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Abstract: This paper presents a framework for decentralized coordination of plug-in electric
vehicle (PEV) charging patterns in scenarios where the future cannot be perfectly predicted.
We begin with the mathematical formulation of the decentralized problem, in which individual
PEVs minimize their own charging costs, which are a function of total system demand. We
summarize results from our prior work in this area, relating specifically to convergence and
uniqueness of “valley filling” charging strategies in situations where future system states are
known with perfect accuracy. We then present an approach to manage forecast uncertainty by
allowing decentralized agents to continually update their optimal control trajectories subject to
revised forecasts of system states. We show that the resulting trajectories are strongly influenced
by the accuracy of the forecast over the charging period.
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1. INTRODUCTION

Plug-in electric vehicles (PEVs) have the potential to
replace a substantial portion of the current conventional
petroleum-combustion vehicle fleet over the next few
decades. A number of studies have been undertaken re-
cently to explore the potential impacts of high penetra-
tions of PEVs on the power grid, e.g. Denholm and Short
[2006], Rahman and Shrestha [1993], Koyanagi and Uriu
[1997], Koyanagi et al. [1999]. In most cases, these studies
presume that the best way to charge PEVs is by filling the
overnight “valley” in non-PEV electricity demand, such
that the aggregate PEV demand together with non-PEV
demand remains constant during the charging period.
In these studies, the question of how vehicles might be
encouraged or controlled to achieve this is not formally
addressed.

In Ma and Callaway [2011], we study centralized optimal
charging control for large populations of PEVs. The cost
to charge at any given moment is determined by the
total demand on the grid, which is the summation of the
inelastic non-PEV base demand together with the total
aggregated demand of the PEV population. This work
rigorously explores the conditions under which the socially
optimal (i.e. marginal generation cost minimizing) control
strategy results in valley filling. The central finding is that,

⋆ Research supported by the Michigan Public Service Commission

through grant PSC-08-20, the National Science Foundation through

EFRI-RESIN grant 0835995, and the Excellent Young Scholars

Research Fund of Beijing Institute of Technology.

to guarantee valley filling, the product of total electricity
demand with marginal cost must be convex.

In Ma et al. [2010, 2011] we examine the problem from
a decentralized perspective, where each PEV makes its
own charging decisions, subject to minimizing the product
of its demand with real-time marginal electricity cost. In
this case, the PEV charging control problems become a
class of noncooperative games, where PEV agents share
the electricity resources on a finite collection of charging
instants. We present an iterative computational algorithm
to identify a Nash equilibrium as follows: Before the start
of the charging interval, all agents simultaneously update
their individual best (or greedy) response with respect
to the aggregate mass behavior; the process repeats with
individuals optimizing against the results of the previous
iteration. We show that this iterative process may not
converge to valley filling without a quadratic penalty term
(which is demonstrably small) for the deviation of the
individual control strategy from the population average.
However, under certain mild conditions, the decentralized
charging control algorithm drives the system asymptoti-
cally to a unique Nash equilibrium that is nearly globally
optimal. In the case of homogeneous PEV populations,
this unique Nash equilibrium becomes a perfect valley-
filling charging strategy. In a finite population of PEVs,
the algorithm converges to an ε-Nash equilibrium, where
ε tends to zero as the number of PEVs approaches infinity.

The decentralized charging strategies proposed in Ma
et al. [2010, 2011] are effective only if available generation,
non-PEV demand and electricity price over the charging
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interval are known with perfect accuracy. Of course, in
actuality these quantities are always subject to forecast
error, and contingencies (such as the loss of a transmission
line or forced generator outage) can significantly change
operating conditions. As a consequence, the proposed
charging strategy is not robust and likely to result in far-
from-optimal charging costs for each PEV. Furthermore,
it does not attempt to harness the inherent flexibility of
PEV charge rates to mitigate the impact of contingencies.

