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Abstract

In this paper we propose two techniques to estimate critical values of parameters of interest in a power system such as clearing time of
circuit breakers, mechanical input power, etc. One is via the sensitivity of the transient energy function (TEF) and the other through
computation of the norm of the trajectory sensitivities. Both these methods require some a-priori information about the range of the critical
parameters. In real time operation, this information is generally available to the operator. A changing operating condition will result in new
values of the critical parameters and the proposed technique can thus monitor them closely without the use of direct methods. The advantage
of the first technique lies in not having to compute the unstable equilibrium point (uep) while in the second technique even the computation of
stable equilibrium (sep) is not needed. However, there are additional computational costs involved in both the techniques, which can be

addressed by faster algorithms for computing the sensitivities. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the new restructured scenario of power systems, it is
very important to assess the stability of the operating point
of the system for a set of contingencies on-line in a reliable
manner. The transient energy function (TEF) technique is
one of the powerful tools to achieve this information and has
been the topic for research for the last few decades. Sensi-
tivity approach in dynamic security assessment (DSA) is
somewhat a recent technique and its analytical calculations
were originally proposed in Ref. [1]. In Refs. [2,3], sensi-
tivities of the normalized energy margin with respect to
different system parameters were calculated for analyzing
power system stability. Recent applications of trajectory
sensitivity to power systems are to be found in Refs. [4-
6]. In this paper, we use two approaches to compute the
critical clearing time and mechanical input power directly
based on computing the trajectory sensitivities: (i) the sensi-
tivity of the energy function itself to the parameter of inter-
est is computed to estimate the critical parameter value for a
particular fault, (ii) instead of the energy function approach,
we compute the norm of the trajectory sensitivity vector
itself. Both methods avoid computing the uep. The second
method also avoids constructing the energy function and
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computing the post-fault sep. The sensitivity is computed
for two values of the parameter and then extrapolated to
obtain an estimate of the critical value. While this may
appear to be a drawback, in actual operation the operator
has some knowledge of the critical values, and we need to
do only two fast simulations. This idea is similar to that of
Refs. [7,8] where, based on simulation and expected mode
of instability, the system is reduced to a single machine
equivalent (SIME) and then critical clearing time is
estimated using extrapolation technique at two different
values of clearing time.

Fairly restrictive modelling assumptions are required to
rigorously establish the transient energy function for a
power system model. Accordingly, true Lyapunov stability
arguments can only be made for systems that satisfy those
assumptions. However the stability assessment approach
proposed in this paper does not rely on Lyapunov concepts.
Rather, the energy function is used purely as a metric, or
measure, of the ‘distance’ between the transient state (a
point on the trajectory) and the post-fault stable equilibrium
point. Therefore no restrictions need to be placed on system
modelling. Another metric that can be used is the norm of
the trajectory sensitivity vector itself. Additional computa-
tional tasks are involved in calculating the trajectory sensi-
tivities. However, one can exploit the structural similarity in
the Jacobian of both the system and sensitivity models [9].

The paper is organized as follows. System and sensitivity
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models for differential-algebraic equations (DAE) are
discussed in Section 2. Section 3 discusses the method for
estimation of 7., for DAE models using the TEF sensitivity.
Section 4 explains a direct approach using norm of the
sensitivity vector as a metric instead of the energy function.
Both approaches are model independent, so that they can be
applied to systems with any complex level of system model-
ling. Section 5 gives results for two test systems applying
the methods discussed in Sections 3 and 4. The test systems
used here are the 3-machine, 9-bus system and the 10-
machine, 39-bus system. Since the method outlined in
Section 4 is independent of the energy function concept or
system modelling details, we illustrate its application for the
3-machine and the 10-machine systems with detailed
modelling as well. In this section we also compute critical
value of mechanical power P, for a given contingency.
Section 6 gives conclusions and areas of future research.

2. System sensitivity models

In simulating disturbances, switching actions take place
at certain time instants. At these time instants, the algebraic
equations change, resulting in discontinuities of the
algebraic variables. In general the power system can be
cast in the form of a differential—algebraic discrete (DAD)
model incorporating discrete events as in Ref. [6]. A special
case is the model described by differential—algebraic
equations of the form

X=fxy,N (D
g Ly, A) s(y,A) <0

0={+ 0
g (x,y,A) s(x,y,A) >0

A switching occurs when the switching function
s(x,y,A) = 0.

In the above model, x are the dynamic state variables such
as machine angles, velocities, etc.; y are the algebraic vari-
ables such as load bus voltage magnitudes and angles; and A
are the system parameters such as line reactances, generator
mechanical input power, or fault clearing time. Note that the
state variables x are continuous while the algebraic variables
can undergo step changes at switching instants.

