
Hypergraph Isomorphism and Structural Equivalence of Boolean Functions

Eugene M. Luks

Department of Computer and Information Science
University of Oregon
Eugene, OR 97403

luksQcs.uoregon.edu

Abstract

We show that hypergraph isomorphism can be tested in time
O(c”), where n is the sire of the vertex set. In general, in-
put of a hypergraph could require n(2”) space, in which
case the isomorphism test is in polynomial time. As a con-
sequence, we put into polynomial time the classic problem
of testing whether two Boolean functions, given by truth ta-
bles, are related via permutations and complementations of
the variables, and therefore have structurally identical net-
work realizations. In fact, the method is parallelizable and
we put the problem even into NC. We obtain similarly an
NC test of equivalence of truth tables under permutation of
variables alone.

1 Introduction

In the synthesis and verification of Boolean circuits, it is
often necessary to test whether two functions, f, g , have
the same physical network. Clearly, this is the case if 9
is derived from f by r&belling input leads or transposing
“0” and “1” states at any lead [36]. With this in mind, we
say Boolean functions are (structurally) equivalent’ if they
are in the same orbit of the group generated by permuta-
tions and complementations of the n variables, as well as
complementation of the function values [16, 181, a group of
order Z”+‘n!. Treating this issue at length in a 1965 text,
Harrison observed [18, p. 1521:

we do not know a nonexhaustive way to [test
equivalence]

Taking a step in that direction, he offered an algorithm for
computation of a system of Boolean-function invariants that
had been described by Golomb [16]. Although it has prac-
tical advantage over enumeration of the group, the method
requires consideration of up to R! variable orderings when

there is a coincidence of “first-order” invariants. In terms of
the problem size2, m = Q(Z”), its time complexity has the
same form as that of brute force, namely, O(m”‘“s’“~ “).
Although there has been much study, and implementation,
of practical heuristics for special cases (e.g., [6, 18, 19, 31,
33, 391) the question of whether there is a polynomial-time
(O(mS)) alternative for the general problem has remained
opelI.

Consider also the question that arose following Gold-
berg’s demonstration of the first subfactorial algorithm for
testing graph isomorphism [15, 81; using a combinatorial
“sectioning” technique, he described a simply-ezponentiol,
O(P), algorithm for n-vertex graphs. This raised the issue
of whether even hypergroph isomorphism could be tested in
similar time (see [4, Section 61). Graph isomorphism has
since been improved to moderately-exponential time (that
is, exp(ne) with oi < 1 [40, 11, the best-known bound being
exp(cG) [3]). However, direct application of the tech-
niques to hypergraph isomorphism achieves O(c”) timing
only when the rank (= maximum cardin&y of hyperedges)
is bounded (see Section 7).

It is not difficult to reduce the Boolean-function ques
tion to the hypergraph question and the main results of this
paper include the resolution of both (Sections 4,5).

Theorem 1.1 For hypergraphs on n uertices, isomorphism
can be tested in time O(P), where c is constant.

And, as a consequence,

Corollary 1.2 Given truth tables for two Booleonfunctions,
testing structural equivalence is in polynomial time.

Also of some interest for a variety of applications is the
matter of equivalence of Boolean functions just under per-
mutations of variables (see, e.g., [9, 11, 191). We show

Corollary 1.3 Testing equiualence of truth tables underper-
mutation of variables is in polynomial time. 0

Another application is to isomorphism-testing of bipar-
tite graphs:

21” genera,, the functions would be specified by truth tables or the
eauivalent.

652

Corollary 1.4 Let 8 = (Qti%‘,E), 8’ = (a’lj*‘,E’) be
bipartite graphs (i.e., the edge sets satisfy E 2 + x Y,
E’ C @J’ x W). Then isonwrphism of B with 8’ can be

tested in O(c”‘1’J!\“) time (c,c’ constant).

But we can state even more in regard to Theorem 1.1.
The method is strongly parallelizable (Section 6).

Theorem 1.5 There are constants c,c’ such that, using
O(c”) porollel processors, isomorphism of hypergmphs on
n vertices con be tested in time O(n”).

Thus,

Corollary 1.6 Testing structural equivalence of Boolean
functions given by truth tables is in NC.

Similarly, testing equivalence of truth tables under per-
mutation of variables is in NC.

Among other things, our demonstration of Theorem I.1
makes use of a procedure for intersecting cosets of permu-
tation groups. Simply-exponential approaches to coset in-
tersection were already given in [3]. However, we offer (Sec-
tion 3) a self-contained version that provides the reader with
the additional bonus of a succinct method for testing graph
isomorphism in simply-exponential time.

While groups are employed in our procedures, it is note-
worthy that their use is elementary in comparison to their
involvement in several earlier applications to graph isomor-
phism (cf. [3], and even [as]). No knowledge of internal
group structure is required: groups appear essentially as
bookkeeping devices, recording, in a combinatorial divide-
and-conquer, isomorphisms of substructures. In fact, one of
the outcomes is a considerable simplification of methods for
some problems. The aforementioned O(c”) bounded-rank
hypergraph-isomorphism test required citation of the menu-
mental simple groups classification; our more general result
has no such need.