Therefore, the main objective of this paper is to propose
and explore the performance of a revised version of these
game-based decentralized PEV charging control methods
using concepts from model predictive control (MPC). At
the core of the method is a local optimization scheme that
generates a trajectory of control decisions. As with MPC,
only the first instance of each optimal trajectory is used;
subsequently, measurements are acquired, a new trajectory
is computed, and a new control sequence is generated.
This new sequence will differ from the previous one to
the extent that measured quantities do not match their
prediction from the previous time step, or in the case of
a revised forecast. We note that the strategy we develop
does not employ a “receding horizon”, which typifies many
MPC strategies. This is due to the fact that the PEV
charging problem has an explicit stopping time (the end
of the charging period), unlike tracking control problems
which usually operate indefinitely into the future.

The paper is organized as follows: In Section 2 we re-
view the decentralized charging control problems for large
populations of PEVs studied in Ma et al. [2010, 2011].
In Section 3 we implement decentralized MPC methods
for the underlying charging control problems established
in Section 2. We then explore the performance of the
MPC approach using numerical examples in Section 4.
Section 5 provides conclusions and considers avenues for
future research.

2. DECENTRALIZED CHARGING CONTROL OF
LARGE PEV POPULATIONS

The paper considers strategies for controlling the charging
of a significant penetration of PEVs with total population
size N . Accordingly, the PEV population is denoted by
N = {1, 2, · · · , N}. We assume all PEVs share the com-
mon charging interval [0, T ], i.e., they all begin charging at
time t = 0, and conclude charging at the final time t = T .

We define the state of charge (SOC), normalized by the
battery capacity, as 0 ≤ xnt ≤ 1, for the n-th PEV at time
t ∈ [0, T ]. Variation of the SOC over the charging interval
[0, T ] is dependent upon the charging strategy un ≥ 0, and
is described by the simplified model,

xn,t+1 = xnt +
αn

βn

unt, xn0 ∈ [0, 1), (1)

where βn and αn denote the battery size and the (con-
stant) charger efficiency of the n-th PEV respectively.

A collection of PEV charging strategies, u ≡ (unt;n ∈
N , t ∈ [0, T ]), is an admissible full-charging control of the
PEV population, if unt ≥ 0, and xnT = 1, i.e. the battery
of every PEV is fully charged at the terminal instant T . It
follows from (1) that this terminal condition can be written∑T−1

t=0 unt = βn

αn

(1 − xn0) for all n ∈ N . We therefore

denote the set of admissible full-charging controls for the
n-th PEV by

Un(xn0) =
{
uns;uns ≥ 0,

T−1∑

s=0

uns =
βn

αn

(1− xn0)
}
. (2)

Subject to an admissible charging control u ∈ U(x0), the
cost associated with delivering the total system demand is
given by,

J(u) =
T−1∑

t=0

p(rNt (ut))
(
DN

t +
N∑

n=1

unt

)
, (3)

where p(rNt (ut)) is the electricity charging price at in-
stant t, and DN

t is the total inelastic non-PEV demand
at instant t. It is assumed DN

t is unrelated to u. We
further assume the electricity charging price p(rNt (ut)) is
determined by the ratio between the total demand and the
total generation capacity, so that

rNt (ut) ,
1

CN

(
DN

t +
N∑

n=1

unt

)
, (4)

where CN denotes the total generation capacity. An im-
plicit assumption in (4) is that electricity price is a function
of instantaneous demand only.

Centralized control of PEV charging calls for a strategy
that minimizes the cost function (3). However, for large
populations of PEVs, such control would require signif-
icant communications and computational capability. In
order to circumvent those difficulties, we proposed in Ma
et al. [2010, 2011] a novel decentralized algorithm where
all PEV agents simultaneously update their individual
responses with respect to an (electricity) charging price
that is seen by all PEVs. The resulting iterative process
takes place prior to the actual charging interval, with each
PEV implementing its schedule later, during the actual
charging period. This open-loop strategy cannot adjust
as system conditions vary from the forecast. The paper
addresses this issue by establishing an MPC form of the
control algorithm. A review of the original game-based
decentralized strategy is provided in the remainder of
this section. The MPC adaptation of this strategy will be
introduced in Section 3.

