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Abstract 

We show that hypergraph isomorphism can be tested in time 
O(c”), where n is the sire of the vertex set. In general, in- 
put of a hypergraph could require n(2”) space, in which 
case the isomorphism test is in polynomial time. As a con- 
sequence, we put into polynomial time the classic problem 
of testing whether two Boolean functions, given by truth ta- 
bles, are related via permutations and complementations of 
the variables, and therefore have structurally identical net- 
work realizations. In fact, the method is parallelizable and 
we put the problem even into NC. We obtain similarly an 
NC test of equivalence of truth tables under permutation of 
variables alone. 

1 Introduction 

In the synthesis and verification of Boolean circuits, it is 
often necessary to test whether two functions, f, g , have 
the same physical network. Clearly, this is the case if 9 
is derived from f by r&belling input leads or transposing 
“0” and “1” states at any lead [36]. With this in mind, we 
say Boolean functions are (structurally) equivalent’ if they 
are in the same orbit of the group generated by permuta- 
tions and complementations of the n variables, as well as 
complementation of the function values [16, 181, a group of 
order Z”+‘n!. Treating this issue at length in a 1965 text, 
Harrison observed [18, p. 1521: 

we do not know a nonexhaustive way to [test 
equivalence] 

Taking a step in that direction, he offered an algorithm for 
computation of a system of Boolean-function invariants that 
had been described by Golomb [16]. Although it has prac- 
tical advantage over enumeration of the group, the method 
requires consideration of up to R! variable orderings when 

there is a coincidence of “first-order” invariants. In terms of 
the problem size2, m = Q(Z”), its time complexity has the 
same form as that of brute force, namely, O(m”‘“s’“~ “). 
Although there has been much study, and implementation, 
of practical heuristics for special cases (e.g., [6, 18, 19, 31, 
33, 391) the question of whether there is a polynomial-time 
(O(mS)) alternative for the general problem has remained 
opelI. 

Consider also the question that arose following Gold- 
berg’s demonstration of the first subfactorial algorithm for 
testing graph isomorphism [15, 81; using a combinatorial 
“sectioning” technique, he described a simply-ezponentiol, 
O(P), algorithm for n-vertex graphs. This raised the issue 
of whether even hypergroph isomorphism could be tested in 
similar time (see [4, Section 61). Graph isomorphism has 
since been improved to moderately-exponential time (that 
is, exp(ne) with oi < 1 [40, 11, the best-known bound being 
exp(cG) [3]). However, direct application of the tech- 
niques to hypergraph isomorphism achieves O(c”) timing 
only when the rank (= maximum cardin&y of hyperedges) 
is bounded (see Section 7). 

It is not difficult to reduce the Boolean-function ques 
tion to the hypergraph question and the main results of this 
paper include the resolution of both (Sections 4,5). 

Theorem 1.1 For hypergraphs on n uertices, isomorphism 
can be tested in time O(P), where c is constant. 

And, as a consequence, 

Corollary 1.2 Given truth tables for two Booleonfunctions, 
testing structural equivalence is in polynomial time. 

Also of some interest for a variety of applications is the 
matter of equivalence of Boolean functions just under per- 
mutations of variables (see, e.g., [9, 11, 191). We show 

Corollary 1.3 Testing equiualence of truth tables underper- 
mutation of variables is in polynomial time. 0 

Another application is to isomorphism-testing of bipar- 
tite graphs: 

21” genera,, the functions would be specified by truth tables or the 
eauivalent. 
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Corollary 1.4 Let 8 = (Qti%‘,E), 8’ = (a’lj*‘,E’) be 
bipartite graphs (i.e., the edge sets satisfy E 2 + x Y, 
E’ C @J’ x W). Then isonwrphism of B with 8’ can be 

tested in O(c”‘1’J!\“) time (c,c’ constant). 

But we can state even more in regard to Theorem 1.1. 
The method is strongly parallelizable (Section 6). 

Theorem 1.5 There are constants c,c’ such that, using 
O(c”) porollel processors, isomorphism of hypergmphs on 
n vertices con be tested in time O(n”). 

