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Abstract— Self-configuration in wireless sensor net-
works is a general class of estimation problems which
we study via the Cramér-Rao bound (CRB). Specifi-
cally, we consider sensor location estimation when sen-
sors measure received signal strength (RSS) or time-
of-arrival (TOA) between themselves and neighboring
sensors. A small fraction of sensors in the network
have known location while the remaining locations
must be estimated. We derive CRBs and maximum-
likelihood estimators (MLEs) under Gaussian and log-
normal models for the TOA and RSS measurements,
respectively. An extensive TOA and RSS measure-
ment campaign in an indoor office area illustrates MLE
performance. Finally, relative location estimation al-
gorithms are implemented in a wireless sensor network
testbed and deployed in indoor and outdoor environ-
ments. The measurements and testbed experiments
demonstrate 1 m RMS location errors using TOA, and
1 m to 2 m RMS location errors using RSS.

I. Introduction

In this paper, we consider location estimation in net-
works in which a small proportion of devices, called refer-
ence devices, have a priori information about their coordi-
nates. We assume that all devices, regardless of their ab-
solute coordinate knowledge, estimate the range between
themselves and their neighboring devices. Such location
estimation is termed ’relative location’ because the range
estimates collected are predominantly between pairs of de-
vices of which neither has absolute coordinate knowledge.
These devices without a priori information we call blind-
folded devices. In cellular location estimation [1][2][3] and
local positioning systems (LPS) [4][5], location estimates
are made only using ranges between a blindfolded device
and reference devices. Relative location estimation re-
quires simultaneous estimation of multiple device coordi-
nates, and enables greater accuracy as more devices are
added into the network, even when new devices range to
just a few close neighbors. Greater accuracy in the network
is possible without increasing the burden of installation of
more known-location reference devices.
Relative location systems require a network of devices

capable of peer-to-peer range measurement, an ad-hoc net-
working protocol, and a distributed or centralized location
estimation algorithm. Time-difference of arrival (TDOA)
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measurements are not usually considered since ad-hoc de-
vices aren’t likely to be accurately synchronized. How-
ever, accurate two-way or ’round-trip’ TOA ranging can
been implemented using inquiry-response protocols [6][7].
Ranging is also possible using RSS, which is attractive
from the point of view of device complexity and cost, but
is traditionally seen as a coarse measure of range. In this
article we will show that RSS can lead to accurate location
estimates in dense sensor networks.
The recent literature has seen interest in location es-

timation algorithms for wireless sensor networks [8-14].
Distributed location algorithms offer the promise of solv-
ing multi-parameter optimization problems even with con-
strained resources at each sensor [8]. Devices can begin
with local coordinate systems [9] and then iteratively re-
peat their location algorithm as neighbors estimate and
broadcast more reliable and global location coordinates
[10][11]. Distributed algorithms must be careful to assure
convergence and to avoid ’error accumulation’, in which
errors propagate serially in the network. Centralized al-
gorithms assume the application permits deployment of a
central processor to perform the location estimation. In
[12], device locations are resolved by convex optimization.
Both [13] and [14] provide MLEs for sensor location esti-
mation, when observations are angle-of-arrival and TOA
[13] and when observations are RSS [14].
This article focuses on the accuracy possible using either

TOA or RSS relative location estimation algorithms. The
radio channel is notorious for its impairments [15][16], thus
accurate sensor location is by no means a given. In wire-
less sensor networks “sensing data without knowing the
sensor location is meaningless” [17]. The CRBs presented
in this article provide a means to determine if the location
accuracy necessary for a particular application is possible.
We begin in Section II by considering CRBs for network
self-calibration estimators. Next, we state the relative lo-
cation estimation problem and derive CRBs and MLEs in
Section III. Finally, we present extensive experimental re-
sults. In Section IV, measurements of TOA and RSS in
a peer-to-peer network are used to provide an example of
estimator performance. Real-time operation of relative lo-
cation using RSS is demonstrated in Section V. Photos of
the experiments, for best image quality, are included only
in an electronic version of this article [18].