The initial conditions for Eqs (1)and (2) are given by

x(ty) = Xo, ¥(to) = Yo 3
where y, satisfies the equation
g(x()vyO’ A) =0 (4)

For compactness of notation, the following definitions are
used:

[} el

With these definitions, Egs. (1) and (2) can be written in a

compact form as

=1y (%)
g (xy) sxy) <0

0=4 ., (6)
g (xy) sxy) >0

The initial conditions for Egs. (5) and (6) are
¥(t0) = Yo (7

Trajectory sensitivity analysis studies the variations of
the system variables with respect to the small variations in
initial conditions x, and parameters A (or equivalently x).

Away from discontinuities, the differential—algebraic
system can be written in the form

=[xy (8)

x(tp) = Xo,

0=g(xy) ©)

Differentiating Egs. (8) and (9) with respect to the initial
conditions x; yields

iﬁo = f_X(t)ﬁzo + J_cy(t)y)_fo (10)

0 = g.(Dxy, + g,y (11)

where f_x ]_‘} 8 and gy are time varying matrices that are
calculated along the system trajectories, and x, (f) ¥ and
Yy, (1) are the trajectory sensitivities.

Initial conditions for x,, are obtained by differentiating
Eq. (7) with respect to x, as

x,, (1) = 1 (12)

where [ is the identity matrix.

Using Eq. (12) and assuming that g,(fy) is nonsingular
along the trajectories, initial conditions for y,, can be calcu-
lated from Eq. (11) as

Vi, (10) = —[8,(t)] ™' g.(to) (13)

Therefore, the trajectory sensitivities can be obtained by
solving Egs. (10) and (11) simultaneously with Egs. (8) and
(9) using Eqs. (7), (12), and (13) as the initial conditions. At
the discontinuity where s(x,y) = 0O, the trajectory sensitiv-
ities x,,, yy, typically undergo a jump. Derivation of these
jump conditions is provided in Ref. [6].

3. Estimation of critical clearing time using trajectory
sensitivities

In the literature, trajectory sensitivities have been used
[10] to compute the energy margin sensitivity with respect
to system parameters such as interface line flow, system
loading, etc. In these cases, the critical energy v, is the
energy at the controlling uep, and hence depends on the
parameters. Therefore, computation of dv,,/dt, is necessary.
This is computationally a difficult task. On the other hand,
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Fig. 1. Estimate of f,.
because the energy function v(x) is used here only as a
metric to monitor the system sensitivity for different ¢,

we can avoid the computation of v,.
The process of estimating critical values of parameters
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Fig. 2. (a): Phase plane behavior for small ¢4 (= 50% of t.). (b): Phase
plane behavior for 7 close to 7., ( = 80% of t.,).

will be illustrated using the clearing time 7. However, the
process is appropriate for any parameter that can induce
instability. A later example considers mechanical power
P... We can use the sensitivity 91/t to estimate ., directly.
With classical model for machines, the energy function 1(x)
for a structure-preserving model is provided in Appendix A.
The sensitivity S of the energy function (x) with respect to
clearing time (A = 7)) is obtained by taking partial deriva-
tives of Eq. (A6) with respect to 7 as

ad - 0w 900, +;
=Y _ Mo, g'_ZpMﬂ
1) i=1 oty bty
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— Z Z B;| V; cos 6;;— + V; cos 6;—
=1 j=i+1 L8 It
i 90
= V;V;sin 6, — (14)
1

The partial derivatives of @, , 6 and V with respect to 1
are the sensitivities obtained from Egs. (10) and (11) and
jump conditions.

The sensitivity S = dv/dt,, is computed for two different
values of 7 which are chosen to be less than 7. Since we are
computing only first order trajectory sensitivities, the two
values of 74 must be less than 7., by at the most 20%. This
might appear to be a limitation of the method. However,
extensive experience with the system generally will give
us a good estimate of 7, Because the system under
consideration is stable, the sensitivity S will display larger
excursions for larger 7. [6]. Since sensitivities generally
increase rapidly with increase in #,, we plot the reciprocal
of the maximum deviation of S over the post-fault period
as 7= l/(max(S) — min(S)). A straight line is then
constructed through the two points (fy,m;) and (¢.p,7>).
The estimated critical clearing time f . is the intersection
of the constructed straight line with the time-axis in the
(t4, m)-plane as shown in Fig. 1.