Thus, 

Corollary 1.6 Testing structural equivalence of Boolean 
functions given by truth tables is in NC. 

Similarly, testing equivalence of truth tables under per- 
mutation of variables is in NC. 

Among other things, our demonstration of Theorem I.1 
makes use of a procedure for intersecting cosets of permu- 
tation groups. Simply-exponential approaches to coset in- 
tersection were already given in [3]. However, we offer (Sec- 
tion 3) a self-contained version that provides the reader with 
the additional bonus of a succinct method for testing graph 
isomorphism in simply-exponential time. 

While groups are employed in our procedures, it is note- 
worthy that their use is elementary in comparison to their 
involvement in several earlier applications to graph isomor- 
phism (cf. [3], and even [as]). No knowledge of internal 
group structure is required: groups appear essentially as 
bookkeeping devices, recording, in a combinatorial divide- 
and-conquer, isomorphisms of substructures. In fact, one of 
the outcomes is a considerable simplification of methods for 
some problems. The aforementioned O(c”) bounded-rank 
hypergraph-isomorphism test required citation of the menu- 
mental simple groups classification; our more general result 
has no such need. 

The NC results are also self-contained. Because the 
groups act faithfully on sets whose cardinality is logarithmic 
in the input size, we can avoid the deeper NC machinery of 
151, which also depended on the simple groups classification. 

Finally, we note that, in the interest of exposition, we 
make no attempt to minimize the constant c in our O(cn) 
algorithms. But, even with minimum c, it would not yet be 
prudent to claim practical applicability in testing Boolean 
equivalence: in applications of significant size it may already 
be prohibitive to represent Boolean functions by truth tables 
01 the like. Heuristics are typically restricted to functions 
having compact representations (e.g., [I?, 20, al]) that are, 
sayy, polynomial in the number of variables, their applicabil- 
ity limited by the NP-hardness of the problem. 

2 Notation and preliminaries 

A hypergmph ‘H = C, E) consists of a set C together with 
1. a collection E c 2 of subsets of C. The rank of ‘H is 

max,EE(lel). Thus, gmphs are hypergraphs of rank 2. 
We denote by Sym(C) the group of all permutations of 

the set X, and for n > 0, Sym(n) = Sym({l,Z ,..., fi}). 
For n E C and z E Sym(C), the image of n under the 

permutation z is denoted n*‘; if A C C then A’: = {a= 1 
6 E A]. For A c Sym(C) (A is not necessarily a subgroup), 
the /set-lstabiliter of A C C in A is AA = 12 E A I AZ = 
A) and ihe (point-)stab&er of o E X L A; = A{:). We 
indicate by H < G that H is a subgroup of G For H 5 G, 
we deal often with the set {Hz / 2 E G) of right cosets of 
H in G; the number of distinct right cosets is the indez of 
H in G and is denoted IG : HI; a right tmnsversol for H 
in G is a set T & G containing precisely one element from 
each right coset of H. For G < Sym(C), D E C, the orbit 
of o under G is oG = {r” I z E C); then IG: G,I = l#l; 
in fact, if T is a subset of G such that, for each r$ E oG, 
there is a unique t E T such that 4 = a’, then T is a right 
transversal for G, in G. 

For any sets C and ‘f~, Sym(C) x Sym(@) acts naturally 
on C x G via (~,r$)(~,~) = (n”, 6”) for d E C, $ E a, 
1: E Sym(C), y E Sym(G). Also, Sym(C acts naturally an 
the power set 2’ with AZ for A E 2 ,’ defined as above. 
For any set C, the diagonal of C x C is diag(C x Z) = 
I(& 0) I CJ E 3. 