The NC results are also self-contained. Because the
groups act faithfully on sets whose cardinality is logarithmic
in the input size, we can avoid the deeper NC machinery of
151, which also depended on the simple groups classification.

Finally, we note that, in the interest of exposition, we
make no attempt to minimize the constant c in our O(cn)
algorithms. But, even with minimum c, it would not yet be
prudent to claim practical applicability in testing Boolean
equivalence: in applications of significant size it may already
be prohibitive to represent Boolean functions by truth tables
01 the like. Heuristics are typically restricted to functions
having compact representations (e.g., [I?, 20, al]) that are,
sayy, polynomial in the number of variables, their applicabil-
ity limited by the NP-hardness of the problem.

2 Notation and preliminaries

A hypergmph ‘H = C, E) consists of a set C together with
1. a collection E c 2 of subsets of C. The rank of ‘H is

max,EE(lel). Thus, gmphs are hypergraphs of rank 2.
We denote by Sym(C) the group of all permutations of

the set X, and for n > 0, Sym(n) = Sym({l,Z ,..., fi}).
For n E C and z E Sym(C), the image of n under the

permutation z is denoted n*‘; if A C C then A’: = {a= 1
6 E A]. For A c Sym(C) (A is not necessarily a subgroup),
the /set-lstabiliter of A C C in A is AA = 12 E A I AZ =
A) and ihe (point-)stab&er of o E X L A; = A{:). We
indicate by H < G that H is a subgroup of G For H 5 G,
we deal often with the set {Hz / 2 E G) of right cosets of
H in G; the number of distinct right cosets is the indez of
H in G and is denoted IG : HI; a right tmnsversol for H
in G is a set T & G containing precisely one element from
each right coset of H. For G < Sym(C), D E C, the orbit
of o under G is oG = {r” I z E C); then IG: G,I = l#l;
in fact, if T is a subset of G such that, for each r$ E oG,
there is a unique t E T such that 4 = a’, then T is a right
transversal for G, in G.

For any sets C and ‘f~, Sym(C) x Sym(@) acts naturally
on C x G via (~,r$)(~,~) = (n”, 6”) for d E C, $ E a,
1: E Sym(C), y E Sym(G). Also, Sym(C acts naturally an
the power set 2’ with AZ for A E 2 ,’ defined as above.
For any set C, the diagonal of C x C is diag(C x Z) =
I(& 0) I CJ E 3.

We require only rudimentary machinery for group-the*
retie computation as given, say, in [26, Section 31. In al-
gorithms, groups are specified (input or output) by genera-
tors; a coset Hz is specified by generators for H along with
a representative element z. Polynomial-time membership
testing is fundamental to all computation in permutation
groups; this is guaranteed by Sims’s method [35, 12, 26, 341.
We assume that the number of generators retained for G <
Sym(C) is O(lCj’) (variations of Sims’s method maintain
c = 1, e.g., [22, 231); thus, polynomial time for permutation
groups means polynomial in ICI. Membershiptesting, and
other basic algorithms, make use of Schnier generators for
subgroups: given generators S for G and a right transversal
T for H in G, one obtains ISllTl generators for the sub-
group H; specifice.lIy, for each s E S, t E T, find i such that
Hts = Hiand thus form the Schreier generator tsi-’ of H.
This is particularly useful for finding point-stabilizers G,
since T is readily obtained in a transitive-closure computa-
tion of 6’. We note, however, that in principal applications,
we apply this method to find subgroups other than G,: if
H 5 G is any subgroup of G for which only a membership
test is available (notably, H might be a set-stabilizer in G)
then we can consider the induced action of G on right co&s
of H (Le., z E G maps Ht ++ Htz) and find generators for
the stabilizer of the “paint” H in time that is polynomial
in IG: HI.

On occasion, we will have generators S for H 5 Sym(C)
along with the knowledge that UtET~t is a cmet C of
some group G; in such case, we can conclude that G is
generated by S u (tt;’ I t E T) and that C = Gtp, where
to is any fixed element of T.

3 Coset intersection (and graph isomorphism)

We consider the following problems.

COSETINTERSECTION.

Input: G, H 5 Sym(C), 2, Y E SymP).

Output: Gz” Hy.

The output is either 0 or a right co& of G n H.

653

GRAPHISOMORPHISM.

Input: Graphs 4 = (Z, E), 8’ = (C’, E’)

Question: Is P isomorphic to 9’?

Our main result requires a simply-exponential solution
for COSETINTERSECTION, and either of two methods
outlined in [3] would suffi~e.~ In fact, the method of [3, Sec-
tion 101, due to Babai, only needs moderately-exponential,
exp(n”‘+~‘)), time. Instead, we keep our discussion self-
contained and present a straightforward specialization of a
method, due to the present author, in [3, Section 91. Its
key role in [3] is its contribution to the exp(cG) test
for GRAPHJSOMORPHISM. (The application of Babai’s
method for intersecting cosets to a graph-isomorphism test
does not seem to beat O(n!).) However, with only a simply-
exponential goal, we do not need to get involved with the
deeper aspects of that test. The approach herein has the
dual advantages of simplicity and wider applicability (see
[z] for another application).

