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Abstract: This paper studiesthe effectsof applying con-
trols for FACTS (Flexible AC Transmission System)
devices derived from energy functions for losslesssys-
tems to systems with losses. The intent is to examine
whether such controls can be effective, and under what
circumstances they could produce a destabilizing effect.
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1 Introduction

FACTS devices can be used to influence power flows,
to support voltages, to increase stability margins, and
to damp system oscillations. Due to their fast response
times, it is imperative that they behave correctly. Oth-
erwise they could quickly initiate system instability.
Such instabilities can lead to power system outages, loss
of generation, or unacceptable voltage fluctuations.

Controls for FACTS devices derived from energy
functions for losslesspower system models have been
proposed in [2]. The advantages of these controllers are
that their form is independent of the structure of the
system (thus structural uncertainty is largely negated
as an issue of concern), and they rely upon only local
information (data measurable directly at the location
of the centroller). Also, as they are derived from a
nonlinear system description, they should tend to have
larger regions of validity than controllers derived from
linearized models. The disadvantage is that the deriva-
tion relies upon an energy function analysis. For sys-
tems with transmission losses,or impedance load, such
an energy function has not yet been found. In fact, it
has even been argued that such a function may not ex-
ist [3]. It is therefore unclear just what sorts of effects
may arise when such controllers are incorporated into
lossy power system models. This paper studies the ef-
fects that can be expected when controllers for FACTS
devices which were based upon losslesssystem models
are applied to lossy systems.

2 Analytic Framework

The system dynamic behavior is described by:

i=u

w= H-1F(6, u)
= H-l (F(6) + ~(ti, u))

where:

6,w E RN, 6 is the generator
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F E 7i!N k the vector of power balance equations

u E 7ZPis a control parameter vector

~(6, u)= Oforu=0

H k the generator inertia matrix

If no infinite bus is assumed to be present in the
system, the function F(6, u) has translational symmetry
[1], that is F(c$,u) = F(6+v, u) for all v = C[l, 1, ...1]’.
with C being some scalar. We can therefore define an
equilibrium manifold for this system as the set of all
pairs (6*, w*) such that @(6*) = O, w; = W; = ... =
W; = W., where U. is some constant. In the absence of
control (u = O V t), the linearization of this system is:

where A = F5(6*). For lossless systems, A k sym-
metric. For systems wit h small losses, A is genericallyy
symmetrizable. It is shown in [1] that such a system
is strongly stable iff H-1A has exactly one zero eigen-
value, and all the others are distinct and negative. If
an infinite bus is present, the system is strongly stable
iff H-1A has only distinct, negative eigenvalues.

A local Lyapunov function can be defined by:

v=~[A6~ Awt]
[p~l M[a ‘1)

where P1l = –H~Wt WH-~A, P22 = H~WtWH~,
and W is a matrix of left eigenvectors of H- *AH– ~,
that is WH- *AH– i W-l = –I’z, with r diagonal, and
r ~ O (J7>0 for infinite bus case). It is easily verified
that PI 1 k positive semi-definite, symmetric, and P22
is positive definite symmetric. For the lossless system,
where A = At, W can be chosen such that Wt W = I.
Equation (1) is then the local form of the Lyapunov
function of [2].

The time derivative of V is given by:
= [AJ] [H* W’ WH-+] [HAL - AA~]

We can express F(6, u) as a Taylor series expansion

F(6> u) = AA6 + ~u(ti”, O)AU + F2(c5,6“, U)

9



resistance of the (1, 2) line varied. As R12 is varied, the
Where F2(6, 6“, u) captures the higher order terms. We
have used the fact that ~(c$,O) = O ~ ~~(ti”, O) = O.
This yields that to linear approximation (dropping the
‘A’ notation for simplicity),

ti = [Cdt][Hhl’wr+ ] [@*@] =LJ’QU (2)

Therefore, to a linear approximation, ~ = O in the ab-
sence of control.

The control design objective is to force ~ < 0 by
choice of the control u. To find this u we must examine
just how the function ~(6, u) depends on u. For the
reduced network model, Fk is given by:

f’k(6, U) = Pk – 5 bkmEkEm sk(6k – ti~)
m=l, m#k

+gkmEk (Ek – Em cos(6k – 6~))

where gk~, bk~ are functions of the control u.