We require only rudimentary machinery for group-the* 
retie computation as given, say, in [26, Section 31. In al- 
gorithms, groups are specified (input or output) by genera- 
tors; a coset Hz is specified by generators for H along with 
a representative element z. Polynomial-time membership 
testing is fundamental to all computation in permutation 
groups; this is guaranteed by Sims’s method [35, 12, 26, 341. 
We assume that the number of generators retained for G < 
Sym(C) is O(lCj’) (variations of Sims’s method maintain 
c = 1, e.g., [22, 231); thus, polynomial time for permutation 
groups means polynomial in ICI. Membershiptesting, and 
other basic algorithms, make use of Schnier generators for 
subgroups: given generators S for G and a right transversal 
T for H in G, one obtains ISllTl generators for the sub- 
group H; specifice.lIy, for each s E S, t E T, find i such that 
Hts = Hiand thus form the Schreier generator tsi-’ of H. 
This is particularly useful for finding point-stabilizers G, 
since T is readily obtained in a transitive-closure computa- 
tion of 6’. We note, however, that in principal applications, 
we apply this method to find subgroups other than G,: if 
H 5 G is any subgroup of G for which only a membership 
test is available (notably, H might be a set-stabilizer in G) 
then we can consider the induced action of G on right co&s 
of H (Le., z E G maps Ht ++ Htz) and find generators for 
the stabilizer of the “paint” H in time that is polynomial 
in IG: HI. 

On occasion, we will have generators S for H 5 Sym(C) 
along with the knowledge that UtET~t is a cmet C of 
some group G; in such case, we can conclude that G is 
generated by S u (tt;’ I t E T) and that C = Gtp, where 
to is any fixed element of T. 

3 Coset intersection (and graph isomorphism) 

We consider the following problems. 

COSETINTERSECTION. 

Input: G, H 5 Sym(C), 2, Y E SymP). 

Output: Gz” Hy. 

The output is either 0 or a right co& of G n H. 

653 



GRAPHISOMORPHISM. 

Input: Graphs 4 = (Z, E), 8’ = (C’, E’) 

Question: Is P isomorphic to 9’? 

Our main result requires a simply-exponential solution 
for COSETINTERSECTION, and either of two methods 
outlined in [3] would suffi~e.~ In fact, the method of [3, Sec- 
tion 101, due to Babai, only needs moderately-exponential, 
exp(n”‘+~‘)), time. Instead, we keep our discussion self- 
contained and present a straightforward specialization of a 
method, due to the present author, in [3, Section 91. Its 
key role in [3] is its contribution to the exp(cG) test 
for GRAPHJSOMORPHISM. (The application of Babai’s 
method for intersecting cosets to a graph-isomorphism test 
does not seem to beat O(n!).) However, with only a simply- 
exponential goal, we do not need to get involved with the 
deeper aspects of that test. The approach herein has the 
dual advantages of simplicity and wider applicability (see 
[z] for another application). 

Simply-exponential (O(c’“‘) COSETJNTERSECTION 
and GRAPHJSOMORPHISM will both follow from a sim- 
ply-exponential solution to the following problem. Recall 
(Section 2) the natural embedding of Sym(r) x Sym(A) in 
Sym(r x A) 

Problem I. 

Input: L 5 Sym(r) x Sym(A); I E Sym(T x A); 
HCTXA. 

output: (LZ)” = {z E Lz ) It’ = It). 

As indicated in the proof of Proposition 3.1, the output 
to Problem I is again either 0 or a right coset (of the group 
Ln). 

Proposition 3.1 Problem I can be solved in O(c”‘+‘a’) 
time (c constant). 

Proof. We may assume that IlY( and IAl are powers of 
2 (e.g., we can augment r c r’ and A c A’, letting z act 
trivially on r’ x A’ \ r x A and, for (z, y) E L , letting z 
act trivially on r’ \ r and y act trivially on A’ \ A; since 
H is contained in r x A, which is stabilized by L and I, 
the augmentation does not change (Lr)n). 

To accommodate recursion, we state the following more 
general problem 

Problem II. 

Input: L 5 sym(r) x Sym(A); z E sym(r x A); 
ncrxa; 
0 = @ x Q E r x A with 101 LI potuer of 0 

and such that Lo = L. 

output: (Lz)n[o] = {z E Lr I (rl” 0)” = nn W). 

(Problem I is the special cue 0 = l? x A.) Since 0 is 
stabilized by L, if z,y E Lr then 0” = 0’. Hence, z,y E 

(Lz)n[Q] implies zy-’ E Ln[0] = Lmo. Thus, the output 
to Problem II is either 0 OI a right coset of Lc,[O]. 