This paper considers the properties of systems where the
number of PEVs is sufficiently large that the action of
each individual PEV on the system is negligible, but the
action of the aggregation of PEVs may be significant. We
are therefore interested in the asymptotic properties of
systems in the large N limit. To ensure that key properties
of the system are preserved at that limit, we make the
following asymptotic assumptions as PEV population size
approaches infinity,

lim
N→∞

DN
t

N
= dt, lim

N→∞

CN

N
= c. (5)

The implication inherent in (5) is that larger power sys-
tems, with greater capacity and base demand, are required
to support large numbers of PEVs. Direct substitution into
(4) gives,

lim
N→∞

rNt (ut) =
1

c
(dt + ut) , rt(ut) (6)

where
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ut , lim
N→∞

1

N

N∑

n=1

unt. (7)

The function rt(·) is implicitly dependent upon the non-
PEV demand dt. Consequently, the optimization process
requires knowledge of the (future) demand over the entire
charging interval. This information must come from a
forecast. We will use the notation ds|t to denote the
forecast value of demand at time s based on a forecast
made at a prior time t ≤ s.

The decentralized charging strategy proposed in Ma et al.
[2010, 2011] allows all agents to simultaneously update
their individual response with respect to the total (PEV
plus non-PEV) demand, such that their cost is minimized.
Since all agents simultaneously update their strategy,
resources that are cheap during one charging interval may
become expensive during the next, and vice versa. This
oscillating behavior can result in non-converge. In order
to mitigate such oscillations, each PEV’s cost function is
modified to include a quadratic term that penalizes the
deviation of its charging strategy from the average over
the entire PEV population,

Jn(u) =
T−1∑

t=0

(
p(rt)unt + δ

(
unt − ut

)2)
(8)

with rt defined in (6).

The decentralized algorithm for determining optimal
charging controls can be summarized as follows:

(P1) The utility broadcasts a prediction of the non-PEV
demand d.|0 at initial instant 0 to all PEVs.

(P2) Each PEV proposes a charging strategy that is the
solution of

min
un∈Un(xn0)

Jn(u)

where the charging cost Jn given by (8) is defined with
respect to d.|0 and a common average (or aggregate)
PEV demand u broadcast by the utility.

(P3) The utility collects all the individual charging strate-
gies proposed in (P2), and updates the average PEV
demand strategy. This updated aggregate PEV de-
mand is rebroadcast to all the PEVs.

(P4) Repeat (P2) and (P3) until the strategies proposed
by the agents no longer change.

Some time later, when the actual charging start time
occurs, each PEV implements the strategy it obtained
from the (P1)-(P4) negotiations.

Under the assumption that the number of PEVs N is
sufficiently large, at convergence of the iterative procedure
(P1)-(P4), assuming it occurs, the resulting collection of
individual charging strategies is an Nash equilibrium.

Consider the following assumptions:

(A1) The price function p(r) is continuously differentiable
and strictly increasing on r;

(A2) The tracking parameter δ satisfies the condition:

1

2c
sup

r∈[rmin,rmax]

dp(r)

dr
≤ δ ≤

a

c
inf

r∈[rmin,rmax]

dp(r)

dr
,

for some a, with 1
2 < a < 1, where rmin and

rmax denote the minimal and maximum value of r
respectively.