II. Network Estimation Bounds

In what we call network self-calibration problems, pa-
rameters of all devices in a network must be determined.
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Information comes both from measurements made between
pairs of devices that indicate the relative parameters of
the devices, and a subset of devices which know a pri-
ori their parameters. A network self-calibration estima-
tor estimates the unknown device parameters. For exam-
ple, distributed clock synchronization in a network could
be achieved by devices observing pair-wise timing offsets
when just a small number of devices are synchronous.
To formulate the estimation problem, consider device

parameters θ. For simplicity, assume that each device
has one parameter, that m reference devices have known
parameters θ1−m . . . θ0, and n blindfolded devices do not
know their parameters θ1 . . . θn. Devices make pair-wise
observations Xi,j with density fX|�(Xi,j |θi, θj). We allow
for the case when devices make incomplete observations,
since two devices may be out of range, or a limited chan-
nel may not allow the capacity needed for each pair of
devices in the network to make observations. Specifically,
let H(i) ⊆ {1−m, . . . , n} be the set of devices with which
device i makes pair-wise observations. We assume that
i /∈ H(i) since a device cannot make a pair-wise observa-
tion with itself. By symmetry, if j ∈ H(i) then i ∈ H(j).
We assume by reciprocity that Xi,j = Xj,i, thus it is

adequate to consider only the lower triangle of the ob-
servation matrix X when formulating the joint likelihood
function. In practice, if it is possible to make independent
observations on the links from i to j, and from j to i, then
we assume that a scalar sufficient statistic can be found.
Finally, we assume Xi,j are independent for j < i. Then
the log of the joint conditional pdf is

l(θ) =
n∑

i=1−m

∑
j∈H(i)

j<i

li,j , where li,j = log fX|�(Xi,j |θi, θj).

(1)

The Fisher information matrix (FIM) is defined as,

F = −E∇�(∇�l(θ))T =



f1,1 · · · f1,n

...
. . .

...
fn,1 · · · fn,n


 (2)

As derived in Appendix A, the diagonal elements fk,k of
F reduce to a single sum across H(k), since there are
#{H(k)} terms in (1) which depend on θk. The off-
diagonal elements reduce further. When k 	= l, there is
at most one term in (1) that is a function of both k and l.

fk,l =



∑

j∈H(k) E
[

∂2

∂θ2
k
lkj

]
, k = l

IH(k)(l)E
[

∂2

∂θk∂θl
lk,l

]
, k 	= l

(3)

IH(k)(l) is an indicator function, 1 if l ∈ H(k) or 0 if not.

A. Conditions for a decreasing CRB

Intuitively, as more devices are used in the location es-
timator, the accuracy increases for all of the devices in
the network. For an n device network, there are O(n)

parameters, but O(n2) ranges to use in their estimation.
The analysis of this section proves that given certain con-
ditions, the CRB decreases as devices are added to the
network. Specifically, we compare the CRB for networks
with n and n+ 1 blindfolded devices. For the n case, the
FIM is F as given in (2), and for the n+ 1 case, define G
to be the FIM.

Theorem 1: Let [G−1]ul be the upper left n × n block
of G−1. If (1) ∂

∂θn+1
lk,n+1 = a ∂

∂θk
lk,n+1 for some constant

a not a function of X , ∀k ∈ {1 . . . n}, and (2) device n+1
makes pair-wise observations between itself and at least
one blindfolded device and at least two devices, in total;
then two properties hold: (1) F−1 − [G−1]ul ≥ 0 in the
positive semi-definite sense, and (2) tr F−1 > tr [G−1]ul.
The proof of Theorem 1 is shown in Appendix B. The

Gaussian and log-normal distributions in Section III will
be shown to meet condition (1). Property (1) implies that
the additional (n+1)st device does not impair the estima-
tion of the original n parameters. Furthermore, property
(2) implies that the sum of the CRB variance bounds for
the n parameters strictly decreases when the conditions
are met. Thus when a device enters a network and makes
pair-wise observations with at least one blindfolded device
and at least two devices in total, the bound on the average
variance of the original n coordinate estimates is reduced.
Note that properties (1) and (2) of Theorem 1 are trivially
satisfied by the data processing theorem if the additional
device does not increase the number of parameters.
In this analysis, blindfolded devices are not considered

to be reference devices after their parameters have been
estimated. Doing so would allow errors to accumulate
as new blindfolded devices used inaccurate estimated pa-
rameters as reference to estimate their own parameters.
However, future analysis might consider sub-optimal sys-
tems which estimate the accuracy of blindfolded device pa-
rameters and allow accurate devices to become references,
thereby reducing the parameter space and complexity.