Since Il will be fixed throughout, we may write (Ny)[O] 
in lieu of (Ny)n[O] for any subcoset NY of Sym(r x A). 

If IIIfl 01 # IIIfl@=l, then (Lz)[O] = 0 (note that 
0”=0*forallzELz);ifbothHnoandHn0”are 
empty, then (Lz)[O] = Lz; hence, we may assume both are 
nonempty and of the same cardinality. 

If III n 01 = 1, then the problem reduces to a standard 
orbit/point-stabilizer problem: suppose Il n 0 = {a) and 

11” 0’ = {p]; Let C = {y E L 1 rxy = @“-I}, so that 

(Lz)[O] = Cz; now, C # 0 iff /3-’ E w‘ and, in the latter 

case, we take any y E L such that ay = !3”-’ and output 
c = L-y. 

we may a.wume In” 01 > 1. 
If I*1 > 1, then fix ml c rP with I%1 = El/2 and 

set @Z i *\‘@I, 0; = a, x Q for i C 1;2. Otherwise, 
fix %‘I c ‘ZJ with I+11 = lVl/2 and set *z = *\‘I’, and 
0,=*x*; fori=1,2. 

Let M = LO,) the subgroup of L stabilizing 01. Gen- 
erators for M are obtainable (see Section 2) in time that is 
polynomial in IL : MI, which is the number of images of 01 
under L (this number is 5 (‘&) when we bisect @ and 

2 (,,$) when we bisect U). In similar time we can express 

L = u$hft. Since 01 is stabilized by M, (Mtz)[%] is a 
coset (If not 0) and so we can proceed recursively for each 
t: 

(Mb)[O] = ((Mtz)[Ol]) [O,]. (3.1) 

This entails 5 21” recursive calls to subproblems with 
J+il = 1@1/2 or 5 2”’ recursive calls to subproblems with 
Iqil = lql/2. Finally, (Lt)[O] = lJ,(Mtz)[O]. Each non- 
empty subanswer Mtz[O] is a coset Nzt where N = M[O], 
the subgroup of M stabilizing IlO; form the union of these 
cosets (as indicated in Section 2). 13 

Problem I subsumes both issues in the section title: 

Corollary 3.2 COSETJNTERSECTION can be solved in 
O(cl”l) time (c constant). 

Proof. Consider the special case of Problem I in which 
L=GxH,z=(z,y), T=A=X,and Il=diag(CxC). 
For (u, v) E Sym(C) x Sym(C), lI(“,“) = II if and only if 
u = v. Thus, Gz n Hy is the first (or second) coordinate 
projection of (Lz)n. 0 

Corollar 3.3 GRAPHJSOMORPHISM con be solved in 
time O(c “1) (c constant). 7 

Proof. We may assume ICI and IC’I are disjoint and of 
the same cardinality. Set 2 = CtiC’, Il = {(u, r) I {u, r) E 
EtX}, and G = Sym@)x. Generators for G are easily 

specified (G ‘CI Sym(C) x Sym(C’)). Let t E Sym(%) be 
a fixed permutation that transposes ,C and C’; then Gt 
is comprised of all permutations of C that transpose C 
and C’. Consider the special case of Problem 1 in which 
f = A = E,, L = diag(G x G), I = (t, t), and lI = {(u, r) 1 
{o,r) E EUE’). 

Any bije+n f: C -+ C’ induces a permutation E E Gt 
such that f[x = f and fix, = f-l. Such f is an isomor- 

phism X u X’ iff (i,i) E (Lz)u. Conversely, if (zt,zt) E 
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(Lt)n, then ztlz induces an &morphism X e X’. Thus, 
by restricting to C the first (or second) coordinate projec- 
tion of (Lz)n, we obtain all the isomarphisms from X t; 
X’. 

Remarks. Reductions of GRAPHKOMORPHISM to CO- 
SETJNTERSECTION are we&known (see, e.g., 1261). For 
the goal of polynomial-time reduction, it has usually been 
simpler to let the permutation domain consist of pairs of 
graph-vertices, thus seeming to square the set size. Our 
proof of Corollary 3.3 is just a more careful restatement of 
the method. 