In Theorem 3.2 of Ma et al. [2010] we showed that, under
assumptions (A1) and (A2) and by implementing the up-
date procedure (P1)-(P4) ahead of charging interval [0, T ],
the infinite-population system converges to a unique Nash
equilibrium u∗. Moreover this unique Nash equilibrium
satisfies the desired valley-filling property, which can be
stated precisely as,

u∗
t ≥ u∗

s, in case dt|0 ≤ ds|0, (9a)

dt|0 + u∗
t ≤ ds|0 + u∗

s, in case dt|0 ≤ ds|0, (9b)

dt|0 + u∗
t = B, for all t ∈ T̂ , (9c)

for some constant B, and where T̂ represents a collection
of instants t where u∗

nt > 0 for all n. The proof of this
result is given as Theorem 3.3 in Ma et al. [2010].

Note that the Nash equilibrium properties (9) do not
guarantee perfect globally optimal valley filling because
there may be intervals in which not all PEVs charge. In
this case B cannot be expressed in closed form. Never-
theless in the case of homogeneous PEV populations, the
identical individual agent strategies u∗

n are coincident with
the average charging strategy u∗. It follows that the Nash
equilibrium properties (9) are equivalent to:

u∗
nt = u∗

t = max{0, B − dt|0}, (10)

where B > 0 takes the value that ensures
∑T−1

t=0 u∗
nt =

βn

αn (1 − xn0), i.e., all PEVs are fully charged at the
end of the charging interval. In the charging control
of homogeneous PEV populations, the Nash equilibrium
becomes a purely valley-filling charging strategy, with
respect to the non-PEV demand estimation d.|0. Figure 1
provides an illustration.

Although the theory, as stated, applies to infinite popula-
tions, in reality any implementation of the control strategy
works for a finite, though large, number of PEVs. For a
large population, the average mass behavior of the popu-
lation with the n-th PEV excluded, denoted u−n, can be
approximated by the common mass trajectory u. Hence
for large population size, the iterative process (P1)-(P4)
converges to an ε-Nash equilibrium, for some ε > 0. It
follows that ε shrinks to zero as the population size N
approaches infinity.

To illustrate the decentralized charging control result, we
present a numerical example that explores the convergence
properties and valley-filling performance of the decentral-
ized charging control process. We use a PEV population of
107, which is approximately 30% of all the vehicles in the
region of the USA covered by the Midwest Independent
System Operator (MISO). We also assume the normalized
fixed generation capacity c in the MISO region is about
10 kW.

We consider decentralized charging control for a homoge-
neous PEV population with common battery size equal
to 10 kWh. It is further assumed that all PEVs have
an initial SOC of 15%, identical charging efficiency α of
85%, and maximum charging rate of 3 kW. We consider a
12 hour charging interval from 8:00pm one day to 8:00am
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Fig. 1. Convergence to a Nash equilibrium for a homoge-
neous PEV population.

the following day. Each time step in (1) corresponds to
5 minutes.

We also consider a retail price function p(r) = 0.15r2 and a
tracking parameter δ = 0.015. With these parameters, it is
easy to verify that assumptions (A1) and (A2) are satisfied.
Hence, it is guaranteed that the algorithm (P1)-(P4)
will converge to a unique valley-filling Nash equilibrium.
Figure 1 shows the total (PEV plus non-PEV) demand
obtained at each iteration of the algorithm. Convergence
to the valley-filling load pattern is obtained in a few
iterations.

Unless otherwise specified, this example will form the basis
for the later illustrations.

3. DECENTRALIZED MPC METHODS FOR PEV
CHARGING CONTROLS

The decentralized charging control strategy in Section 2
computes optimal control trajectories with respect to non-
PEV demand predicted at the beginning of the charging
interval. Any subsequent disturbances or changes in the
forecast are not dealt with by the approach. As a con-
sequence, depending on the accuracy of the forecast at
the beginning of the interval, the charging strategy u∗

attained at convergence of (P1)-(P4) may actually result
in suboptimal charging cost for each PEV.