Simply-exponential (O(c’“‘) COSETJNTERSECTION
and GRAPHJSOMORPHISM will both follow from a sim-
ply-exponential solution to the following problem. Recall
(Section 2) the natural embedding of Sym(r) x Sym(A) in
Sym(r x A)

Problem I.

Input: L 5 Sym(r) x Sym(A); I E Sym(T x A);
HCTXA.

output: (LZ)” = {z E Lz) It’ = It).

As indicated in the proof of Proposition 3.1, the output
to Problem I is again either 0 or a right coset (of the group
Ln).

Proposition 3.1 Problem I can be solved in O(c”‘+‘a’)
time (c constant).

Proof. We may assume that IlY(and IAl are powers of
2 (e.g., we can augment r c r’ and A c A’, letting z act
trivially on r’ x A’ \ r x A and, for (z, y) E L , letting z
act trivially on r’ \ r and y act trivially on A’ \ A; since
H is contained in r x A, which is stabilized by L and I,
the augmentation does not change (Lr)n).

To accommodate recursion, we state the following more
general problem

Problem II.

Input: L 5 sym(r) x Sym(A); z E sym(r x A);
ncrxa;
0 = @ x Q E r x A with 101 LI potuer of 0

and such that Lo = L.

output: (Lz)n[o] = {z E Lr I (rl” 0)” = nn W).

(Problem I is the special cue 0 = l? x A.) Since 0 is
stabilized by L, if z,y E Lr then 0” = 0’. Hence, z,y E

(Lz)n[Q] implies zy-’ E Ln[0] = Lmo. Thus, the output
to Problem II is either 0 OI a right coset of Lc,[O].

Since Il will be fixed throughout, we may write (Ny)[O]
in lieu of (Ny)n[O] for any subcoset NY of Sym(r x A).

If IIIfl 01 # IIIfl@=l, then (Lz)[O] = 0 (note that
0”=0*forallzELz);ifbothHnoandHn0”are
empty, then (Lz)[O] = Lz; hence, we may assume both are
nonempty and of the same cardinality.

If III n 01 = 1, then the problem reduces to a standard
orbit/point-stabilizer problem: suppose Il n 0 = {a) and

11” 0’ = {p]; Let C = {y E L 1 rxy = @“-I}, so that

(Lz)[O] = Cz; now, C # 0 iff /3-’ E w‘ and, in the latter

case, we take any y E L such that ay = !3”-’ and output
c = L-y.

we may a.wume In” 01 > 1.
If I*1 > 1, then fix ml c rP with I%1 = El/2 and

set @Z i *\‘@I, 0; = a, x Q for i C 1;2. Otherwise,
fix %‘I c ‘ZJ with I+11 = lVl/2 and set *z = *\‘I’, and
0,=*x*; fori=1,2.

Let M = LO,) the subgroup of L stabilizing 01. Gen-
erators for M are obtainable (see Section 2) in time that is
polynomial in IL : MI, which is the number of images of 01
under L (this number is 5 (‘&) when we bisect @ and

2 (,,$) when we bisect U). In similar time we can express

L = u$hft. Since 01 is stabilized by M, (Mtz)[%] is a
coset (If not 0) and so we can proceed recursively for each
t:

(Mb)[O] = ((Mtz)[Ol]) [O,]. (3.1)

This entails 5 21” recursive calls to subproblems with
J+il = 1@1/2 or 5 2”’ recursive calls to subproblems with
Iqil = lql/2. Finally, (Lt)[O] = lJ,(Mtz)[O]. Each non-
empty subanswer Mtz[O] is a coset Nzt where N = M[O],
the subgroup of M stabilizing IlO; form the union of these
cosets (as indicated in Section 2). 13

Problem I subsumes both issues in the section title:

Corollary 3.2 COSETJNTERSECTION can be solved in
O(cl”l) time (c constant).

Proof. Consider the special case of Problem I in which
L=GxH,z=(z,y), T=A=X,and Il=diag(CxC).
For (u, v) E Sym(C) x Sym(C), lI(“,“) = II if and only if
u = v. Thus, Gz n Hy is the first (or second) coordinate
projection of (Lz)n. 0

Corollar 3.3 GRAPHJSOMORPHISM con be solved in
time O(c “1) (c constant). 7

Proof. We may assume ICI and IC’I are disjoint and of
the same cardinality. Set 2 = CtiC’, Il = {(u, r) I {u, r) E
EtX}, and G = Sym@)x. Generators for G are easily

specified (G ‘CI Sym(C) x Sym(C’)). Let t E Sym(%) be
a fixed permutation that transposes ,C and C’; then Gt
is comprised of all permutations of C that transpose C
and C’. Consider the special case of Problem 1 in which
f = A = E,, L = diag(G x G), I = (t, t), and lI = {(u, r) 1
{o,r) E EUE’).