A similar observation is in order with regard to the proof 
of Corollary 3.2. It has been observed that COSETJNTER- 
SECTION is polynomial-time equivalent to finding set stabi- 
lizers in permutation groups (see again [Xl). Furthermore, 
it is easy to compute set-stabilizers in simply-exponential 
time: for G 2 Sym(C) and A C E, one can consider the 
action of G on 2” and so, as described in Section 2, find 
the stabilizer of the “point” A in time that is polynomial 
in 21’1, However, in the straightforward conversion of CO- 
SETJNTERSECTION to a set-stabilizer problem, the size 
of the permutation domain is squared. 

4 Hypergraph ieomorphirm 

We consider the decision problem 

HYPERGRAPH-ISOMORPHISM. 
Input: Hypelymph n = (C, E), Fl’ = (C’, E’) 

Question: Is 7f isomorphic to ‘Kc? 

Thus, E c 2=, E’ C_ 2=’ and we ask whether there is a 
bijection E - C’ inducing a bijection E - E’. 

Our test of HYPERGRAPHJSOMORPHISM involves 
the natural representation of a hypergraph as a bipartite 
graph, i.e., vertices on one side, hyperedges on the other, 
new edges recording incidence. However, the exponential 
number of “points” on the “hyperedge side” prohibits the 
use of the GRAPHJSOMORPHISM method of Section 3. 
Using the divide-and-conquer just on the ‘<vertex side,” re- 
sults in a simply-exponential number of base (l-element) 
cases, each of which translates into a HYPERGRAPHXO- 
MORPHISM instance, but with only a I-element reduction 
in vertex size. We avoid this combinatorial explosion by not- 
ing that, in recursions such as (3.1), we make numerous visits 
to the same subsets but with different cosets.4 Essentially, 
we now ignore the input coset and solve a single problem at 
each node. In effect, this means replacing sequential calls 
analogous to (3.1) with independent (possibly parallel) calls 
followed by irn intersection of the resulting casets (and, by 
Section 3, we know how to do COSETJNTERSECTION). 
As indicated below, a dynamic-programming scheme keeps 
track of the subresults. 

Testing &morphism is reducible to finding wtomor- 
phism groups by well-known methods (1271, see also proof 
of Corollary 1.4 below). However, OUI algorithm for the fol- 
lowing will already subsume au isomorphism test. 

HYPERGRAPHAUTOMORPHISM. 
Input: Hypergmph H = (C, E). 

Output: Aut(HJ 

Thus, we want (generators) for the subgroup of Sym(Z) 
that, in its natural action on 2”, stabilizes E. 

The algorithm will refer to an induced collection of hy- 
pergraphs OR C: for any A C C, let @ = (C, EA) where 

En={OnA[@~E,OUA=X). 

In turn, each hypergraph ?fA induces a collection of 
bipartite graphs: for any r,A c C, let Be denote the 
bipartite graph on Cti2” with edge set 

E(Bf) = ((7, @p) I * E En, -t E 0 n r). 

The following properties aze straightforward. (For (l), 
note that + E EA’(‘) implies 7 @ +.) 

Lemma 4.1 

Theorem 4.2 Aut(‘H) can be computed in O(c’“‘) time (c 
COIWtlZI2t). 

Proof. we may assume /Cl is a power of 2 (e.g., we 
can solve the problem on an augmented C and then cut to 
the subgroup that fixes the added points; alternately, this 
can be done with combinatorial gadgets). 

We describe a dynamic-programming computation of 
Aut(7f). This will determine, for all A, A’, r, r’ & C such 
that IA/ = iA’1 and Irl = iI”1 = a power of 2, the subset 
Is@, A; r’, A’) of Sym(C) mapping r to r’ and inducing 
isomorphisms from BP to B$’ (that is, mapping &(B@) to 
&(B$‘) ). Thus, Is@, A; r’, A’) is either 0 OI a right cuset 
of the group Iso(r, A; r, A). A table (of size exp(O(lEI))) 
of all these cosets is filled in order of increasing IAl and, 
for each IAl, in order of increasing II?\. For IAl = 0, 
I&, A; r’, A’) consists of the permutations that map r to 
r’ (easily specified in polynomial time for each r, r’). From 
the completed table, we read Aut(‘K) = Isa(C, X; C, X). 