In order to improve the robustness of the decentralized
charging strategy, this section establishes a revised process
that is consistent with model predictive control (MPC)
methods. We first develop notation to support the MPC
approach. At a time instant t ∈ [0, T ], all PEVs have access
to a prediction over the subsequent interval [t, T ]. We
denote un

.|t as the predicted charging strategy of the n-th

PEV over [t, T ], and u.|t ≡ (un
.|t;n ∈ N ) as the collection

of charging strategies. The predicted SOC trajectory of the
n-th PEV over [t, T ] is denoted xn

.|t. The evolution of xn
.|t

satisfies the transition equation (1) subject to a charging
strategy un

.|t. In the MPC formulation, this becomes

xn
s+1|t = xn

s|t +
αn

βn

un
s|t, for each s ∈ [t, T ], (11)

with xn
t|t ≡ xnt being the actual measured SOC at time

instant t. Similar to Section 2, un
.|t is an admissible full-

charging control strategy for the n-th PEV over the
prediction horizon [t, T ], if un

s|t ≥ 0 for all s ∈ [t, T ], and

xn
T |t = 1. We define the set of predicted admissible full-

charging strategies of the n-th PEV at time instant t as,

U t
n(xnt) =

{
un
s|t;u

n
s|t ≥ 0,

T−1∑

s=t

un
s|t =

βn

αn

(1− xnt)
}
. (12)

As defined earlier, d.|t is the prediction of non-PEV de-
mand over the prediction horizon [t, T ], given information

up to instant t. Also, r.|t , 1
c
(d.|t + u.|t) is the natural

extension of (6)-(7).

Decentralized MPC charging control calls for each PEV of
the infinite population to minimize its cost,

min
un

.|t
∈Ut

n
(xnt)

Jn(u.|t) =

T−1∑

s=t

p(rs|t)u
n
s|t+δ(un

s|t−us|t)
2, (13)

where Jn is defined with respect to the demand forecast
d.|t and the collection of charging strategies u.|t. The
following algorithm describes a process for implementing
this decentralized optimization:

(M1) At instant t, the utility generates a new non-PEV
demand forecast d.|t over the prediction interval [t, T ].
The forecast and initial estimate of u.|t is broadcast
to all PEVs. This initial estimate is available from
the converged solution of the MPC process at the
previous interval, namely u∗

.|t−1.

(M2) Each PEV computes its optimal charging strategy
un∗
.|t over [t, T ] by minimizing its charging cost (13),

which is defined with respect to its initial SOC state
xn
t|t, non-PEV demand d.|t, and the common average

(or aggregate) predicted PEV charging strategy u.|t

broadcast by the utility.
(M3) The utility collects all individual charging strategies

proposed in (M2), and updates the aggregate PEV
demand. This updated aggregate PEV demand is
rebroadcast to all PEVs.

(M4) Repeat (M2) and (M3) until the optimal strategies
(un∗

.|t ;n ∈ N ) proposed by the PEVs no longer change.

(M5) Each of the PEVs implements the charging control
un∗
t|t at instant t as determined in (M4). The SOC

subsequently evolves to its new value xn,t+1 under
the influence of this control input.

(M6) Set t := t + 1 and repeat the procedure (M1)-(M5)
until the system reaches the end of the charging
period at t = T .

A comparison between the optimal charging strategies of
the open-loop process (P1)-(P2) and the MPC formulation
(M1)-(M6) is provided by the following lemma.

Lemma 1. Suppose the prediction of non-PEV demand
ds|t is coincident with ds|0 for all t ∈ [0, T ] and s ≥ t. Then
the charging strategy u∗

s|t given by the MPC process (M1)-

(M6) is identical to the Nash equilibrium u∗ attainted by
the procedure (P1)-(P4).

The Lemma follows directly from Bellman’s principle of
optimality, see for example Bertsekas [1995].

�
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Fig. 2. Effect of a disturbance in non-PEV demand on
open-loop charging.