III. Relative Location Estimation

In this section, we consider self-configuration problem
of using RSS or TOA measurements between pairs of de-
vices in a wireless network to estimate 2-D device loca-
tion. Specifically, for a wireless sensor network of m refer-
ence and n blindfolded devices, The relative location prob-
lem is the estimation of θ = {x1, . . . , xn, y1, . . . , yn} given
the known coordinates, {x1−m, . . . , x0, y1−m, . . . , y0}, and
pairwise TOA or RSS measurements. In the TOA case,
Ti,j is the measured TOA between devices i and j in (s),
and in the RSS case, Pi,j is the measured received power
between devices i and j in (mW). The assumptions of the
general self-configuration problem still hold, ie. only a sub-
set H(k) of devices are in range of device k, Ti,j and Pi,j

are taken to be upper triangular matrices, and measure-
ments are independent.
We assume that Ti,j is Gaussian distributed,

Ti,j ∼ N (di,j/c, σ
2
T ), di,j =

√
(xi − xj)2 + (yi − yj)2

(4)
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where c is the speed of propagation, and σ2
T is not a func-

tion of di,j . We assume that Pi,j is log-normal, thus the
random variable Pi,j(dBm) = 10 log10 Pi,j is Gaussian,

Pi,j(dBm) ∼ N (P̄i,j(dBm), σ2
dB) (5)

P̄ij(dBm) = P0(dBm)− 10np log10(di,j/d0)

where Pi,j(dBm) is the power in dBm received at device i
transmitted by device j, P̄i,j(dBm) is the mean power in
dBm, and σ2

dB is variance of the shadowing when expressed
in dB. The mean received power is a function of P0(dBm),
the free-space received power in dBm at a reference dis-
tance d0, the path loss exponent np, and the distance di,j .
Typically, d0 = 1m and P0 is calculated from the free space
path loss formula [19]. Thus np is the only parameter that
is a function of the environment. For a particular types of
environments, np may be known from prior measurements,
or it could be left as a ‘nuisance’ parameter to estimate.
In this paper, we derive the CRB assuming np is known,
and future research might consider the effects of leaving
np as a nuisance parameter.
Given (5), the density of Pi,j is,

fP |�(Pi,j |θ) = 10/ log 10√
2πσ2

dB

1
Pi,j
e
− b

8

�
log

d2
i,j

d̃2
i,j

�2

where b =
(

10np

σdB log 10

)2

, d̃i,j = d0
(

P0
Pi,j

) 1
np
.

(6)

We have defined the distance d̃i,j to help see the physical
meaning behind the measured power. It is actually the
MLE of range di,j given received power Pi,j .
Note that neither Pi,j nor Ti,j are assumed to be ergodic

random variables – in fact, obstructions in the measured
environment that result in shadowing and TOA errors do
not usually change over time. The CRB gives a lower
bound on the ensemble variance. If networks with the
same device coordinates are implemented in many different
areas, the variances of unbiased coordinate estimates are
lower bounded by the CRB presented here.
The model assumptions made in this section will be

shown to be valid in Section IV-A, using channel mea-
surement and modeling literature and the data collected
during the measurement campaign in Section IV. In the
next sections, we first use the model assumptions to derive
the CRB and MLE for both the RSS and TOA cases.

A. One-Dimensional TOA Example
As an example, consider using TOA measurements to

locate devices that are limited to being located on a 1-
D linear track. Assume all devices are in range of each
other. This could be applied to location estimation on
an assembly line. Consider m reference devices, and n
blindfolded devices with coordinates θ = {x1, . . . , xn}.
The distribution of the observations is given by (4) with
di,j = |xj − xi|. The 2nd partials of li,j are, ∂2

∂x2
j
li,j =

− ∂2

∂xj∂xi
li,j = −1

σ2
T c2 , which are constant w.r.t. the ran-

dom variables Ti,j . Thus the FIM, calculated using (3), is

FT = [(n+m)In−1]/(σT c)2, where In is the n×n identity
matrix. For m ≥ 1, the matrix is invertible, and

F−1
T =

σ2
T c

2

m(n+m)
[mIn + 1] .