Computation of Isa(T, A; I?‘, A’): 
For Irl z 1, we follow a naive ‘halving’ divide-and- 

COIUJUW. Fix rl c r with Ir, I = Irl/2. Then for each r: c 
r’ with Ir:\ = II+//2 (ofcourse, there are exp(O(lCI)) such 
r;),determine Iso(r,,A;r:,A’)nIso(r\r,,A;r~\r;,A’) 
(note that E(B,a) = &(B,4)ljE(B;,,,)). The subisomor- 
phisms are determined by table lookup; the intersection of 
cosets is carried out in exp(O(lXl)) time by the method of 
Section 3. Take the union over all r: of the results (as 
indicated in Section 2). 

~~~~~~~ Irl = I with r = {r}, r’ = {r’). If one of 
E(B&)), &(B$,)) is empty (no edges in the graph) but the 
other is not, then Iso({r],A;{r’),A’) = 0. If both are 
empty, then Iso({r}, A; {T’], A’) is just the set of all per- 
mutations mapping -, to 7’. We may assume that there 



are edges in both graphs. In particular, y E A, y’ E A’. 
By Lemma 4.1(l), Iso({y),A; {r’}, A’) consists of those 

permutations that map 7 to y’ and En’c7) to Ea”h”. 
By Lemma 4.1(2), the permutations that map Ea’(7’ to 

I I 
EA ‘17 1 are precisely those that induce isomarphisms from 

8:“” to B$“t”t, i.e., Iso(C, A\ {r];X, A’\ {y’}), which 
is determined by a. table lookup. The subcoset then mapping 
-, to y’ is then an orbit/point-stabilizer problem, solvable 
in polynomial-time. a 

Remark. The reader who is concerned about a. specific 
value for c in Theorem 4.2 should note that there are some 
easy improvements to the value implied by the above. For 
example, it is dear that, for values of I?, only a linear num- 
ber of subsets need be considered. Also, with some modifi- 
cations, one can restrict to r C A, r’ c A’. 

Proof of Theorem 1.1. Let ZI = (C,, E,), 7ts = 
(CZ, Ez) be given hypergraphs; we may b~sune CI and CZ 
are disjoint and /Cl1 = /CZ[ = a power of 2. Let ‘H = 
(C,tiC2,EztiEz). The isomorphisms from X1 to Hz com- 
prise Iso(‘XI, Cl; CS, CZ), which is computed in the course 
of the above. a 

5 Applications 

We deal with the consequences indicated in Section 1. 

Proof of Corollary 1.2. Let I: = {u,,o, ~1,1,62,0, 
v2,, ,... o,,~,v,,,}, a 2n-element set. For z E Sym(n), let 
zz E Sym(C) be the permutation mapping ri,, c oi=,, 
for 1 < i < n, j = 0,l; let G 5 Sym(C) be generated 
by {zx 1 z‘ E Sym(n)] and the transpositions {(u;,o,u,,I) ( 
1 2 i 5 n}.” A Boolean function f of n variables can be 
associated with the hypergraph tif = (C, E,) where Et = 

{{ui.o.]l~i~” I (a1 ,..., a..) E {O, I)“, f(a1,..., a”) = 11. 
Then Boolean functions f and g are structurally equivalent 
iff G contains an isomorphism from ‘H, to ‘H, or an iso- 
morphism from ‘Hf to ‘Ha. The coset of all isomorphisms 
from 711 to ‘&, respectively, from ‘H, to H,, can be found 
as above. An application of COSETlNTERSECTION (Sec- 
tion 3) finds those that are in G. Since the size of input is 
0(2”), the polynomial-time claim follows. a 

Proof of Corollary 1.3. The problem of testing equiv- 
alence under permutation of variables alone can be obtained 
as above by changing G accordingly, although a more di- 
rect construction follows from consideration of a truth table 
as a hypergraph H = (X, E), on the set, E, of variables 
where E consists of the characteristic sets of assignments 
(0, l-vectors) mapping to TRm. a 

Remark. The hypergraph automorphism/isomorphism al- 
gorithm generalizes quite easily to “colored” hypergraphs 
(coloring vertices and/or coloring hyperedges and/or color- 
ing edges in the induced bipartite graph an Ci~2’). Among 
the applications is the generalization of Corollary 1.3 to 
multi-valued logics. 

We approach Corollary 1.4 via the automorphism version 
of the problem. 

Corollary 5.1 Let 6 = (CkV, E) be o bipartitegraph. Then 
Aut(B) can be computed in O(cl”llqI”) time. 

