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Abstract - Voltage-susceptance diagrams are often
used to identify system operating conditions which
would lead to abnormal voltage behaviour. It is

generally believed that system operation in the region
where the slope of the vol tage-susceptance character-
istic is negative results in voltage instability/
collapse. However this paper demonstrates that SVCs
can extend stable operation into that region. It is
shown that short term system stability is primarily
governed by the interaction between the SVC control
system and instantaneous vol tage—susceptance character-
ijstics. Given that SVCs are stable in the short term,
then long term behaviour is dependent on transformer
tapping. These effects are explored. The consequences
of SVCs encountering limits are also considered.
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I INTRODUCTION

Numerous power systems throughout the world have
suffered failures which have been associated with
abnormal voltage behaviour. A mechanism for such
failures has been described by Lachs [1] and Brownell
and Clark [2]. The frequency and severity of these
collapses has resulted in focusing a substantial
research effort on the area of voltage instability/
collapse. Even so, this subject is still not well
understood.

It is recognized that one of the important factors
contributing to long term voltage collapse is that of
inadequate Teactive power resources at critical
locations within the mnetwork [1,3]. Therefore, to
minimize the risk of voltage problems, it is becoming
prudent to strategically locate voltage support devices
such as static var compensators (SVCs) throughout power
systems. An example of this type of reinforcement is
provided by Allen et al [4]. The Queensland Electric—
ity Commission (QEC) has also adopted this practice.

1f this reinforcement philosophy is to be success-—
ful though, SVCs must exhibit stable behaviour under
voltage collapse conditions. However little research
has addressed this issue. Of particular concern is the
fact that under stressed conditions, it may be necess—
ary for a power system to operate at a point where a
voltage-susceptance characteristic has a negative
slope, i.e., where an increase in shunt capacitance at
a bus ultimately causes a voltage decrease. The design
of normal SVC control systems assumes that such a
system characteristic is positive.

The QEC has encountered this

negative slope
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situation in studies of future loading conditions. It
was shown in those studies that if SVC behaviour was
stable at points of negative slope, transmission line
reinforcement could be deferred. Therefore a detailed

investigation of SVC behaviour was under taken. This
paper provides details of that investigation.
The paper is organized as follows. Section 2

provides a brief static bifurcation analysis of the
power flow equations. This opens up questions
regarding the short term transient behaviour of SVCs
under voltage collapse conditions. Following the
development of various system component models in
Section 3, these questions are addressed in Section 4.
Section 5 investigates aspects of the longer term
behaviour of SVCs. Conclusions and recommendations for
the secure operation of SVCs are given in Section 6.

II BIFURCATION ANALYSIS
Investigations of voltage instability/collapse
situations often involve static bifurcation analysis of
the power flow equations, i.e., the system equilibrium
point equations. This approach provides some useful
information regarding SVC behaviour under collapse
conditions.

Consider the highly stressed power system of Figure
1. This system is a simplified representation of the
northern section of the QEC power system. If the
common assumption that loads are modelled as constant
power is made, then the familiar bifurcation diagram,
of the form shown as curve a-a in Figure 2, results.
(This assumption is based on the notion that load
restoration devices, such as tap changing transformers,
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Figure 2: Voltage-Susceptance Characteristic

Constant Power Loads

maintain loads at constant values.) Curve a-a shows
the relationship between voltage and susceptance at the
SVC bus. Normally such curves are drawn for load
buses, where voltage varies depending on the
susceptance. (This is equivalent to an SVC with zero
gain.) Under those conditions, point A is a
bifurcation point, because reduction of susceptance
through A results in the merging, then disappearance,
of solution points [5].

However if an SVC at the bus varied susceptance to
maintain a constant voltage, then point A  would no
longer be a significant point. (In a power flow, the
SVC bus would be modelled as having constant real power
and voltage, i.e., a PV bus.) Variation of the voltage
setpoint through A  would not alter the number of
solution points. However, if the setpoint voltage was
reduced through point B the number of solution
points would indeed change. Two solution points would
merge, then disappear. Therefore, if the SVC bus is
modelled as a PV bus, point B becomes the bifurcation
point.

Under what conditions though is it realistic to
model an SVC bus type as PV? Can SVCs regulate voltage
at points where the bifurcation diagram has a negative
slope, i.e., that section of the curve a-a between
points A and B ? These questions are addressed in
Section 4. Before they can be answered however,
various system component models must be established.

111 SYSTEM OOMPONENT MODELS

3.1 SVC Control System Model

SVCs regulate voltage by varying shunt susceptance
at a bus. Control system design is based on the notion
that an increase in capacitive susceptance at a bus
will cause its voltage to rise. Therefore, typically

an SVC AVR can be modelled as a simple integrator, as
shown in Figure 3. The gain of the jth SVC is K,
SVC susceptance BSJ forms part of the self suscei)t—
ance of the bus. Each SVC regulates bus voltage to its

int  |[v°.|
setpoin sj

The assumption that increased capacitive suscept-
ance causes higher voltage, upon which the control
system is based, is not necessarily true in voltage
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Figure 3: SVC Control System Schematic

collapse situations. Therefore the interaction between
the SVC control system and the system voltage-
susceptance characteristic is vital to an understanding
of the short term response of an SVC to a disturbance.