Any bije+n f: C -+ C’ induces a permutation E E Gt
such that f[x = f and fix, = f-l. Such f is an isomor-

phism X u X’ iff (i,i) E (Lz)u. Conversely, if (zt,zt) E

654

(Lt)n, then ztlz induces an &morphism X e X’. Thus,
by restricting to C the first (or second) coordinate projec-
tion of (Lz)n, we obtain all the isomarphisms from X t;
X’.

Remarks. Reductions of GRAPHKOMORPHISM to CO-
SETJNTERSECTION are we&known (see, e.g., 1261). For
the goal of polynomial-time reduction, it has usually been
simpler to let the permutation domain consist of pairs of
graph-vertices, thus seeming to square the set size. Our
proof of Corollary 3.3 is just a more careful restatement of
the method.

A similar observation is in order with regard to the proof
of Corollary 3.2. It has been observed that COSETJNTER-
SECTION is polynomial-time equivalent to finding set stabi-
lizers in permutation groups (see again [Xl). Furthermore,
it is easy to compute set-stabilizers in simply-exponential
time: for G 2 Sym(C) and A C E, one can consider the
action of G on 2” and so, as described in Section 2, find
the stabilizer of the “point” A in time that is polynomial
in 21’1, However, in the straightforward conversion of CO-
SETJNTERSECTION to a set-stabilizer problem, the size
of the permutation domain is squared.

4 Hypergraph ieomorphirm

We consider the decision problem

HYPERGRAPH-ISOMORPHISM.
Input: Hypelymph n = (C, E), Fl’ = (C’, E’)

Question: Is 7f isomorphic to ‘Kc?

Thus, E c 2=, E’ C_ 2=’ and we ask whether there is a
bijection E - C’ inducing a bijection E - E’.

Our test of HYPERGRAPHJSOMORPHISM involves
the natural representation of a hypergraph as a bipartite
graph, i.e., vertices on one side, hyperedges on the other,
new edges recording incidence. However, the exponential
number of “points” on the “hyperedge side” prohibits the
use of the GRAPHJSOMORPHISM method of Section 3.
Using the divide-and-conquer just on the ‘<vertex side,” re-
sults in a simply-exponential number of base (l-element)
cases, each of which translates into a HYPERGRAPHXO-
MORPHISM instance, but with only a I-element reduction
in vertex size. We avoid this combinatorial explosion by not-
ing that, in recursions such as (3.1), we make numerous visits
to the same subsets but with different cosets.4 Essentially,
we now ignore the input coset and solve a single problem at
each node. In effect, this means replacing sequential calls
analogous to (3.1) with independent (possibly parallel) calls
followed by irn intersection of the resulting casets (and, by
Section 3, we know how to do COSETJNTERSECTION).
As indicated below, a dynamic-programming scheme keeps
track of the subresults.

Testing &morphism is reducible to finding wtomor-
phism groups by well-known methods (1271, see also proof
of Corollary 1.4 below). However, OUI algorithm for the fol-
lowing will already subsume au isomorphism test.

HYPERGRAPHAUTOMORPHISM.
Input: Hypergmph H = (C, E).

Output: Aut(HJ

Thus, we want (generators) for the subgroup of Sym(Z)
that, in its natural action on 2”, stabilizes E.

The algorithm will refer to an induced collection of hy-
pergraphs OR C: for any A C C, let @ = (C, EA) where

En={OnA[@~E,OUA=X).

In turn, each hypergraph ?fA induces a collection of
bipartite graphs: for any r,A c C, let Be denote the
bipartite graph on Cti2” with edge set

E(Bf) = ((7, @p) I * E En, -t E 0 n r).

The following properties aze straightforward. (For (l),
note that + E EA’(‘) implies 7 @ +.)

Lemma 4.1

Theorem 4.2 Aut(‘H) can be computed in O(c’“‘) time (c
COIWtlZI2t).

Proof. we may assume /Cl is a power of 2 (e.g., we
can solve the problem on an augmented C and then cut to
the subgroup that fixes the added points; alternately, this
can be done with combinatorial gadgets).

We describe a dynamic-programming computation of
Aut(7f). This will determine, for all A, A’, r, r’ & C such
that IA/ = iA’1 and Irl = iI”1 = a power of 2, the subset
Is@, A; r’, A’) of Sym(C) mapping r to r’ and inducing
isomorphisms from BP to B$’ (that is, mapping &(B@) to
&(B$‘)). Thus, Is@, A; r’, A’) is either 0 OI a right cuset
of the group Iso(r, A; r, A). A table (of size exp(O(lEI)))
of all these cosets is filled in order of increasing IAl and,
for each IAl, in order of increasing II?\. For IAl = 0,
I&, A; r’, A’) consists of the permutations that map r to
r’ (easily specified in polynomial time for each r, r’). From
the completed table, we read Aut(‘K) = Isa(C, X; C, X).