The dependence of gk~ and bkm on u is found by con-
sidering the transmission line to be composed of an
inductor, a resistor, and a Thyristor Controller Series
Capacitor (TCSC) connected in series. Let R be the
line resistance, and X be fixed portion of the line re-
actance, where X possibly contains the contribution of
fixed compensation and the TCSC set point. Let ~ de-
note the modulation of the transmission line reactance
due to the TCSC. Then the net impedance of the line
is R + j(X + ~). The net admittance of the line is:

1
g–jb =

R+j(X+~)

= (g+j)-j(~+~)

where

9= R2:X2 b= xR2 + X2

-[ 1[
–R i(i + 2x)

‘= R2+x2 (i+ X)2 + R21
i=

[ 1[
–x ‘2+ (+Y

R2 + X2 (~+ X)2 + R2 1
So for small X,
3 Dependence of the control on remote
information

to a compensator
kj and mj , kj <

For each compensator j, 1 S j S p, let uj correspond
placed in the branch between buses
mj. Then column j of #U contains
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Fig. 1: 2 Generator, Injinite Bus
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Fig. 2: Ratio of Q2 to Ql for control in (1,3) branch

entries only in rows kj and mj. If the system is lossless,

Q= F., ~ = –~, and

implying uj need only depend on wk~ and Uml in or-

der to ensure ~ ~ O. In other words, a device in the
(kj, mj) branch need only use local information for a
control input in order to ensure system stability.

For a lossy system this will not, in general, be the case.
Here F& is not symmetric, so Wt W # 1, implying

V = UtQU = ~~wiQijuj
ij

In order to guarantee ~ S O, ~j must rely on quantities
other than those associated with buses kj and mj. TO
illustrate this, consider the system of figure 1. System
data is given in table 1.

A controller is assumed in the (1,3) branch, and the
equilibrium 6 is recalculated, yielding a new Q matrix
in the equation V = WtQu. note: P k held fixed, so the
infinite bus absorbs any mismatch due to losses. Here
Q = [QIQz]t. The ratio Qz/Ql as a function of the
line (1, 2) R/X ratio is plotted in figure 2. We see that



this ratio achieves quite high values, indicating a sub-
stantial impact of W2 on the value of ~. A controller
designed based on the losslesssystem will depend only
on W1, so large Q2/Q1 values indicate a large region of

the (WI, W2) plane in which ~ may be greater than O,
which is a very undesirable condition.

4 Impact of losses on system stability

The discussion of the previous section motivates the
question of when do controllers based upon losslesssys-
tem assumptions in fact stabilize lossy systems? To ex-
amine this, consider the same system used previously,
and

1.

2.

3.

‘ three different control desig;s.
.,

Control design based entirely on the lossless sys-
tem model. For u = –GQtw, Q is calculated
from the lossless system, and G is chosen such that
maxi !R(~~), i.e. the maximum of the real parts of
the closed loop eigenvalues, is minimized for the
lossless system.

Calculate Q from the lossless system model, but
choose G such the ma% !lil(~~) is minimized for the
lossy system.

Calculate Q from the 10SSYsystem, and choose G

such that m~ %!(~~) is minimized for the 10SSY
system.

Note that controllers 1 and 2 rely only on local mea-
surements whilst controller 3 relies on remote measure-
ment.

OperatingPint 1,COntrdler#1
t
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I&. 3: Controller 1, Real part of compensated system
eigenvalues

A controller is placed in the (1,2) branch, and the
(1, 2) branch line resistance varied. The three con-
trollers are designed, with results plotted in figures (3)
through (8).

The controller 1 system becomes unstable for an

R/X ratio of approximately 1 (figure (3)). This is also
the point where the controller 2 and controller 3 sys-
tems have ma% !R(Ai) % O.

It can be seen in figure 4 that the controller 2 sys-
tems have m~ !R(Ai) w O over a range of R/X values.
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Fig. 4: Controller 2, Real part of compensated system
eigenvalues
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Fig. 5: Controller 3, Real part of compensated system
eigenvaiues

This behaviour can be explained with the help of root
loci showing the variation of eigenvalues with controller
gain.