3.2 Transformer Model

Q. 1TANSIHIN . =2

The AVR of a regulating transformer monitors the

error between the controlled bus voltage and its
setpoint value. If this error exceeds a preset
deadband, it forces taps to change until the voltage

error falls below that deadband, or a tap limit is
encountered. In these investigations, this general
behaviour has been represented by a simple transformer
model whose taps are varied continuously (not in
discrete steps) at a constant rate whenever the voltage
error is greater than the deadband. This model enables
useful qualitative information about the interaction
between transformer tapping and SVCs over the long term
to be determined.

3.3 Load Model

In the short term following system changes, load
response is predominantly voltage dependent. A
generally accepted model of this voltage dependence is
given by

O
S I (1a)

(1b)

di

Qi

where §i My
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are constant indices.

In the longer term, transformers tap to Trestore
load bus voltages, and hence loads. to their predist-
urbance values. Also, in this longer time frame, load
dynamics tend to cause lJoad restoration. It has been
found however that for qualitative investigations of
SVC behaviour during voltage collapse, the effects of
load dynamics can be neglected.

The assumption that transformer tapping is the only
source of load restoration does not result in the loss
of any significant modes of SVC behaviour.

VI SHORT TERM BEHAVIOUR OF SVCS

4.1 Vol tage-Susceptance Characteristics

The response of a power system to a disturbance,
such as a feeder trip or a step change in load, occurs
in three (reasonably distinct) phases. Instantaneous—
ly, network quantities such as bus voltages will
adjust. In the short term, SVCs and generators will
respond; SVCs and generator AVRs to voltage errors and
generator angles to power mismatches. Note that these
are dynamic processes, SO cannot occur instantaneously.
However, because SVCs have no inertia, they respond
much more quickly than can machines. In the long term,
system adjustments will occur due to devices with
slower dynamics such as tap changing transformers. A
different voltage-susceptance characteristic can be
associated with each of these phases.

The instantaneous characteristic shows the initial
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relationship between voltage and susceptance at the SVC
bus. To produce this characteristic, the network is
modelled as normal, with loads given by (1), but
generator angles and transformer taps are frozen at
their 1initial values. Note that in this case,
generators and transformers are not in equilibrium.
This characteristic corresponds to the period before
they have had time to respond to the disturbance.
Because SVCs respond much more quickly than machines,
SVC bus voltage, in response to susceptance changes,
will initially follow this characteristic.

The short term characteristic shows the voltage-
susceptance relationship after the generators have
responded, but Dbefore taps have moved. This
characteristic differs from the instantaneous one in
that generator powers are constrained to their
equilibrium values, rather than generator angles being
constrained. Again the network is modelled as normal,
with loads given by (1), and transformer taps are fixed
at their initial values.

The long term characteristic gives the voltage-
susceptance relationship after generators and
transformers have responded. In this case, as in the
previous case, generator powers are constrained to
their equilibrium values, and the network is modelled
as normal, again with leads given by (1). However,
unlike the previous case, this time transformers are in
equilibrium. This characteristic corresponds to normal
power flow solutions.

Figure 2 can be used to illustrate the instantan-
eous and short term characteristics for the case where
loads are modelled as constant power, i.e., (i,ni=o

(Note that this is not a realistic load model for the
short term period, but is convenient for demonstrating
different possibilities for short term behaviour of
SVCs. This is undertaken in Section 4.2.) In Figure
2, curve a-a is the short term characteristic.
Curves b-b,c-c,d-d are instantaneous characteristics
corresponding to various different initial conditions.
Note that taps are fixed in this example.

Consider operating point C in Figure 2. The
jnstantaneous characteristic is given by curve b-b
Therefore, as the SVC control system varies its
susceptance following a disturbance, the voltage will
respond according to curve b-b Over time however,
as generator angles move and the system settles to a
new operating point, system quantities will change in
accordance with curve a-a Hence b-b dictates the
initial SVC response, whilst a-a gives its response
after the "short term" transient period.

4.2 Dependence of SVC Stability on Vol tage—Susceptance
Characteristics

As noted earlier, to produce the curves of Figure
2, loads were modelled as constant power. This is
recognized as not being a realistic representation of
load behaviour. However it does allow the various
possibilities for short term behaviour of SVCs to be
explored. Other (more realistic) load indices are
considered later, in Section 4.3.

Because curve b-b of Figure 2 has a positive
slope at the operating point C , the SVC control
system will initially respond in the correct manner.
(An increase in capacitive susceptance will cause an
increase in voltage.) Over a longer time frame, the
machine angles will move. But at each instant along
that trajectory, SVCs will respond according to an
instantaneous characteristic like b-b As long as
the slopes of those characteristics remain positive
SVCs will behave in a desirable manner.

Now consider operating point D of Figure 2. At
that point, the instantaneous characteristic d-d has
a negative slope. Therefore the SVC control system
will produce undesirable behaviour. If a disturbance
caused the voltage seen by the SVC to rise, then the
control system would force the SVC susceptance to a
more inductive value. Because of the negative slope,
the voltage would actually rise further, i.e., a
positive feedback situation. Susceptance would quickly
reach the bifurcation point E , at which time voltage
would become infinitely sensitive to susceptance
movement. System failure would occur.

