportation Circuits

Quantum teleportation has been identified as an important and interesting ap-
plication of nonlocal effects in quantum mechanics [3]. Brassard has presented
a circuit for the ’send’ and ’receive’ halves of quantum teleportation in [4]. This
circuit is compact, requiring only 4 gates in the ’send’ subcircuit and 6 in the
’receive’ subcircuit. It is shown in Figure 2. The gate definitions can be found in
the example circuit shown in 1 and Figure 1.

L

R|ψ>

|0>

|0>

ρ

σ
?

? S S

T

|φ>

|φ>

|ψ>

Alice Bob

Fig. 2. The quantum teleportation circuit - ’send’ and ’receive’ parts.

We chose to demonstrate the search algorithm on the computation matrix
generated by this circuit, primarily for its general interestingness. Its small size
gives the advantage of tractability in the algorithm experimentation phase. Also,
because we start with a circuit to obtain the target unitary transform, we know
that a compact circuit implementation exists for the problem. We can analyze
the computational resources our search method requires to reproduce the hand-
designed circuit. As discussed in Section 4.2, using a problem for which an exact
circuit representation is known to exist for the gate selection set used avoids the
need to consider the appropriateness of the particular fitness measure being used
to score inexact circuits.

5.1 The ’Send’ Circuit

The algorithm was given the send circuit’s computation matrix and a gate se-
lection set consisting of L, R, and XOR. 10 runs were performed, each requiring
a different number of generations to find a correct circuit, as follows: 9, 26, 16,
10, 31, 11, 20, 55, 36, 50. 26.4 generations were required on average.

In each case a circuit was found implementing the given computation exactly;
although most were different from the original human-designed circuit, all had
4 gates and included at least one each of the L, R, and XOR gates (thus none
was necessarily any better than the original circuit). The variance of the number
of generations required to find a zero-discrepancy circuit is large, owing to the
heavily stochastic nature of the algorithm.

A population size of 100 circuit candidates was used. This is the number of
circuit solutions which must be evaluated upon each generation of the algorithm.
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Thus, on average, about 2,640 circuits are evaluated for this problem before an
answer is found.

By comparison to exhaustive enumeration, the number of possible circuit
topologies for this problem, knowing the number of gates to consider in advance,
can be simply computed as follows: With 3 circuit lines, there are 3 ways to
embed the L gate, 3 ways to embed the R gate, and or

(
3
2

)
= 6 ways to embed

the XOR gate, yielding 3 + 3 + 6 = 12 different choices for each gate possibility.
If we fix the topology size we consider to 4 gates, there are 124 = 20, 736 dif-
ferent possible topologies to consider for this problem, using a naive exhaustive
approach. Since our search method actually considers circuits of many different
sizes, a fair comparison would have to take into account every size class of circuit
up to some fairly high number. Our method considered circuits at least as large
as 13 gates; note that there are 1213 > 1014 circuits having 13 gates!

We note here that this number does not take into account symmetries and
other structure in this search problem, several of which are considered in [7].
Even accounting for these effective reductions of the search space, the compu-
tational advantage of a stochastic approach such as the one proposed is still
quite significant. Our method may be also be able to take advantage of such
information for even greater search efficiency.

Figure 3 shows a typical plot of the average circuit discrepancy over the
population at each generation for this problem. The dots on the lower portion
of the graph indicate the discrepancy of the best circuit(s) in the population at
each generation.

0 5 10 15 20
Generation

0.1

0.2

0.3

0.4

D
i
s
c
r
e
p
a
n
c
y

Fig. 3. Typical evolution plot.

5.2 The ’Receive’ Circuit

Experiments with the ’receive’ part of the circuit demonstrate a further advan-
tage of this approach to automated circuit design beyond achieving a significant
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savings in time and computational resources. The flexibility and generality of our
approach allows the human user to select a gate set of interest and see whether
interesting circuits using those gates are found by the search technique. This
type of automated search has the potential to find circuits which are difficult for
even resourceful and expert human circuit designers to find. This is true espe-
cially when a large number of gates is involved; however this small but practical
circuit example illustrates that even modest combinatorial problems are very
difficult to find optimal answers for, when unaided by computer methods.

Rather than the original set of gates used in [4] for this circuit, consisting of
S, T, and XOR, the genetic programming algorithm was given the gate selection
set used above, consisting of L, R, and XOR. One of the resulting exact circuits
is shown in Figure 4. Comparing this to the original ’receive’ part of the human-
designed circuit shown in Figure 2, it is clear that the new circuit is smaller (4
gates versus 6), and that the overall teleportation circuit is more elegant since
it requires only 3 types of gates, L, R, and XOR, rather than 5 now that S and
T are no longer needed.

R L

Fig. 4. An efficient circuit found by the search method.

6 Discussion

6.1 Genetic Programming Search as a Tool

At the moment, genetic programming’s ability to work with structures of varying
sizes makes it the only tool available. Its other primary strength is its effective-
ness for opaque problems, where search moves are difficult to evaluate without
considering their effect on the entire solution. Rather disappointingly, however,
the method’s search heuristics are not well-understood formally. For example, is-
sues of convergence, estimated run-time, optimal parameter settings, and behav-
ior dependence on problem context remain empirical issues. Aldous and Vazirani
provide one way in which to understand genetic algorithms in general, placing
them with simulated annealing in the class of “go with the winners” algorithms
([1]). However, this framework addresses only the ’survival of the fittest’ aspect
of genetic algorithms, not the effect of the crossover operation, which is one of
the hallmarks of genetic algorithms. While much has been written about genetic



124 C.P. Williams and A.G. Gray

algorithms, most analyses have been empirical rather than formal. Genetic pro-
gramming, dealing with variable-length structures, is also surely subsumed by
some more general model which can be understood formally – unfortunately this
has not yet arrived.

On the positive side, its flexible framework allows the practitioner to plug in
his or her own heuristics, encoding any prior knowledge of the problem the user
may have (for example, regarding the size of the circuit or the types of gates to
use). The specifiable gate selection set allows the specification of only the gates
available to the user.

6.2 Extension to Continuous Case

The proposed search method can be extended to allow the inclusion of contin-
uous, or parametrized, gates in the gate selection set, as opposed to the fixed
gates used in these experiments. This capability requires necessitates greater
computational effort since an optimization must be performed to tune the con-
tinuous gate parameters of each circuit candidate such that the discrepancy is
minimized given the circuit’s discrete topology. However, the ability to incorpo-
rate continuous gates holds the promise of more compact circuit solutions, as
well as better circuit approximations where necessary. Experiments elucidating
this approach, as well as several other potentially powerful extensions, will be
described in future reports.

7 Conclusions

In this paper we have formalized the problem of automated quantum circuit de-
sign as a search problem. We proceeded to propose a search method tailored for
this problem. We then demonstrated its usefulness by showing that it is com-
putationally more efficient than naive enumeration. Finally, we demonstrated
that it is capable of discovering useful circuits even when the number of gates
considered is small, as exemplified by a novel circuit found by our algorithm for
quantum teleportation.
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