4. ILLUSTRATING EXAMPLES

The example presented in Section 2 forms the basis for
illustrating various aspects of the MPC process of Sec-
tion 3. Firstly, the effects of disturbances on the open-
loop strategy determined by (P1)-(P4) will be explored.
Secondly, we will consider the influence of the demand
forecast d.|t on the control strategy provided by the MPC
process (M1)-(M6).

The open-loop process determines a control strategy based
on a forecast of non-PEV demand, and implements that
strategy whether the actual demand follows that forecast
or not. This is illustrated by comparing Figures 1 and 2.
The control strategy is identical in both cases. In Figure 2,
however, the actual demand undergoes a step reduction at
0:00 and recovers at 2:00. The control cannot respond,
so PEV demand remains unchanged from its open-loop
strategy. Hence total demand exactly follows the dip in
non-PEV demand.

In Figure 3, non-PEV demand undergoes the same dip as
in Figure 2. In this case, the MPC controller is active, so
when the step reduction in non-PEV demand occurs, the
controller makes a corresponding change to the forecast.
However it has no knowledge of future deviations, so
assumes the shape of the forecast over the remainder
of the charging period will exactly match the original
forecast, but minus the step reduction. Because it is the
relative variation in demand across time intervals that
influences the optimization (13) performed by each PEV,
the MPC process will converge to a Nash equilibrium
that is unchanged from its pre-disturbance shape. This
argument again follows when the non-PEV demand steps
back up at 2:00. Therefore if the forecast used by MPC
has no updated knowledge of future changes in non-PEV
demand, then the outcome exactly matches that of the
open-loop strategy.

The load behavior shown in Figure 4 results when the
updated MPC forecast takes into account changes in the
relative shape of the non-PEV demand trajectory. Until
0:00, MPC operates with the same forecast as in previous
cases. It follows that charging control over this period
also matches the previous examples. At 0:00, when the
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Fig. 3. MPC charging strategy with an imperfect predic-
tion of non-PEV demand.
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Fig. 4. MPC charging strategy with a perfect prediction
of non-PEV demand.

step reduction in non-PEV demand occurs, the updated
forecast includes both the reduction and subsequent step
increase at 2:00. With this additional information, the
PEV charging control strategy adjusts to again achieve
valley filling. Figure 4 clearly shows this adjustment.
Because valley filling is optimal, the total cost in this case
is less than in the corresponding previous cases.

5. CONCLUSIONS

This paper extends the authors previous work on decen-
tralized game-based PEV charging strategies by devel-
oping (and testing by simulation) a simple method to
recompute optimal control strategies as updated forecasts
are received. The strategy draws on concepts from model
predictive control, most importantly the process of recom-
puting a new optimal control trajectory at each time step
(and therefore dispensing with all but the first of the con-
trol values computed at the previous step). Interestingly,
the “receding horizon” strategy that is broadly used in
other MPC work is not applicable in this context because
the control interval ends at a fixed time.

Numerical examples in this paper have demonstrated that
if forecast updates are simply time-invariant shifts to the
previous forecast, the optimal PEV charging strategy does
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not change. However, if differences between new and pre-
vious forecasts are time-dependent (and therefore the rel-
ative shape of the forecast quantities changes), the method
described in this paper does modify the optimal PEV
charging pattern. This suggests that forecast modifications
must have long-term structure for the procedure to be
most useful.

We have not formally examined the number of iterations
required to reach an optimal trajectory at each time step.
This must eventually be better understood, since the num-
ber of interactions, in combination with the capacity of the
communications network and local computing resources,
will determine how often forecast updates could be incor-
porated into the framework proposed in this paper.

Another important opportunity that could be incorpo-
rated into this load-control framework concerns the mag-
nitude of ramps in total (PEV plus non-PEV) demand.
In principle, the PEV population is not bound by ramp-
rate constraints that limit the response of other devices,
principally generators, that provide reserves and frequency
regulation services. This allows PEVs to match very fast
changes in demand or supply, alleviating the burden on
supply-side options.
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