If however a disturbance caused the SVC terminal
voltage to fall, the control system would force SVC
susceptance to become more capacitive, resulting in a
further fall in voltage. Susceptance would continue to
go more capacitive, with the voltage varying according
to curve d-d Notice though that voltage would
quickly pass through a minimum, encountering a section
of d-d where the slope was positive. The control
system would begin to function properly again,
resulting in the SVC settling to operating point F
Ultimately, as generators responded, the system would
settle back to curve a-a at point G .

Interestingly, if the SVC gain was zero at operat-
ing point D , the system would be small disturbance
stable. Analysis leading to that conclusion is given
in Appendix A. For positive gain though, the system
linearized around point D contains a positive
eigenvalue, indicating instability. The positive
eigenvalue changes to negative if the SVC gain is
altered to a negative value. This confirms the need
for consistency between the gain of the SVC and the
slope of the system’'s instantaneous characteristic, in
this case d-d .

Operating point H in Figure 2 is particularly
interesting because the instantaneous characteristic
c-c has positive slope while the long term character-
jstic, curve. a-a , has negative slope. It is shown in
Appendix A that if the SVC gain was zero at this point,
the point would be small disturbance unstable.
Therefore, because of the continuity of eigenvalues
with parameter changes, the point is unstable for small
values of gain. However, the characteristic c-c is
positive, so we know that for sufficiently high gain,
the SVC will respond in a stable manner. For example,
if the SVC setpoint was suddenly changed from its value
at H to 1.08pu, the SVC would quickly respond by
moving along curve c—c to the point I . SvC
susceptance would become more capacitive. Notice
though that over time, as generator angles moved, the
system would settle back to point C . Ultimately SvC
susceptance would be more inductive than it was before
the change in setpoint.

Comments :

1. At points where the instantaneous characteristic is
steep, such as H . too high a gain in the SVC will
cause oscillatory instability of its control
system. It occurs because very small changes -in
susceptance (caused by the control system) result
in large voltage fluctuations, and hence voltage
overshoot.

2. Switched shunt controls generally respond slowly to
voltage variations, so they can be thought of as
having low gain. Therefore such devices would
provide no assistance in maintaining stable
operation at points such as H .

3. It is apparent from the cases considered that
provided the instantaneous characteristic has a
positive slope, a non-negative gain can be chosen
to ensure that the SVC regulates voltage correctly.
Note therefore that the instantaneous characterist-—



jcs have a far greater influence on SVC stability
than does the short term characteristic, curve
a-a .

4.3 The Influence of Load Indices

It was noted in Section 3.3 that when a power
system is subjected to a disturbance, load powers
initially vary with voltage. (This voltage dependence
is modelled by (1).) Therefore it could be expected
that load indices significantly influence the form of
the instantaneous characteristics, and hence short term
SVC behaviour. Figure 2 showed these characteristics
for the case where loads were modelled as constant
power. However that type of load behaviour is not
typical of real power systems. Therefore more
realistic load indices shall now be considered.

Results obtained in [6] enable at least a partial

understanding of the effects of load indices. It was
conjectured that for lossless systems, if

§i21 and ni=2 (2a)
or

§i=2 and niZI (2b)
then instantaneous characteristics could not have
bifurcation points, i.e., each characteristic would

express a unique relationship between voltage and
susceptance. Thus, if all loads were modelled accord-
ing to (2). then such characteristics must always have
a positive slope. Consequently SVC control systems
would always interact correctly with the power system.

In [6] a robustness argument (based on perturbation
of eigenvalues) allowed the set of load indices (2) to
be expanded to include ‘nearby’ indices. A similar
robustness argument can be used to show that the
indices of (2) are applicable to lossy systems,
provided the losses are small.

Figure 4 shows cases which are similar to those of
Figure 2, but with loads modelled as voltage dependent.
Uniform load indices of (i=1 . ni—;% were used.

(Tests on the QEC system have indicated that those
indices provide a useful model of actual system load-
voltage dependence.) In this case, the long term
characteristic a-a includes the effects of trans-—
former tapping, and hence load restoration. Notice in
Figure 4 that the instantaneous characteristics have
positive slope everywhere. Therefore, the SVC control
system will respond correctly, in the short term, at
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all points. However, to determine the ultimate
stability of the system, the behaviour of the slowly
responding transformers must be considered. This long
term behaviour is investigated in the next section.

V__LONG_TERM BEHAVIOUR OF SVCS

It is clear from [1] that many factors, such as tap

changing, load dynamics and generator reactive power
limiting, contribute to long term voltage collapse.
However, the significant aspects of long term SvC

behaviour can be highlighted through the use of the
simplified system component models described in
Section 3. Generator reactive power limits have not
been considered. Whilst such reactive power limiting
does tend to accelerate voltage collapse, it does not
directly influence the way in which SVCs respond during
such a collapse.