Computation of Isa(T, A; I?‘, A’):
For Irl z 1, we follow a naive ‘halving’ divide-and-

COIUJUW. Fix rl c r with Ir, I = Irl/2. Then for each r: c
r’ with Ir:\ = II+//2 (ofcourse, there are exp(O(lCI)) such
r;),determine Iso(r,,A;r:,A’)nIso(r\r,,A;r~\r;,A’)
(note that E(B,a) = &(B,4)ljE(B;,,,)). The subisomor-
phisms are determined by table lookup; the intersection of
cosets is carried out in exp(O(lXl)) time by the method of
Section 3. Take the union over all r: of the results (as
indicated in Section 2).

~~~~~~~ Irl = I with r = {r}, r’ = {r’). If one of 
E(B&)), &(B$,)) is empty (no edges in the graph) but the 
other is not, then Iso({r],A;{r’),A’) = 0. If both are 
empty, then Iso({r}, A; {T’], A’) is just the set of all per- 
mutations mapping -, to 7’. We may assume that there 



are edges in both graphs. In particular, y E A, y’ E A’. 
By Lemma 4.1(l), Iso({y),A; {r’}, A’) consists of those 

permutations that map 7 to y’ and En’c7) to Ea”h”. 
By Lemma 4.1(2), the permutations that map Ea’(7’ to 

I I 
EA ‘17 1 are precisely those that induce isomarphisms from 

8:“” to B$“t”t, i.e., Iso(C, A\ {r];X, A’\ {y’}), which 
is determined by a. table lookup. The subcoset then mapping 
-, to y’ is then an orbit/point-stabilizer problem, solvable 
in polynomial-time. a 

Remark. The reader who is concerned about a. specific 
value for c in Theorem 4.2 should note that there are some 
easy improvements to the value implied by the above. For 
example, it is dear that, for values of I?, only a linear num- 
ber of subsets need be considered. Also, with some modifi- 
cations, one can restrict to r C A, r’ c A’. 

Proof of Theorem 1.1. Let ZI = (C,, E,), 7ts = 
(CZ, Ez) be given hypergraphs; we may b~sune CI and CZ 
are disjoint and /Cl1 = /CZ[ = a power of 2. Let ‘H = 
(C,tiC2,EztiEz). The isomorphisms from X1 to Hz com- 
prise Iso(‘XI, Cl; CS, CZ), which is computed in the course 
of the above. a 

5 Applications 

We deal with the consequences indicated in Section 1. 

Proof of Corollary 1.2. Let I: = {u,,o, ~1,1,62,0, 
v2,, ,... o,,~,v,,,}, a 2n-element set. For z E Sym(n), let 
zz E Sym(C) be the permutation mapping ri,, c oi=,, 
for 1 < i < n, j = 0,l; let G 5 Sym(C) be generated 
by {zx 1 z‘ E Sym(n)] and the transpositions {(u;,o,u,,I) ( 
1 2 i 5 n}.” A Boolean function f of n variables can be 
associated with the hypergraph tif = (C, E,) where Et = 

{{ui.o.]l~i~” I (a1 ,..., a..) E {O, I)“, f(a1,..., a”) = 11. 
Then Boolean functions f and g are structurally equivalent 
iff G contains an isomorphism from ‘H, to ‘H, or an iso- 
morphism from ‘Hf to ‘Ha. The coset of all isomorphisms 
from 711 to ‘&, respectively, from ‘H, to H,, can be found 
as above. An application of COSETlNTERSECTION (Sec- 
tion 3) finds those that are in G. Since the size of input is 
0(2”), the polynomial-time claim follows. a 

Proof of Corollary 1.3. The problem of testing equiv- 
alence under permutation of variables alone can be obtained 
as above by changing G accordingly, although a more di- 
rect construction follows from consideration of a truth table 
as a hypergraph H = (X, E), on the set, E, of variables 
where E consists of the characteristic sets of assignments 
(0, l-vectors) mapping to TRm. a 

Remark. The hypergraph automorphism/isomorphism al- 
gorithm generalizes quite easily to “colored” hypergraphs 
(coloring vertices and/or coloring hyperedges and/or color- 
ing edges in the induced bipartite graph an Ci~2’). Among 
the applications is the generalization of Corollary 1.3 to 
multi-valued logics. 

We approach Corollary 1.4 via the automorphism version 
of the problem. 

Corollary 5.1 Let 6 = (CkV, E) be o bipartitegraph. Then 
Aut(B) can be computed in O(cl”llqI”) time. 

Note: We assume for now that automorphisms of B preserve 
0 and Q. Such restriction can be lifted when isomorphism 
is resolved. 

Proof. Define f:P - 2’ by f(ti) = {d E @ 1 @,$I) E 
E) and consider the hypergraph H = (@, f(Q)), Consider 
also the induced Aut(B)-invariant equivalence relation RI 
on Q where &Rf$a iff f (+I) = f(&). It is immediate 
that the set Pi of equivalence classes of RI is in 1-l COT- 
respondence with f(q) and the action of Ant(B) on P, 
corresponds precisely to the action of Aut(‘H) on f(Q). 