4. Direct use of trajectory sensitivities to compute critical
clearing time

In this section we outline an approach using trajectory
sensitivity information directly instead of via the energy
function to estimate the critical clearing time. To motivate
this approach let us consider a single machine infinite bus
system described by

M&§+D6=P, 0<t=rt,,
. (15)
Mé + D6 =P, — P.,sind t >t
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Fig. 3. (a) Sensitivity plane behavior for small ¢, ( = 50% of t,). (b) Sensi-
tivity plane behavior for 7 close to f., ( = 80% of t.,).
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Fig. 5. Sensitivity norm for small #, ( = 50% of t,).

The corresponding sensitivity equations, using the same
approach as in Section 2, are

Mii+Di=00<t=t,,
(16)
Mii + Dit = (— Py, cos Su t >ty

where u = 96/t

The phase plane portrait of the system for two values of
t., one small and the other close to ¢, are shown in Fig. 2(a)
and (b). The corresponding behaviors of sensitivities in the
(u, i1)-plane are shown in Fig. 3(a) and (b). From this it is
seen that the sensitivity magnitudes increase much more
rapidly as #, approaches #,. Also, the trajectories in the
(u, n)-plane can cross each other since the system (16) is
time varying while that is not the case for the system (15)
which is an autonomous system. Qualitatively, both
trajectories in the (0, w)-plane and the (i, &1)-plane give the
same information about the stability of the system, but the
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Fig. 6. Sensitivity norm for ¢, close to 7., (= 80% of t,).
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Fig. 7. Estimate ., for fault at bus 5 using energy function sensitivity.

sensitivities seem to be stronger indicators because of their
rapid changes in magnitude as f increases. Hence, we can
associate sensitivity information with the stability level of
the system for a particular clearing time. When the system is
very close to instability, the sensitivity reflects this situation
much more quickly as seen in Fig. 4 for a 3-machine test
system. This qualitative relationship was discussed for the
general nonlinear dynamic systems by Tomovic [11]. One
possible measure of proximity to instability may be through
some norm of the sensitivity vector. The Euclidean norm is
one such possibility.

For the single machine system, if we plot the norm
Vu? + % as a function of time for different values of 7,
one can get a quick idea about the system stability as shown
in Figs. 5 and 6. For a stable system, although the sensitivity
norm tends to zero eventually, it transiently assumes a very
high value when ¢ is close to ;.

Thus, we associate with each value of ¢, the maximum
value of the sensitivity norm. The procedure to calculate the
estimated value of 7, is the same as described in Section 3
but using the sensitivity norm instead of the energy function
sensitivity. Here, the sensitivity norm for an m-machine
system is defined as

no(098 08 \> [ 9w\
Z (( atcl atcl atcl

i=1
where the jth-machine is chosen as the reference machine.
Table 1

Estimate 7, using TEF sensitivity and sensitivity norm for 3-machine
system

Faulted bus TEF sensitivity Sensitivity norm Actual
tCl'.eSl (S) tCl',CSl (S) tcr (S)

5 0.354 0.352 0.352

8 0.333 0.333 0.334

The norm is calculated for two values of 7y <t,. For
each t,, the reciprocal n of the maximum of the norm is
calculated. A line through these two values of 7 is then
extrapolated to obtain the estimated value of 7. If
mechanical input power is chosen as the parameter
instead, the technique will give an estimate of critical
value of P, for the machine.

Since this technique does not require computation of the
energy function, it can be applied to power systems without
any restriction on system modelling. This is a major
advantage of this technique.

5. Numerical results
5.1. Classical model representation

A 3-machine, 9-bus [12] and a 10-machine, 39-bus power
systems [13] are used to illustrate the technique. For the 3-
machine system, a self-clearing fault is simulated at bus 5
and cleared at two different values of ¢, less than 7. The
corresponding values of 7 discussed in Section 3 (TEF
sensitivity) are computed, and the results are shown in
Fig. 7. The reactive power load index « is chosen as 2.

The procedure is repeated for the same system with the
fault at bus 8. The estimated critical clearing time and the
actual value obtained for both the cases are shown in Table
1.

Next, the technique discussed in Section 4 (sensitivity
norm) is applied to the same system. The estimated results
are shown in Table 1 for self-clearing faults at bus 5 and bus
8. The simulation result using the sensitivity norm technique
for fault at bus 5 is shown in Fig. 8. Hence, the values of ¢,
obtained from both techniques are very close to the actual
value.

For the 10-machine system [13], the estimated value of
clearing time for a self clearing fault at bus 17 using the TEF
sensitivity technique is obtained as 0.276 s, and the value
obtained by sensitivity norm technique is 0.278 s. They
agree very well with the actual value of 7., = 0.277 s.