5.1 System-SVC Interaction

In Section 4.3 it was shown that if loads could be
modelled as voltage dependent with indices close to
those of (2) then, in the short term, an SVC would
allow stable system operation at all points on curve
a-a . The following simple examples allow long term
system behaviour to be investigated. These examples
are once again based on the system of Figure 1.

Consider the situation depicted in Figure 4, with
the system initially operating at point C . How would
the system behave if the SVC setpoint was suddenly
altered to 1.00pu? SVCs respond much more quickly than
generators or transformers, so susceptance would vary
along curve e-e and initially approach point J
However generator angles and transformer taps would
then begin to move. Because the SVC setpoint voltage
was lowered from 1.08pu to 1.00pu. network voltages
would be correspondingly depressed. Loads would reduce
due to their voltage dependence. Transformers would
therefore tap so as to restore their controlled bus
voltages, and loads would increase accordingly.
Because of the increasing system load, the SVC would
require more capacitive susceptance to maintain its
Therefore the system would move
along the line between points J and D . before
finally settling to point D . This response is shown
in Figure 5. Notice that there is initially a rapid
decrease in the capacitive susceptance of the SVC.
This is followed by a period of oscillations where
generator angles respond to the setpoint change.
Transformer taps vary to restore load bus voltage.
(Recall that in this simplified model, tapping is
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continuous,
rate.)

not discrete. Taps vary at a constant
The effect of this tapping can be seen in the

comparatively slow ramping of SVC susceptance and
generator angle. As predicted from Figure 4, S8VC
susceptance at the final operating point is more

capacitive than it was before the reduction in the
setpoint.

If the setpoint was now returned to 1.08pu, the
system would follow curve g-g from D to K . This
setpoint change would cause higher network voltages,
and hence higher loads. This time transformers would
tap to reduce controlled bus voltages, and loads, so
SVC susceptance would become less capacitive. System
response would follow the line from K to C .

Long term system behaviour is stable 1in the
previous cases. However stable behaviour 1is not
guaranteed at all points on a-a . Consider point G .
A setpoint change from G would cause movement along
curve h-h . If the setpoint was raised slightly,
network voltages and loads would increase. Transform-
ers would tap to reduce controlled bus voltages, and
hence loads, resulting in a reduction in capacitive SVC

susceptance. System response would follow the line
from G to D Point G is therefore unstable in
the sense that the system will not remain in a

neighbourhood of that point when subjected to small
disturbances. As a further example, if the setpoint
was raised to 1.08pu, the system would initially move
to point L . Then, following the previous argument,
the system would traverse the line from L to C .
ultimately settling at C .

Again referring to point G ,
lowered below 1.00pu,

if the setpoint was
system collapse would probably

result. Taps would increase in response to the
depressed voltages, so SVC susceptance would go more
capacitive. The system would therefore move away from
G to the right. But no solution point could be
encountered. (A1l solution points fall on curve
a-a .) As transformers tapped up, network voltages
would fall. Unless tap limits were encountered, this

process would continue until network voltages fell to a
level where synchronizing power could not be maintain-
ed. Angle separation between machines would then
occur.

(Recall that point G of Figure 2 was stable.
However the system corresponding to that figure did not
contain any tap changing transformers. It is the
dynamics of these transformers which cause unstable
behaviour at point G of Figure 4.)

Referring to Figure 4, it can be seen that in the
region outside of curve a-a , system trajectories move
in the direction of increasing capacitive susceptance.
Inside (above) a-a , trajectories move in the direct-

ion of reducing capacitive susceptance. Therefore
trajectories move away from points on a-a which are
to the right of B , and toward points on a-a which
are to the left of B Hence point B forms the

boundary between stable points, i.e., those points to
the left of B , and unstable points, i.e., those to
the right of B . Point B is therefore a bifurcation
point of the system. This is consistent with the ideas
of Section 2.

5.2 SVC Limits

The consequences of an SVC encountering its
capacitive susceptance limit are of interest in the
study of voltage collapse. When the capacitive limit
is reached, voltage support ceases. Therefore, if a
system change caused a fall in the SVC bus voltage, the
SVC would not be able to go more capacitive to support
the voltage.
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Figure 6: SVC Limit Behaviour

Under normal system conditions, when the SVC is
operating on the positive slope of the long term
characteristic, a bounded drop in SVC bus voltage will
result if the capacitive limit is encountered. Figure
6 illustrates this behaviour. The effect of a system
change which moved the long term characteristic from

a~-a to b-b is shown. If the SVC was initially
operating at point A , and if no limit was
encountered, then in response to machine angle
adjustments and transformer tapping, the SVC would

ultimately settle to point B
capacitive limit value was by ,
be encountered at point C . The SVC bus voltage would
fall, so the system would proceed from C to
ultimately settle at point D .

If however the
then the limit would

Now consider the same system change, but with the
SVC operating on the negative slope at point E . If
the capacitive limit was not encountered, the system
would ultimately settle to point F . However, if the
capacitive limit value was by , then the system would
proceed from E to G where the limit would be
encountered. Voltage would fall, so the system would
follow the line from G toward H . Nowhere would the
long term characteristic b-b be intersected, so
voltages would continue to decline, leading to a
voltage collapse situation.