The variance bound of an unbiased estimator for xi is,

σ2
xi

≥ σ2
T c

2 m+ 1
m(n+m)

. (7)

The variance σ2
xi

is reduced more quickly by adding ref-
erence than blindfolded devices. However, for large m,
the difference between increasing m and n is negligible.
Intuitively for large m, the range information that blind-
folded devices gain from an additional blindfolded device
helps to more accurately locate them w.r.t. all m existing
reference devices. This is almost as informative as being
located w.r.t. an (m+ 1)st reference device.

B. Two-Dimensional Location Estimation

In the remainder of this article, 2-D location estimation
is the focus. The 2-D unknown parameter vector is

θ = {x1, . . . , xn, y1, . . . , yn}. (8)

We call the FIMs for the RSS and TOA cases FR and
FT , respectively. Each device has two parameters, but (2)
assumes that each device has only one. From the definition
of the FIM in (2) we can see that the FIM for the 2-D case
will have a similar form if partitioned into blocks,

FR =
[

FRxx FRxy

FT
Rxy FRyy

]
, FT =

[
FTxx FTxy

FT
Txy FTyy

]
(9)

where the blocks FRxx and FTxx are given by (3) using
only the x parameter vector θx = {x1, . . . , xn}, and the
blocks FRyy and FTyy are given by (2) using only the
y parameter vector θy = {y1, . . . , yn}. The off-diagonal
blocks FRxy and FTxy have elements defined by,

fk,l =



∑

j∈H(k) E
(

∂lk,j

∂xk

∂lk,j

∂yk

)
, k = l

IH(k)(l)E
(

∂lk,l

∂xk

∂lk,l

∂yl

)
, k 	= l

The elements of the sub-matrices of (9) are derived in
Appendix C. For the RSS case, the elements are given by,

[
FRxx

]
k,l

=

{
b
∑

i∈H(k)
(xk−xi)

2

[(xk−xi)2+(yk−yi)2]2
k = l

−b IH(k)(l)
(xk−xl)

2

[(xk−xl)2+(yk−yl)2]2
k 	= l[

FRxy

]
k,l

=

{
b
∑

i∈H(k)
(xk−xi)(yk−yi)

[(xk−xi)2+(yk−yi)2]2 k = l

−b IH(k)(l)
(xk−xl)(yk−yl)

[(xk−xl)2+(yk−yl)2]2 k 	= l
[
FRyy

]
k,l

=

{
b
∑

i∈H(k)
(yk−yi)

2

[(xk−xi)2+(yk−yi)2]2 k = l

−b IH(k)(l)
(yk−yl)

2

[(xk−xl)2+(yk−yl)2]2 k 	= l
(10)
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For the TOA case, the elements are given by,

[
FTxx

]
k,l

=




1
c2σ2

T

∑
i∈H(k)

(xk−xi)
2

(xk−xi)2+(yk−yi)2
k = l

− 1
c2σ2

T
IH(k)(l)

(xk−xl)
2

(xk−xl)2+(yk−yl)2
k 	= l

[
FTxy

]
k,l

=

{
1

c2σ2
T

∑
i∈H(k)

(xk−xi)(yk−yi)
(xk−xi)2+(yk−yi)2

k = l

− 1
c2σ2

T
IH(k)(l)

(xk−xl)(yk−yl)
(xk−xl)2+(yk−yl)2

k 	= l
[
FTyy

]
k,l

=




1
c2σ2

T

∑
i∈H(k)

(yk−yi)
2

(xk−xi)2+(yk−yi)2
k = l

− 1
c2σ2

T
IH(k)(l)

(yk−yl)
2

(xk−xl)2+(yk−yl)2
k 	= l

(11)

The CRBs for the RSS and TOA cases are F−1
R and F−1

T ,
respectively. Note FR ∝ np/σdB while FT ∝ 1/(c2σ2

T ).
These SNR quantities directly affect the CRB. In the TOA
case, the dependence on the coordinates is in unit-less dis-
tance ratios, indicating that the size of the system can be
scaled without changing the CRB as long as the geometry
is kept the same. However, in the RSS case, due to the
d4 terms in the denominator of each term of FR, the vari-
ance bound scales with the size of the system even if the
geometry is kept the same. These scaling characteristics
indicate that TOA will be preferred for sparse networks,
but at some high density, RSS can perform as well as TOA.
Let x̂i and ŷi be unbiased estimators of xi and yi. We

define the ith location estimate variance bound as

σ2
i ≤ Var(x̂i) + Var(ŷi).