Note: We assume for now that automorphisms of B preserve 
0 and Q. Such restriction can be lifted when isomorphism 
is resolved. 

Proof. Define f:P - 2’ by f(ti) = {d E @ 1 @,$I) E 
E) and consider the hypergraph H = (@, f(Q)), Consider 
also the induced Aut(B)-invariant equivalence relation RI 
on Q where &Rf$a iff f (+I) = f(&). It is immediate 
that the set Pi of equivalence classes of RI is in 1-l COT- 
respondence with f(q) and the action of Ant(B) on P, 
corresponds precisely to the action of Aut(‘H) on f(Q). 
Thus, to find generators of Aut(B): (i) we find generators 
S of Aut(‘X), taking arbitrary liftings of each to Sym(Q); 
(ii) we augment this collection with generators of the sub 
group of Sym(Q) that stabilizes the classes (the subgroup 
induces the full symmetric group in each class), extending 
these generators to act trivially on @ 

a 

Proof of Corollary 1.4. To test isomorphism of B = 
(cm, E), B’ = (Vcm’, E’), one can rouow a familiar re- 
duction of the problem to finding automorphism groups, 
e.g., reduce to the case when B,B’ are connected and then 
see whether any generators of the automorphism group of 
((@ti@‘)ti($‘ljq’)), EtiE’)) switch the connected components. 
(Alternately, one can construct a direct proof analogous to 
that of Corollary 5.1.) a 

6 Parallelhation 

We describe the modifications that strengthen our polynomial- 
time results to NC. 

First we parallelire Problem I. 

Proposition 6.1 There ore constants c, c’ such that, using 
O(c”ltlal) pornllel processors. Problem I con be solved in 

time O((lrl + IA\)“). 

Proof. We revisit the critical steps in the proof of Prop* 
sition 3.1. 

Given L,Ql, we need to find M = Lo,. We consider 
the case where IQ/ > 1 is bisected and @I = ‘Xv x V, the 
other case being similar. This set-stabilizer problem be- 
comes a point-stabilizer problem by considering the action 
of L on the L-orbit of 01. Parallel computation of or- 
bits [29] is done by a parallel transitive-closure algorithm 
which assumes work at, and therefore enumeration of, all 
points of the permutation domain. Since, it would be prw 
hibitive to enumer.xte 2”‘, we determine only the orbit 
0 of Cp, under the first coordinate action of L. For each 
element II E 0, the computation also retuns a group ele- 
ment zs E L such that a;” = n. The collection {zn)n~o 
together with a known generating set, S, enables us to write 
JSJIO\ Schnier generators (Section 2) of M. But we must 
take care to keep the numbers of group generators of poly- 
nomial size before proceeding to the next round, and we 
want to do this without resorting to the deeper machinery 
of [3]. The Schreier generators can be pruned to a palyno- 
mia.l size by a parallel application of “sifting” (see, e.g., [26, 
(3.3)]) through a “point-stabilizer tower” (here the “points” 
are again the elements of I’ x A, since the group is faithfully 
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represented therein); at each level, at most one generator re- 
ms.ins to represent any coset mod the next subgroup, while 
others in the same coset are sifted down. 

The recursive calls to problems on Mtz can be run for 
all t in para.Uel. For each, the two calls in (3.1) to problems 
on 01 and 02, respectively, have to remain serial, but these 
involve problems that may be considered half the size. 

We need also take care to keep the numbers of group 
generators of manageable size when we form the union of 
co&s. Again, thii a matter of parallel sifting. 

Given the above, and observing that the depth of the 
recursion is only O(log I@1 + log Iql), we see that Problem I 
is solved with O(clrltla’) processors in polynomial timen 

Proof of Theorem 1.5. In parallelizing the method 