The first example of Section 5.1, i.e., where the
system was initially operating at point C of Figure
4, can be further used to demonstrate this unstable
behaviour. For this case, the capacitive limit of the
SVC was set to 1.10pu. Recall from the earlier example
that when the setpoint fell from 1.08pu to 1.00pu,
capacitive susceptance decreased. This was followed by
a period of increasing capacitive susceptance as
transformers tapped to restore load bus voltages. This
time however, before all transformer setpoint vol tages
were reached, the SVC limit was encountered. Voltage
regulation ceased. The time response of the voltages
at the SVC bus and the ROSS load bus are shown in
Figure 7. After thé SVC ceased regulating, transform-—
ers continued tapping up because some load bus voltages
were still below their setpoints. This only succeeded
in depressing voltages at the load buses and the
transformer high voltage buses. Further tapping caused
a continual decline in network voltages, until the
point was reached where the depressed voltages did not
allow sufficient synchronizing power between machines
to be maintained. Voltages fell rapidly and system
separation occured.
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This example illustrates one voltage collapse
scenario. Others are possible. The load model has a

significant effect on the ultimate mode of failure of a
power system [7.8]. Research is continuing in this
area. ‘

VI __CONCLUSIONS

The paper has investigated the behaviour of SVCs at
operating points where the slope of the system’s long
term voltage-susceptance characteristic is negative.
This investigation has shown that SVC stability is
influenced greatly by instantaneous characteristics
obtained by constraining generator angles rather than
powers. When these characteristics have positive
slope, the SVC control system interacts properly with
the power system.

Conditions which ensure that the instantaneous
characteristics always have positive slope have been
considered. Modelling of the loads was found to be
particularly important. 1f loads are modelled as
voltage dependent, then it appears that for a large
(and realistic) class of indices, the instantaneous
characteristics satisfy the positive slope requirement.
Therefore, in systems where loads have appropriate
voltage dependence, SVCs can successfully operate at
points where the slope of the long term characteristic
is negative. It was concluded that under these load
modelling conditions, the absolute stability limit is
given by the bifurcation point B of Figure 4.

However it has been shown that if an SVC was to
encounter a limit while operating at a point where the
long term characteristic had negative slope, system
collapse would almost certainly occur. This is because
the voltage could no longer be regulated at the SvC
bus. Therefore, even though operation on a negative
slope is practical (when load voltage indices are close
to those of (2))., care must be taken to ensure that
SVCs operating in that region do not hit limits.
System operators would need to be made aware of this
special operational requirement.

Having established that it is practical for SVCs to
operate on the negative slope of the long term
characteristic, power system planners and operators may
be able to extend the power transfer capabilities of
their systems. This may lead to a greater utilization
of existing transmission  plant, deferment of
transmission reinforcement and consequent savings in
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capital expenditure.
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APPENDIX A

A.1 System Model

In this analysis, we are interested only in cases
where SVC gains are zero, and taps are fixed. It is
shown in [10] that under these conditions, the power
system can be simply represented as

. -1 -1t
=-M Dow-M Tf a,, Y 3a

gy = M Do M LT (00 ey (32)
a =Tuw (3b)
g g8

0 =fy(a . YD (42)
0 =gla,.a VD (4b)

where
Mg.gg - diagonal matrices of inertia, damping

constants
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T - specially structured matrix of i1

B entries

gg - generator frequency deviations

g_g - generator phase angles

e, - load bus phase angles

|X| - load bus voltage magnitudes

—{g - accelerating power at generators

f_e - real power balance at load buses

g - reactive power balance at load buses
Note that in this representation, generator

dynamics are described by the classical machine model.
This is sufficiently accurate for the present investig-
ation, as we are predominantly interested in machine/
network interactions, rather than detailed behaviour of
the machines themselves.

A.2 Small Disturbance Stability Analysis

Small disturbance stability analysis involves the
investigation of the eigenvalues of the system A
matrix formed by linearizing the model (3),(4) about a
particular operating point. An operating point is
small disturbance stable if and only if all eigenvalues
of A lie in the open left half complex plane [11],
i.e.., they all have negative real parts.

It is easily shown that linearizing (3).(4) gives

Aa 0 DT Aa Aa
Bl - _—g El_A| B (5)
Ao 1t o -1 Aw T A
M T'F: -MD
® Ll x|l E *

where F is obtained from the power flow Jacobian

'6_5&53_55 of } Lo ¢ dge

F=135% 7 5'“5,-[ = |8 B (6)
-2t S Log + oo
o, i,
3 '3, 3N
dg Eag dg
& = o)

as

F=J1 -L,0,5l Q)

gg “glrilig

It is shown in [6] that due to the structure of
A ., the number of positive eigenvalues of A is
typically equal to the number of negative eigenvalues
of E Therefore the small disturbance stability of
the system can be determined from the signs of the

eigenvalues of F .