In general, σ2
i must be calculated via the inverse of the

FIMs given above. However, for the one blindfolded device
case, we present an analytical result.

C. Traditional Location System Example

Consider the network with blindfolded device 1 and ref-
erence devices 1 −m. . . 0 which make pair-wise measure-
ments with device 1. This example, with unknowns x1 and
y1, is equivalent to many existing location systems, and a
bound for the variance of the location estimator has been
derived in the TOA case [2]. In the RSS case,

E
[
(x̂1 − x1)2 + (ŷ1 − y1)2

] ≥ σ2
1 =

FRxx + FRyy

FRxxFRyy − F 2
Rxy

from which we get the result that

σ2
1 =

1
b

∑0
i=1−m d

−2
1,i∑−1

i=1−m

∑0
j=i+1

(
d1⊥i,jdi,j

d2
1,id

2
1,j

)2

where the distance d1⊥i,j is the shortest distance from the
point (x1, y1) to the line between device i and device j.
For the TOA case, the result is,

σ2
1 = c2σ2

Tm


 −1∑

i=1−m

0∑
j=i+1

(
d1⊥i,jdi,j

d1,id1,j

)2


−1

(12)

The ratio d1⊥i,jdi,j/(d1,id1,j) has been called the geomet-
ric conditioning Ai,j of device 1 w.r.t. references i and j
[2]. Ai,j is the area of the parallelogram formed by the
vectors from device 1 to i and from device 1 to j, normal-
ized by the lengths of the two vectors. Thus the geometric
dilution of precision (GDOP), defined as σ1/σT , is

GDOP =
√

m∑−1
i=1−m

∑0
j=i+1 A2

i,j

which matches the result in [2]. The CRBs for the RSS
and the TOA cases are shown in Fig. 1 when there are
four reference devices located in the corners of a 1m by
1m square. The minimum of Fig. 1(a) is 0.27. Since the
CRB scales with size in the RSS case, the standard de-
viation of location estimates in a traditional RSS system
operating in a channel with σdB/np = 1.7 is limited to
about 27% of the distance between reference devices. This
performance has prevented use of RSS in many existing
location systems and motivates the use of relative loca-
tion information. Note in the TOA case, σ1 ∝ cσT , thus
cσT = 1 was chosen in Fig. 1(b).
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Fig. 1. σ1 (m) for the example system vs. the coordinates of the
single blindfolded device, for (a) RSS with σdB/n = 1.7, or (b) TOA
with c σT = 1m.

D. Maximum Likelihood Relative Location Estimation
For the TOA case, the MLE of θ is given by

θ̂T = arg min
n∑

i=2−m

∑
j∈H(i)

j<i

(c Ti,j − di,j)
2 (13)

The MLE for the 2-D RSS case is shown in [14] to be,

θ̂R̃ = arg min
n∑

i=2−m

∑
j∈H(i)

(
ln
d̃2i,j
d2i,j

)2

(14)



IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

Unlike in the TOA case, the RSS MLE is readily shown to
be biased. Consider that for n = 1 and m = 1, the range
between the two devices will be estimated to be equal to
d̃i,j . Using (6), the mean of d̃i,j is given by

E[d̃i,j ] = C di,j , where C = e
1
2

�
ln(10)

10
σdB
np

�2

.

For typical channels, C ≈ 1.2, adding 20% bias to the
range. A bias-reduced MLE is preferred,

θ̂R = arg min
n∑

i=2−m

∑
j∈H(i)

(
ln

d̃2i,j
C2d2i,j

)2

(15)

However, even with the reduction there is bias in the
coordinate estimates. Consider m = 4 and n = 1. Place
the reference devices at the corners of a 1 m by 1 m square
and the blindfolded device within the square, the same as
the case plotted in Fig. 1. We calculate via simulation [20]
the bias gradient norm of x̂1 and display it in Fig. 2.
The gradient of the bias can be used in the uniform CRB

to calculate the achievable variance of the biased estima-
tor [20] as compared to all other estimators with same bias
gradient norm. Fig. 2 shows that the bias gradient is high
(with norm ≈ 1) at the corners of the square. Intuitively,
(15) tries to force the ratio d̃21,j/(C