5.2. Detailed model

The sensitivity norm technique was used to assess
stability of the detailed model of the 3-machine, 9-bus
system. In this case, all machines are represented as a 2-
axis model with turbine, governor, and exciter [12]. A fault
is simulated at bus 7 and cleared by tripping the line 5—7 of
the system. By applying the sensitivity norm technique, the
estimated critical clearing time is f¢ .y = 0.113s. The
actual value is 7., = 0.115 s. Again, the technique gives an
estimated value that is very close to the actual value.

For the 10-machine, 39-bus system, the sensitivity norm
technique is applied to estimate the critical clearing time for
faults at various locations in the system. The results are
summarized in Table 2.
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Fig. 8. Estimate f., for fault at bus 5 using norm sensitivity.

5.3. Computation of critical loading of generator

Next, the sensitivity norm technique is used to estimate
the critical value of generator loading, or equivalently, the
mechanical input power P,. A fault is simulated in the
system at bus 21 and cleared at 7, = 0.1 s by tripping
the line 21-22. Two simulations for two values of P, are
carried out. The change from normal operating values in Py,
is distributed uniformly among all loads in the system, so
that the loading of the rest of the generators is unchanged.
The sensitivity norm is calculated for the two specified
values of P, and then extrapolated to obtain the estimated
value of the critical P, for the chosen generator. The
estimated results for a few generators are shown in Table 3.

To validate the results it was verified that with the critical
value of P, the system goes unstable.

These examples show that the techniques described in
Sections 3 and 4 give a good way to estimate the critical
clearing time of faults and the critical value of mechanical
input power for a generator. A similar process can be used to
estimate the critical value of any other parameter.

6. Conclusions

Technique based on sensitivity information at two values
of clearing time and using linear extrapolation is employed
to estimate the value of critical clearing time. The difference
between the two techniques is that they use a different

Table 2
Estimated value of the critical clearing time vs the actual value

Faulted bus Line tripped terest (S) ter (8)

4 4-5 0.210 0.212
15 15-16 0.204 0.206
17 17-18 0.169 0.168
21 21-22 0.122 0.125

Table 3
Estimated value of critical input power Py, vs the actual value

Generator Procrest (Pu) P (pw)
3 10.7 10.4
5 6.3 6.4
8 12.4 12.2

metric to measure the sensitivity of the system. The numer-
ical results on the 3-machine, 9-bus and 10-machine, 39-bus
systems have shown that the techniques give accurate
results both for classical model and the detailed model.
The procedure using sensitivity norm has also been used
to compute critical loading of the generator. Thus the tech-
nique is quite general and can be adapted to compute the
critical value of any parameter in the system. Two potential
drawbacks of the technique are the need to have some a
priori idea about the critical value and the need to compute
the trajectory sensitivities. The former can be addressed by
the fact that in on-line operation, this information is usually
available. As for the latter, improved computational techni-
ques exploiting the similarity of the Jacobian and use of
Krylov subspace technique will help in reducing the compu-
tation time [9]. Detailed models can be handled with no
difficulty. The TEF method using uep concepts is known
to fail in certain cases, and hence the proposed techniques
can be considered as an alternative for computing ... The
knowledge of the critical loading of generator will assist in
preventive rescheduling [15]. Further research in improving
the speed of simulation is being pursued.
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Appendix A. Energy function for the structure
preserving model

The post fault power system can be represented by the
DAE model in the center of angle reference frame as [13]

Oppri = g, i=1,....m (A1)

n
Mi@g, = Py, = > ByysifVog+iV; iy, = 6)
j=1

M, (A2)

- Zip
MT COA
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Py + > ByV,Vsin(6, — ) =0 i=1,....n, (A3)

J=1

0. (V) — ZBijViVj cos(f; —6)=0i=1,..,n9 (Ad)
j=1

where m is the number of machines, n, is the number of

buses in the systems, and

m n
Pcon =D | Pu, = > ByViV; sin(6; — 6))
i=1 j=1
We assume constant real power loads and voltage depen-
dent reactive power load of the form

Vi \"
0, (V) = QZ,(W) (AS)
where O and V; are the nominal steady state reactive power
load and voltage magnitude at the ith bus, and « is the
reactive power load index.

The corresponding energy function is established as [14]

m

W@y, 0.V) =12 Midg = > Py (6y4i = 0y10)
i=1 i=1

ny 1o
+ > P8 — ) — 12D By(Vi = V)

i= i=1

+ Z 9 (Ve = V%)
a 1 1

i=1 Visa
n—1 n

B Z Z B;(V;V; cos 6; — V;'V; cos )
=1 j=i+1

(A6)

where 01] = 0,' - 0]
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