Thus, to find generators of Aut(B): (i) we find generators 
S of Aut(‘X), taking arbitrary liftings of each to Sym(Q); 
(ii) we augment this collection with generators of the sub 
group of Sym(Q) that stabilizes the classes (the subgroup 
induces the full symmetric group in each class), extending 
these generators to act trivially on @ 

a 

Proof of Corollary 1.4. To test isomorphism of B = 
(cm, E), B’ = (Vcm’, E’), one can rouow a familiar re- 
duction of the problem to finding automorphism groups, 
e.g., reduce to the case when B,B’ are connected and then 
see whether any generators of the automorphism group of 
((@ti@‘)ti($‘ljq’)), EtiE’)) switch the connected components. 
(Alternately, one can construct a direct proof analogous to 
that of Corollary 5.1.) a 

6 Parallelhation 

We describe the modifications that strengthen our polynomial- 
time results to NC. 

First we parallelire Problem I. 

Proposition 6.1 There ore constants c, c’ such that, using 
O(c”ltlal) pornllel processors. Problem I con be solved in 

time O((lrl + IA\)“). 

Proof. We revisit the critical steps in the proof of Prop* 
sition 3.1. 

Given L,Ql, we need to find M = Lo,. We consider 
the case where IQ/ > 1 is bisected and @I = ‘Xv x V, the 
other case being similar. This set-stabilizer problem be- 
comes a point-stabilizer problem by considering the action 
of L on the L-orbit of 01. Parallel computation of or- 
bits [29] is done by a parallel transitive-closure algorithm 
which assumes work at, and therefore enumeration of, all 
points of the permutation domain. Since, it would be prw 
hibitive to enumer.xte 2”‘, we determine only the orbit 
0 of Cp, under the first coordinate action of L. For each 
element II E 0, the computation also retuns a group ele- 
ment zs E L such that a;” = n. The collection {zn)n~o 
together with a known generating set, S, enables us to write 
JSJIO\ Schnier generators (Section 2) of M. But we must 
take care to keep the numbers of group generators of poly- 
nomial size before proceeding to the next round, and we 
want to do this without resorting to the deeper machinery 
of [3]. The Schreier generators can be pruned to a palyno- 
mia.l size by a parallel application of “sifting” (see, e.g., [26, 
(3.3)]) through a “point-stabilizer tower” (here the “points” 
are again the elements of I’ x A, since the group is faithfully 

656 



represented therein); at each level, at most one generator re- 
ms.ins to represent any coset mod the next subgroup, while 
others in the same coset are sifted down. 

The recursive calls to problems on Mtz can be run for 
all t in para.Uel. For each, the two calls in (3.1) to problems 
on 01 and 02, respectively, have to remain serial, but these 
involve problems that may be considered half the size. 

We need also take care to keep the numbers of group 
generators of manageable size when we form the union of 
co&s. Again, thii a matter of parallel sifting. 

Given the above, and observing that the depth of the 
recursion is only O(log I@1 + log Iql), we see that Problem I 
is solved with O(clrltla’) processors in polynomial timen 

Proof of Theorem 1.5. In parallelizing the method 
for Theorem 1.1, generator-reduction as above is used for 
alI subgroups visited. Coset intersections have already been 
parallelized. Also, for any fixed IAl and Irl, the compu- 
tations of all I@, A; r’, A’) can be run in parallel. We 
run through 1x1 values of IAl and log/C/ values of Irl, 
so the number of such “rounds” is O(ICllog ICI). In this 
manner, the problem is solved with exp(O(jCl)) processo; 
in polynomial time. 

Proof of Corollary 1.6. Following the construction 
in the proof of Corollary 1.2, The result follows from the 
above. 0 

7 Open problems 

7.1 Equivalence under linear and aftine transformations 

A Boolean function on n variables may be viewed as a map 
f: GF(2)” - {0, 1). Thus, there is an induced action on the 
set of such functions by the general linear group GL(n, 2) 
and by the general affine linear group AGL(n, 2). It is of 
some interest in both network and coding theory to deter- 
mine when two functions are equivalent under the action of 
these groups [7, 17, 32, 371. If one again considers the input 
size to be m = 2”, then testing equivalence via enumeration 