We now proceed to show that those eigenvalue signs
can be determined from the slopes of the voltage-
susceptance characteristics. This analysis is
dependent upon the application of Schur's formula to
(6), i.e., if ,Iee is nonsingular then

-1

det F = det J_ee det [Jgg—_,!geieeieg]
= det _.lee det F (8)
Because SVC gain is zero, voltage is not being

regulated, so point A of Figure 2 is a bifurcation
point of the power flow equations. (Recall also that

Therefore [F is singular at A,
i.e., det F = O Above A , in the ’'normal’
operating region, det F >0 . Typically the sign of
det F changes at A so that at points below A ,
e.g., points D and H , det F <0 . The sign of
det F and the sign of the slope of the short term
characteristic a-a are therefore in agreement [12].

taps are fixed.)

Now consider the instantaneous characteristics,
e.g., curves b-b,c-c,d-d of Figure 2. Each such
characteristic corresponds to generator angles gg

being constrained, rather than to generator powers
being enforced. Therefore these characteristics are
determined from the algebraic equations (4) only, with
g, and |¥| being the only free variables. The

therefore composed of the
and g with respect to a,

and V| From (6). dog - (a

submatrix of [F ). It follows from bifurcation theory
[5] that bifurcation points on the instantaneous
characteristics, e.g., point E ., correspond to
det J_ee = 0 . Therefore using the same argument as for

corresponding Jacobian is
partial derivatives of ie

that Jacobian is

the long term characteristic, it may be concluded that
the sign of the slope of the instantaneous character-
istic and that of det Jee are typically in agreement.

Based on the above reasoning, it can be deduced
that at point D , det F <O and det iee <0

Therefore by (8), det E > O . Such a condition may be
due to an even number of negative eigenvalues.
However, it is argued in [6] that in general F will
have no negative eigenvalues at such points.
Therefore, under normal conditions, peint D is small
disturbance stable.

At point H , it is apparent that det ¥ < O
whilst det iee >0 . Hence by (8), det F<O . F

must have at least one negative eigenvalue,
point is unstable.

so the
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Discussion

M. K. Pal (Public Service Electric and Gas Company, Newark,
N.J.): This paper attempts to demonstrate that SVCs can extend
stable operation into the region that is considered voltage
unstable in the absence of such controls, and that the operation
must be well within limits. These facts are well known, although
the actual mechanism of extending the stability limit is not fully
understood by many. The authors’ treatment of the subject,
especially in the first half of the paper, unfortunately, does not
improve the situation.

Throughout the paper the authors seek to explain the
behavior of SVCs with the help of the voltage-susceptance
curves. They use the concepts of long term, short term and
instantaneous voltage-susceptance characteristics, and note that a
necessary condition for stable operation of an SVC is that at the
operating point the instantaneous characteristic must have
positive slope. There are, however, inconsistencies in their
explanation of how these instantaneous and other characteristics
were developed. For example, one of the curves (short term) was
apparently drawn with loads given by equation (1) of the paper,
before transformer taps had moved and with generator powers
constrained to their equilibrium values. It is not clear how a
power balance would be obtained.

It is, also, not clear how the voltage-susceptance curves can
look like those shown in the paper. The stable SVC behavior for
constant power load is explained with the help of the
instantaneous voltage-susceptance characteristic. However, since,
presumably, this was drawn using a generator internal voltage
(constant flux linkage), it should appear to the left of the steady-
state curve a-a of Figure 2 of the paper, in the normal operating
range. In other words, the slope on the instantaneous curve
would be less favorable than that on the steady-state curve.
Obviously, the explanation of stable operation of SVCs for
constant power load as provided by the authors cannot be valid.

Actually, the problem in the authors’ explanation has its root
in the general misconceptions in the field of voltage stability.
The misconceptions resulted from an attempt to predict system
performance, which is basically dynamic, using a static system
formulation. An increase in shunt capacitance at a bus cannot
cause the voltage to decrease under any operating condition. It is
true that under certain control actions, such as under the control
of an SVC, while operating in the lower portion of the P-V
curve, a lowering of the voltage set-point would be accompanied
by an eventual increase in the reactive injection from the SVC.
However, this is not a natural system response. The "negative
slope," as the authors call it, should not be taken too literally. It
simply reflects the low voltage steady-state solution based on
constant power static load model.

The constant power static load model led to the conclusion in
section 4 of the paper that point D in Figure 2 is small
disturbance unstable with SVC but stable without. A constant
power load is not a static load. This means it cannot jump
instantaneously from one demand level to another as the demand
changes. Similarly, following a sudden system change, the load
will change momentarily. It will then be restored to the constant
power level by the restoring mechanism. A definite time lag is
involved in the process. The instantaneous characteristic of all
loads is static, i.e. it is predominantly voltage dependent. In this
sense the explanation provided in section 5 of the paper is
conceptually correct. As long as the SVC has enough margin,
stable operation can be extended until the angle stability limit is
reached.

A truly satisfactory explanation of stable operation in the
Jlower portion of the P-V curve for constant MVA load (self-
restoring load) would require simultaneous consideration of the
relevant dynamics of the load and the SVC control mechanism.
Note that, for static load, such as constant impedance, SVC is
not necessary for maintaining voltage stability, although it will
certainly help in precise voltage control.