Figure 8 shows root loci for the case where Q corre-
sponds to the lossless system, i.e., controllers 1 and 2,
for R/X ratios of 0.910 and 1.001. Consider the root
loci for R/X = 0.910. The dotted lines show the gen-
eral direction of eigenvalue movement as gain increases.
The eigenvalues move toward the left as gain increases
away from zero. (For zero gain the system is uncon-
trolled, and the eigenvalues lie on the imaginary axis.)
Therefore a positive gain ensures that both eigenvalues
are stable. Figure 6 confirms that.

Now consider the root loci for R/X = 1.001. The
root locus for the eigenvalue near 5.9 rad/sec has shrunk
to a point. Therefore, independent of gain, this eigen-
value lies on the imaginary axis. Because this point is
independent of gain, it is independent of any input u,
and so is also independent of Q. Hence all three con-
trollers have a zero eigenvalue for this value of R/X, as

indicated in Figures 3 to 5.

As the R/X ratio is increased away from 1.001, the
root locus expands out from the point. However the
orient ation is reversed, i.e., as gain increases the eigen-
value moves to the right. Recall though that the lower
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Fig. 7: Controller 3 Gain

eigenvalue moves to the left as gain increases. Therefore
to- minimize m- W(Ai), the gain must be zero.

Interestingly, as the R/X ratio increases further, the
root locus of the slower eigenvalue shrinks whilst that of
the faster eigenvalue expands. When R/X % 2.4, the
shrinking root locus contracts to a point. Again the
eigenvalue becomes independent of the value of gain.
Figures 4 to 6 again show an eigenvalue with zero real
part. With an increase in the R/X ratio beyond 2.4,
the root locus expands out from the point again. But
now its orient ation is reversed, similar to the previ-
ous case. So for R/X ratios beyond 2.4, the root loci
for both eigenvalues indicate that an increase in gain
drives the eigenvalues to the right. Therefore minimiz-
ing maxi !R(Ai ) is achieved with a negative gain. This
is confirmed by Figure 7.

Controller 1 has a fixed positive gain. Therefore
when R/X < 1.001, the real parts of both eigen-
values should be negative. This is shown in Figure

4. The reversal of one eigenvalue root locus when
1.001< R/X <2.4 reflects as one eigenvalue with pos-
itive real part. The reversal of the second eigenvalue
root locus for R/X > 2.4 leads to the other eigenvalue
crossing to the right half plane.
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Fig. 8: Eigenvalue trajectories

Conclusions

Lyapunov techniques provide a useful way of mo-
tivating cent rols for FACTS devices. However some
modelling assumptions underlying these techniques are
rather restrictive. In particular, the assumption that
systems are lossless is not true of real power systems.

Lyapunov-based control strategies for lossless sys-
tems require only local measurements. However losses
cause cross-coupling effects, which introduce the need
for remote measurements. If losses are small, the use
of onlv local measurements is sufficient. However as
losses ~ncreaae, the remote measurements become more
important, and in some cases crucial.

We have shown that FACTS controllers which are
motivated by a lossless system Lyapunov function but
then applied to a lossy system may encounter difficul-
ties. However such difficulties tend to occur when R/X
ratios are well above those which could normally be ex-
pected for transmission systems.

Simulations were also performed on larger systems,
with results similar to those presented here. The small
system used here was chosen to more clearly illustrate
the ideas presented in this paper.

Table 1: Test System Parameters, Angles in degrees

El = 1.038 X12 = 19.61e – 3
E2 = 0.977 X13 = 11.96e–3

E3 = 0.994 X23 = 7.96e – 3

HI = 4.107 Hz = 3.991 I
C$=40 PI = 73.16
62 =20 Pz = 24.00

63=0 P3 = –97.17
REFERENCES

[1] H. G. Kwatny, L. Y. Bahar, and A. K. Pasrija,
“Energy-like Lyapunov function for power systems sta-
bility analysis”, IEEE Trans. Circuits Syst., Vol. CAS-
32, NOV 1985, pp. 1140-1148.



[2] J. Gronquist, W. Sethares, F. Alvarado, and R. Las-

seter, “Power Oscillation Damping Control Strategies
for FACTS devices using Locally Measureable Quan-
tities”, IEEE Transactions on Power Systems, Aug.
1995, vol. 10, no. 3, pp. 1598-1605

[3] N. Narasimhamurthi, “On the Existence of Energy
Function for Power System with Transmission Losses”,
IEEE Trans. Circuits Syst, Vol. CAS-31, No. 2, Feb
1984, pp. 199-203.