of these groups requires O(ms’o~m) time. 

Can equivalence of Booleon functions under the 
general and general-afine linear groups be tested 
in polynomial time? 

The question is also of interest in direct connection to 
GRAPH_ISOMORPHISM. Given f as above, construct a 
directed graph G, = (Et,Ef) with IEf/ = @(m2) as fol- 
lows: C, = GF(2)” ” {{a,/31 1 a,@ E GF(2)“, o/ #P}; 

Ef = 1 (~>{a.Pl) I a,P E GW”, (2 #PI U 

~((~,P},~+P)I~,PEGF(~)“,~#P} U 

((*,a) I @ E GW”, f(a) = 1 J. 

Then Boolean functions fi, fi are equivalent under the ac- 
tion of GL(n,2) iff Ff, is isomorphic to c,,. Hence, the 
question deals with an interesting subexponential obstruc- 
tion to polynomial time for testing graph isomorphism (see 
[30] for questions with a similar flavor). 

7.2 Canonical forms 

Most advances in graph-isomorphism testing, both theoreti- 
cal and practical, have depended upon, or have led to, find- 

ing canonical forms for the graphs under investigation, e.g., 
[4, 8, 13, 24, 281. The method of Corollary 3.3 also falls in 
this class. 

Similarly, much work in “Boolean matching” has involved 
computation of canonical elements in structural-equivalence 
classes, e.g., [IS, 19, 33, 391. (Limitations of the suggested 
techniques have been observed in [31].) 

The question then arises as to whether canonical forms 
for hypergraphs and Boolean functions can be found within 
our indicated time bounds for isomorphism and equivalence. 

Can eononical forms for hypergaphs on n 
vertices be found in O(c”) time? 

7.3 Bounded-rank hypergraph isomorphism 

As indicated in Section 1, bounded-rank hypergraph isomor- 
pbism was known to be in O(c”) time via methods that 
called upon the simple groups classification. (The method 
makes use of a set-stabilizer algorithm outlined in [3, Section 
91: for G 5 Sym(m), set stabilizers can be found in time 
mO(dl’ogd) provided the noncyclic composition factors of 
G are embeddable in Sym(d); for rank-r hypergraphs on 
an n-element vertex set, isamarphism testing is reducible 
to finding set stabilizers for G 2 Sym(n’), but where G is 
actually embeddable in Sym(n).) 

While we have extended and simplified the result, the 
bounded-rank case remains of interest, and we repeat a ques- 
tion posed in [4]. 

Con bounded-rank hypergroph-iaomorphism be tested 
in exp(n’+) time, for some E > O? 

Rank-4 hypergraph isomorphism is reducible to isomorphism 
of graphs on O(n’) vertices. Hence, a moderately exponen- 
tial rank-4 method is a necessary condition to improvement 
of graph-isomorphism testing to e~p(n”‘-~). 

Acknowledgment 

The author thanks Nick Pippenger for a pointer to the 
Boolean equivalence problem including the observation that 
classical methods require O(mC1”6’“8 “) time. 

References 

[l] L. Babai, Moderately ezponential bound for graph iso- 
morphism, in: Fundamentals of Computation Theory, 
Lect. Notes in Math 111, Springer 1981, 34-50. 

[2] L. Baba.i, R. Beak and P. TakLsi-Nagy, Symmetry and 
complezity, Proc. 24th ACM Symp. on Theory of Com- 
puting (1992), 438-449. 

[3] L. Babai, W. M. Kantor and E. M. Luks, Computotionol 
complexity and the clossificotion of finite simple groups, 
Proc. 24th IEEE Symp. on Foundations of Camp. Sci. 
(1983), 162-171. 

[4] L. Babai and E.M. Luke., Cononicol labeling of gmphs, 
Proc. 15th ACM Symp. on Theory of Computing, 1983, 
171-183. 

[S] L. Babai, E. M. Luks and A. Seress, Permutation group8 
in NC, Prac. 19th ACM Symp. on Theory of Computing, 
1987, 409-420. 

651 



[6] R.E. Bryant, Graph-hosed algorithms for Boolean func- 
tion manipulation, IEEE ‘IYaw. on CAD, 35, 1986, 677- 
318. 

[7] J.D. Comerford, Afine and geneml linear equiualences 
of Boolean functions, Inform. and Control 45 (1980), 
156-169. 

[s] D. Corneil and M. Goldberg, A non-factorial algorithm 
for canonical numbering of o graph, .I. Algorithms, 5 
(1984), 345-362. 

[9] .I. Crawford, M. Ginsberg, E. M. Luks and A. Roy, 
Symmetry-breaking predicates for search problems, 5th 
Intern. Conf. on Principles of Knowledge Representa- 
tion and Reasoning, 1996, 148-159. 

[IO] J.D. Dixon and B. Mortimer, Permutation Groups, 
Springer 1996. 

[ll] 0. Ekin, S. Foldes, P.L. Hammer and L. H&r- 
stein, Equational theories of Boolean functions, DI- 