We provide below a simple but rigorous explanation of the
mechanism of the extension of voltage stability lLimit due to
SVC. Consider the system shown in Figure 1, supplying a unity
power factor load whose voltage is being controlled by an SVC.
We will use an SVC model similar to that shown in Figure 3 of
the paper, and described by
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P+jQ

Fig.1 A power system with constant sending-end voltage
supplying a load whose voltage is maintained constant by an
SVC.

d
Te-B=Ve- Vi )
dt
For our purpose, the dynamic behavior of the constant power
load may be represented by a simple first order delay model,
whose dynamics may be represented by

d
T.- G=P,- VG V)
dt
where
V, is the load voltage
P, is the power set point
G is the load conductance which is adjusted to
maintain constant power
T, is the load time constant

The load model given by equation (2), describes the basic
dynamics, pertinent to voltage stability , of a wide variety of
loads. With proper interpretation, it can also approximately
represent the basic dynamics of induction motors. (Note that
other load models may be used.) The power balance equations
are:

VsVi
P =V, G=— sin® ®)
X
\AY v,?
Q=0="""cos® -—+V,’B @
X X

After linearizing equations (1) - (4), and elim_inating the non-
state variables, we obtain the state-space model X = Ax, where

Ll

The elements of A are:

L. Lo
a,=-— sin20, ap= — sin’6
2T G TG
2 2
L L
a, =-— sin28, a, =-— cos26

T T,
The characteristic equation is

A+al+b=0

where .

Vi A\

a=-(a,+ay = — sin 20 + — cos 20
T

b =aj2,;- apay = sin 26
2T T.G

For stability, a > 0, b > 0. Afier some algebraic manipulation
and noting from equations (3) and (4) that tan 8 = GX/(1-BX),
we arrive at the following stability condition
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T, X
1-tan’® >-— —— )
TeV, 1-BX

Equation (5) shows that, when Ty << T,, which would be
true for most load types, voltage stability limit can extend to 0
approaching 90°, i.c. well into the lower portion of the P-V
curve. (Note that for unity power factor load, 0 = 45°
corresponds to the maximum power point on the P-V curve; 6 >
45° corresponds to operation on the lower portion of the curve.
Also, beyond @ = 45°, the reactive requirement increases
rapidly.) On the other hand if T, =0, ie. if the load adjusts to
constant power instantaneously, the stability limit occurs at 0=
45°, implying that no improvement in voltage stability limit over
that obtainable from static shunt reactive support is possible. It
may be of interest to note that if, in the above analysis, a
constant power static load model is used, the result will
correspond to that for the dynamic load case with T, = 0.

In the voltage-susceptance characteristic shown (curve a-a in
Figure 2 of the paper), point A corresponds to 8 = 45° in the
simple example of Figure 1. Point B corresponds to 6 = 90°, at
which point angle stability limit would be encountered for
constant sending- and receiving-end voltage. It is not clear why
the analysis was extended beyond this point. Point G is unstable
from the angle stability point of view. A system cannot be
operated stably at this point, unless the voltages are adjusted to
maintain stability.

Tt is not clear why the appendix was included. The objective
seems to be to relate voltage stability limit without SVCs, to the
singularity of the power flow and other Jacobians. The literature
is replete with such analyses, all of which are based on flawed
mathematics. The problem with these analyses is clearly
demonstrated in [A]. As noted earlier, the instantaneous
characteristics, if drawn correctly, would be oriented differently.
In that case, the authors’ analysis would show that all points
between A and B, ie. both D and H, are stable, and only a
region immediately above A is unstable. This is, of course,
absurd, and is a consequence of the flawed model.

[A] M. K. Pal, Discussion of "An Investigation of Voltage
Instability Problems,” by N. Yorino, H. Sasaki, Y. Masuda,
Y. Tamura, M. Kitagawa and A. Oshimo, 91 WM 202-2
PWRS, IEEE/PES winter meeting February, 1991.

Manuscript received August 26, 1991.

I.A. HISKENS and C.B. McLEAN: We thank Dr. Pal for the
opportunity to explain more fully some of the concepts

developed in our paper. We will answer Dr. Pal’s
criticisms in the order in which they appear in his
discussion.

Dr. Pal is concerned about the equilibrium values
of generator powers used to. obtain the short term
characteristics. In the short term, before governor
action, any load-generation imbalance is picked up by
generators in proportion to their damping constants (or
inertia constants in the case of zero damping) [B].
Equilibrium values of generator powers are therefore
given by their predisturbance values adjusted by the
appropriate proportion of the power imbalance.

Dr. Pal is of the opinion that in the normal
operating region the instantaneous characteristic
should always be steeper than the short term character-
istic. However Figures 2 and 4 provide counterexamples
to that claim, as they are actual characteristics for
the system of Figure 1. In fact, it is not clear to us
that any general statement can be made regarding the
relative slopes of the instantaneous and short term
characteristics at an arbitrary operating point. The
relative slopes would appear to be system and operating
point dependent. This however does not affect the
validity of our analysis at all. As explained in the
paper, provided the instantaneous characteristic has
positive slope. network response will be consistent

with SVC control and stable operation will occur. Only
when instantaneous characteristics have negative slope
will the SVC respond in an incorrect manner. But it
follows from the analysis of the Appendix that this
negative slope condition cannot occur in the normal
operating region. In that region, det F and det F
are both positive, so from (8), det ,Iee must also be

positive. Therefore the slope of the instantaneous
characteristic must be positive. (Note that this is
not meant to be a rigorous argument, but is true for
normal power systems.)

