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1. INTRODUCTION

Estimating gene association networks from gene microar-
ray data is the key to decipher complicated web of func-
tional relationship between genes [1]. However, the process
remains to be challenging due to the relatively few indepen-
dent samples and the large amount of correlation parameters
[2]. In a gene association network, vertices represent genes,
and edges represent biological association between genes.
The network edges are declared to be present if the corre-
sponding correlation parameters are significantly different
from a non-zero threshold [3]. The approach has been very
useful in inferring gene association networks, and facilitat-
ing network based discovery [3]. However, as a Frequen-
tist approach, it often suffers from “overfitting” problem es-
pecially for analyzing small sample size data. Approaches
that are able to globally estimate the correlation parameters
with variance regularization followed by seamless correla-
tion thresholding are highly desirable.

The desirable approaches fall naturally into the frame-
work of Bayesian hierarchical model [4]. By assuming all
correlation parameters are exchangeable and sampled from
a common population distribution, we regularize variances
of the marginal correlations by specifying a parent normal
distribution from which marginal correlation parameters are
sampled from. The posterior distributions of correlation pa-
rameters provide a seamless combination of the correlation
estimation and strength thresholding.

2. METHODS

We use ρ to denote the true strength of association between
a pair of gene expression profiles. For G gene expression
profiles in a microarray data set, there are Λ =

(
G
2

)
correla-

tion parameters ρ needs to be estimated, denoted as ρλ, λ =
1, . . . , Λ. Let Γ denote the hyperbolic arc-tangent transfor-
mation of ρ, that is,
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Γλ = atanh(ρλ), (1)

Then parameters Γλ are asymptotically normal distrib-
uted with stabilized variances, i.e. σ2

λ = 1/(N − 3), N is
the sample size. Simulation studies show that the variance
approximation works reasonably well even at a relatively
small sample size, e.g. N = 20. We assume known vari-
ances due to the consideration of computational complexity.
Furthermore, we don’t have a prior information about these
Γ′s, and assuming independency between them in marginal
correlation approaches cause “overfitting” problem [2]. In
the Bayesian hierarchical model framework, we assume that
these parameters are exchangeable, and are drawn from a
normal distribution with unknown hyperparameters (α, β)
(Fig. 1a):

p(Γ1, . . . , ΓΛ|α, β) =
Λ∏

λ=1

N(Γλ|α, β2) (2)
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Fig. 1. (a)Bayesian hierarchical model structure. (b)Mean
Squared Errors of Bayesian hierarchical model estimation (left)
and Marginal correlation estimation (right) over 500 runs of sim-
ulations.

In order to generate conditional posterior distributions
p(Γλ|α, β, y) for each parameter Γλ, λ = 1, . . . , Λ, we per-
formed simulation steps as follows [4]:



1. Assign prior distribution for β, i.e. uniform prior dis-
tribution p(β) ∝ 1.

2. Draw β from posterior distribution p(β|y).

p(β|y) ∝ p(β)
∏Λ

λ=1 N(Γ̂λ|α̂, σ2
λ + β2)

N(α̂|α̂, Vα)
(3)

∝ p(β)V 1/2
α

Λ∏

λ=1

(σ2
λ + β2)

−1/2
exp(− (Γ̂λ − α̂)2

2(σ2
λ + β2)

),(4)

where α̂ and Vα are defined as:

α̂ =

∑Λ
λ=1

1
σ2

λ+β2 Γλ

∑Λ
λ=1

1
σ2

λ+β2

, (5)

and

V −1
α =

Λ∑

λ=1

1
σ2

λ + β2
. (6)

3. Draw α from p(α|β, y). Combining the data with the
uniform prior density p(α|β) yields,

p(α|β, y) ∼ N(α̂, Vα). (7)

where α̂ is precision-weighted average of the Γ and
Vα is the total precision. Note, we define precision as
inverse of variances.

4. Draw Γλ from p(Γλ|α, β, y)

p(Γλ|α, β, y) ∼ N(Γ̂λ, Vλ), (8)

where Γ̂λ, Vλ are defined as:

Γ̂λ =
1

σ2
j
Γλ + 1

β2 α

1
σ2

λ
+ 1

β2

, (9)

and
Vλ =

1
1

σ2
λ

+ 1
β2

. (10)

5. Take hyperbolic tangent transformation of Γλ.

ρλ = tanh(Γλ), (11)

the sampling distribution of ρλ is the desired posterior
distribution.

3. SIMULATIONS

We evaluated the performance of the full Bayesian estima-
tion by comparing with the marginal estimation in terms of
Mean Squared Error (MSE) and variance. Fig. 1b plots
MSE’s of Bayesian hierarchical model estimation (left) and
marginal correlation estimation (right) over 500 simulations.
It is evident in Fig. 1b that the MSE of Bayesian estimation
is about three-fold smaller than that of the marginal estima-
tion. Comparison of variances follows the same trend.
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Fig. 2. The network visualization. The network is assembled by
screening edges whose posterior intervals do not intersect with [-
0.6, 0.6].

4. ESTIMATING CO-EXPRESSION NETWORK
FROM GALACTOSE METABOLISM DATA

We also demonstrated the application of our Bayesian ap-
proach and compared it with the previous Frequentist ap-
proach [3] using a yeast galactose metabolism two-color mi-
croarray data [5]. Following the procedure in method sec-
tion, we simulated the empirical posterior distribution for
each correlation parameter Γ. Similar to the previous analy-
sis, we used 0.6 as the correlation cutoff value, and declared
the statistical association to be biologically relevant when
their (1-q%) posterior confidence intervals do not intersect
with [-0.6, 0.6] at the significant level q. Fig. 2 presents a
network assembled form screened edges in which all 95%
posterior confidence intervals do not intersect with [-0.6,
0.6]. Comparison of the networks inferred from Bayesian
hierarchical model and from the previous approach in terms
of top hub nodes shows much agreement with certain dis-
crepancies.
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