MACS Tech. Rep. 97.79, 1997; to appear in Discrete 
Mathematics. 

[12] M. Furst, J. Ropcroft and E. Luks, Polynomial-time 
algorithms for permutation groups, Proc. 21st IEEE. 
Symp. on Foundations of Camp. Sci., 1980, 36-41. 

[13] M. Fiirer, W. Schnyder and E. Specker, Normal forms 
for trivalent graphs and graphs of bounded ualence, Proc. 
15th ACM Symp. on Theory of Computing, 1983, 161- 
170. 

[14] Z. Gal& C.M. Hoffmann, E.M. Luks, C.P. Schnorr 
and A. Weber, An O(n3 log n) deterministic and an 
O(n3) Las Vegas isomorphism test for trivalent graphs, 
J. ACM, 1987, 513-531. 

[15] M.K. Goldberg, A nonfoctorial algorithm for testing 
isomorphism of two graphs, Disc. Appl. Math, 6 (1983), 
229-236. 

[16] S. Golomb, On the classification of Boolean functions, 
IRE Trans. Inform. Theory, IT-5 (1959), 176-186. 

[17] M.A. Harrison, On the classification of Boolean func- 
tions by the geneml linear and afine groups, J. SIAM, 
12, (1964), 285-299. 

[Ia] M.A. Harrison, Introduction to Switching and Au- 
tomata Theory, McGraw-Hill 1965. 

[19] U. Hinsberger and R. Kc&, Matching (I Boolean func- 
tion against o set of functions, Tech. Rep. 185, 1997, 
Inst. f6r Informatik, Univ. Wiirzburg. 

[20] U. Hinsberger, R. Kolla and T. Kunjan, Approzimative 
representation of Boolean functions by size controllable 
ROBDD’s, Tech. Rep. 182, 1997, Inst. fiir Informatik, 
Univ. W&burg. 

[Zl] J. Jain, J.R. Bitner, MS. Abadir, J.A. Abraham and 
D.S. FusselI, Indezed BDDs: algorithmic advances in 
techniques to represent and verify Boolean functions, 
IEEE Trans. on Computers, 46 (1997) 1230-1245. 

[22] M. Jerrum, A compact representation for permutation 
groups, J. Algorithms 7 (1986), 60-78. 

[23] D.E. Knuth, Notes on efficient representation of perm 
groups, Combinatorics 11 (1991), 57-68. 

[24] L. KwZera, An O(N=+‘) ezpected time algorithm 
for canonization and isomorphism testing of trivalent 
graphs, Proc. 2nd Symp. Theoretical Aspects Comp. 
Sci., 1985, 197-207. 

[25] E. hf. Luks, Isomorphism of graphs of bounded uolence 
con be tested in polynomial time, J. Camp. Sys. Sci., 25 
(1982) 42-65. 

[26] E. M. Luks, Permutation groups and polynomial-time 
computation, in: Groups and Computation (Eds. L. 
Fink&t& and W. M. Kantor), Amer. Math. Sot. 1993, 
139-175. 

[27] R. Mathon, A note on the graph isomorphism counting 
problem, Inform. Proc. Letters, 8 (1979), 131-132. 

[28] B. McKay, Pmctical graph isomorphism, Congressus 
Numerantium, 30, (1981), 45.87. 

[29] P. McKenzie and S.A. Cook, The parallel complezity of 
abelianpermutotiongroupproblems, SIAM J. Camp, 16, 
(1987), 880-909. 

[30] G.L. Miller, On the n”g” isomorphism technique, Proc. 
Symp. on Theory of Computing 10 (19781, 51-58. 

[31] J. Mohnke, P. M&or and S. Malik, Limits of using 
signoturesforpermutation independent Boolean compar- 
ison, Proc,. IEEE/ACM Asia and South Pacific Design 
Automation Conference, 1995, 459464. 

[32] E.I. Nechiporuk, On the synthesis of networks using 
linear transformations of variables, D&l. Akad. Nauk. 
SSSR, 123, (1958), 610-612. English translation in Au- 
tomation Express (1959), 12-13. 

[33] U. Schlichtmann, F. Brglez and P. Schneider. Eficient 
Boolean matching based on unique variable ordering, 
Prac. Intern. Workshop on Logic Synthesis, 1993, 3.6.1- 
3.6.6. 

[34] A. Seress, An introduction to computational group the- 
ory, Notices Amer. Math. Sot., 44, (1997), 671-684. 

[35] C. C. Sims, Some group-theoretic algorithms, Lect. 
Notes in Math. 697, Springer 1978, 108-124. 

[36] D. Slepian, On the number of symmetry types of 
Boolean functions of n variables, Canadian J. Math., 
5 (1954) 185-193. 

[37] D. Slepian, Some further theory of group codes, Bell 
System Tech. J., 39, (1960), 1219-1252. 

[38] D.A. Spielman Faster isomorphism testing of strongly 
regular graphs, Proc. 28th Symp. on Theory of Comput- 
ing, 1996, 576-584. 

[39] C-C. Teai and M. Marek-Szdowska, Boolean functions 
elassificotion &fixed polarity Reed-Muller forms, IEEE 
Trans. on Computers 46, (1997), 173-186. 

[40] V.M. Zemlyachenko, N.M. Kornienko and R.1. Tyshkc 
vich, Graph isomorphismproblem, (Russian), “The The- 
ory of Computational Complexity I”, Notes of Sci. San. 
LOMI, 118, (1982). 

658 