Dr. Pal 1is under the misconception that our
analysis is based on a constant power static load
model. However it is emphasised in the paper that this

is not the case. In Sections 4.1 and 4.2 it was stated
that a constant power static load model was used solely
for the purpose of exploring the various possibilities
for short term behaviour of SVCs. Having established
these possibilities, Section 4.3 then considered more
realistic load models. Dr. Pal agrees with us that in
determining the instantaneous characteristics, loads
should be modelled as voltage dependent. However he
seems to be unaware of the influence that load indices
can have on the shape of these characteristics. For
example, for real power load indices fi(l , it cannot

be guaranteed that an increase in shunt capacitance at
a bus will not result in a voltage decrease. This type
of behaviour 1is theoretically possible. Further
details can be found in [6,C].

Dr. Pal’'s discussion of the system shown in his
Figure 1 is interesting, but limited by his use of a
constant admittance model for the instantaneous vol tage
dependence of the load, see (2). Further, it is not
valid to draw conclusions about the constant load power
case by setting TL=0 as this is a singular perturbat-

ion of the original system. A more informative
investigation is possible if (2) and (3) are replaced
by

(2')

P:VE P = sin @ (3)

X

where PL is a base load which is adjusted to maintain

constant power. With this formulation we can determine
the effect of the load index on stability. Again, to
investigate stability the system is linearized. In
general TQ«TL . so we shall assume that in the short

term AP R0 . SVC stability (in the short term) is
then given by
AV,
: 1 L
AB = - —=— -5— AB
T, AB
Q
where
v _;_sti e
I - det X °
det = —iTL[ cos29 + (C-1) sin29 ]

det is the determinant of the Jacobian of partial
derivatives of algebraic equations (3').(4) with
respect to the algebraic variables VL,O . This

Jacobian has the same significance in this system as



AV,
,Iee has in the Appendix. When B is positive, the
AV

SVC is stable. Negative 3= results in instability.

If {>1 ., det is always positive.
AVL
i The system

Stability is

then governed by the cos 8 term in
is stable for 8 wup to 90°.
Dr. Pal's findings, as he used (=2 However if
{<1 , the sign of det depends on the value of ©

Stability of the operating point therefore also depends
on 6 . (This loss of structural stability at (=1 1is
consistent with the discussion of Section 4.3.)
Consider the constant power case, i.e., (=0 . det s

8>45°. The

stability limit therefore occurs at 9=45°4 Notice
though that as this stability limit is approached, the
eigenvalue does not pass through zero, but instead
approaches - then jumps to +0 This is a
consequence of the singularity of the algebraic equat-
ions, i.e.., det=0 . Notice also that at this point,

This is consistent with

positive for 9¢45° and negative for

the VL—B characteristic becomes vertical, i.e.. a
small change in B causes an infinite change in VL .

This is consistent with the findings of Section 4.2.

Dr. Pal concludes that there 1is cor respondance
between points A.B of Figure 2 and =45" .900
respectively for his example system. This is

incorrect. Dr. Pal's example is based on the load
responding statically as constant admittance. In terms
of this static load response, his example is equivalent
to the situation depicted in Figure 4 not Figure 2.
. There is correspondance between the equivalent points

o o
-45° ,00 cases, but only in the
indicate similar types of limiting

of Figure 4 and the
sense that they
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conditions. Note though that Figure 4 is based on an
interconnected system (Figure 1 of the paper), whereas
Dr. Pal’s system is radial. Dr. Pal’s suggestion that
point G would be unstable is correct when referring
to Figure 4. However it is not correct for Figure 2.
This difference is discussed in the paper.

The Appendix provides the mathematical background
for interpreting the stability of points on voltage—
susceptance characteristics from the slopes of these
characteristics. This mathematics enables the connect-
jon between load indices and the slope of instantaneous
characteristics, and hence SVC stability, to be
established. This is valuable information for guiding
power system planners and operators when deciding
whether it is acceptable for SVCs to operate on the
negative slope portion of long term characteristics.

Dr. Pal claims that the Appendix contains flawed
mathematics, but provides no details. He refers to [A]
in which he discusses two small systems; one which is
jrrelevant and one which is a special degenerate case
of the general systems considered in the Appendix. Ve
remain confident that our analysis is correct.

We hope that in answering Dr. Pal’'s criticisms we
have been able to demonstrate that our analysis is
valid and informative.

[B] D.J. Hill, "On the equilibria of power systems with
nonlinear loads”, IEEE Trans. on Circuits and
Systems, Vol. 36, No. 11, November 1989, pp
1458-1463.

[C] I.A. Hiskens and D.J. Hill,
collapsing power system”, Proceedings of the
Workshop on Bulk Power System Voltage Phenomena,
Deep Creek Lake, MD, August 1991, to appear.
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