for Theorem 1.1, generator-reduction as above is used for 
alI subgroups visited. Coset intersections have already been 
parallelized. Also, for any fixed IAl and Irl, the compu- 
tations of all I@, A; r’, A’) can be run in parallel. We 
run through 1x1 values of IAl and log/C/ values of Irl, 
so the number of such “rounds” is O(ICllog ICI). In this 
manner, the problem is solved with exp(O(jCl)) processo; 
in polynomial time. 

Proof of Corollary 1.6. Following the construction 
in the proof of Corollary 1.2, The result follows from the 
above. 0 

7 Open problems 

7.1 Equivalence under linear and aftine transformations 

A Boolean function on n variables may be viewed as a map 
f: GF(2)” - {0, 1). Thus, there is an induced action on the 
set of such functions by the general linear group GL(n, 2) 
and by the general affine linear group AGL(n, 2). It is of 
some interest in both network and coding theory to deter- 
mine when two functions are equivalent under the action of 
these groups [7, 17, 32, 371. If one again considers the input 
size to be m = 2”, then testing equivalence via enumeration 
of these groups requires O(ms’o~m) time. 

Can equivalence of Booleon functions under the 
general and general-afine linear groups be tested 
in polynomial time? 

The question is also of interest in direct connection to 
GRAPH_ISOMORPHISM. Given f as above, construct a 
directed graph G, = (Et,Ef) with IEf/ = @(m2) as fol- 
lows: C, = GF(2)” ” {{a,/31 1 a,@ E GF(2)“, o/ #P}; 

Ef = 1 (~>{a.Pl) I a,P E GW”, (2 #PI U 

~((~,P},~+P)I~,PEGF(~)“,~#P} U 

((*,a) I @ E GW”, f(a) = 1 J. 

Then Boolean functions fi, fi are equivalent under the ac- 
tion of GL(n,2) iff Ff, is isomorphic to c,,. Hence, the 
question deals with an interesting subexponential obstruc- 
tion to polynomial time for testing graph isomorphism (see 
[30] for questions with a similar flavor). 

7.2 Canonical forms 

Most advances in graph-isomorphism testing, both theoreti- 
cal and practical, have depended upon, or have led to, find- 

ing canonical forms for the graphs under investigation, e.g., 
[4, 8, 13, 24, 281. The method of Corollary 3.3 also falls in 
this class. 

Similarly, much work in “Boolean matching” has involved 
computation of canonical elements in structural-equivalence 
classes, e.g., [IS, 19, 33, 391. (Limitations of the suggested 
techniques have been observed in [31].) 

The question then arises as to whether canonical forms 
for hypergraphs and Boolean functions can be found within 
our indicated time bounds for isomorphism and equivalence. 

Can eononical forms for hypergaphs on n 
vertices be found in O(c”) time? 

7.3 Bounded-rank hypergraph isomorphism 

As indicated in Section 1, bounded-rank hypergraph isomor- 
pbism was known to be in O(c”) time via methods that 
called upon the simple groups classification. (The method 
makes use of a set-stabilizer algorithm outlined in [3, Section 
91: for G 5 Sym(m), set stabilizers can be found in time 
mO(dl’ogd) provided the noncyclic composition factors of 
G are embeddable in Sym(d); for rank-r hypergraphs on 
an n-element vertex set, isamarphism testing is reducible 
to finding set stabilizers for G 2 Sym(n’), but where G is 
actually embeddable in Sym(n).) 

While we have extended and simplified the result, the 
bounded-rank case remains of interest, and we repeat a ques- 
tion posed in [4]. 

Con bounded-rank hypergroph-iaomorphism be tested 
in exp(n’+) time, for some E > O? 

Rank-4 hypergraph isomorphism is reducible to isomorphism 
of graphs on O(n’) vertices. Hence, a moderately exponen- 
tial rank-4 method is a necessary condition to improvement 
of graph-isomorphism testing to e~p(n”‘-~). 
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