2d21,j) close to 1. When
d̃21,j is small, the estimator has little freedom to place de-
vice 1 with respect to device j. In the limit as the actual
locations of devices 1 and j become equal, the MLE will
locate device 1 at device j with zero variance. Thus it
makes sense that the simulated bias gradient norm is close
to 1 at the corners of Fig. 2. Note that the bias of the
MLE is close to zero near the center of the square. As a
rule of thumb, the MLE has low bias for devices located
near the center of their neighbors’ positions.
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Fig. 2. Bias gradient norm of the RSS MLE of x1 from (15) for the
example system of Section III-C.

IV. Channel Measurement Experiment

In this section, we describe the measurement system and
experiment and validate the channel model assumptions
made at the start of Section III. A set of multipoint-
to-multipoint (M2M) wideband channel measurements are
conducted at the Motorola facility in Plantation, Florida.
The measurement environment is a office area partitioned

by 1.8m high cubicle walls, with hard partitioned offices,
external glass windows and cement walls on the outside
of the area. There are also metal and concrete support
beams within and outside of the area. Offices are occupied
with desks, bookcases, metal and wooden filing cabinets,
computers and equipment. Forty-four device locations are
identified within a 14m by 13m area and marked with tape.
The measurement system uses a wideband direct-

sequence spread-spectrum (DS-SS) transmitter (TX) and
receiver (RX) (Sigtek model ST-515). These measure-
ments are one-way TOA measurements, that is, the RX
does not reply to the TX. As discussed in Section I, de-
vices in the two-way TOA case don’t require synchroniza-
tion since a round-trip delay can be measured at a single
device. However, the one-way TOA measurements pre-
sented here require accurate synchronization. In this ex-
periment, TX and RX are both triggered by a 1 pulse per
second (1PPS) signal from two Datum ExacTime GPS and
rubidium-based oscillators.
The TX and RX are battery-powered and are placed

on carts. The TX outputs an unmodulated pseudo-noise
(PN) code signal with a 40 MHz chip rate and code length
1024. The center frequency is 2443 MHz, and the transmit
power is 10 mW. Both TX and RX use 2.4 GHz sleeve
dipole antennas kept 1m above the floor. The antennas
have an omnidirectional pattern in the horizontal plane
and a measured antenna gain of 1.1 dBi. The RX records
I and Q samples at a rate of 120 MHz, downconverts, and
correlates them with the known PN signal and outputs a
power-delay profile (PDP). We ensure that noise and ISM-
band interference is not an issue by maintaining an SNR
> 25 dB throughout the campaign.
The Datum oscillators at the TX and RX are carefully

synchronized throughout each measurement day. After an
initial GPS synch, GPS is disconnected and the rubidium
oscillators provide stable 1PPS signals. The frequencies of
the two rubidium oscillators are off very slightly, thus the
1PPS signals drift linearly, on the order of nanoseconds per
hour. By periodically measuring and recording the offset
between the two 1PPS signals using an oscilloscope, the
effect of the linear drift can be cancelled. A time base with
a standard deviation of approximately 1-2 ns is achieved.
The uncertainty in the time base is thus a small source of
error in the measured TOAs reported in Section IV-B.
The M2M measurements are conducted by first placing

the TX at location 1 while the RX is moved and PDP
measurements are made at locations 2 through 44. Then
the TX is placed at location 2, as the RX is moved to
locations 1 and 3 through 44. At each combination of
TX and RX locations, the RX records five PDPs. All
devices are in range of all other devices, so there are a
total of 44*43*5 = 9460 measured PDPs. Since we expect
reciprocity, there are a total of 10 PDPs for each link.

A. Estimating TOA and RSS
The wideband radio channel impulse response (CIR) is

modeled as a sum of attenuated, phase-shifted, and time-
delayed multipath impulses [16][19]. The PDP output of
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the Sigtek measurement system, due to its finite band-
width, replaces each impulse of the CIR with the auto-
correlation function of the PN signal RPN (τ), a triangu-
lar peak 2/RC = 50ns wide. In high SNR, low multipath
cases, TOA estimates can have better accuracy than 2/RC .
However, a wider peak permits more multipath errors since
the line-of-sight (LOS) component, with TOA di,j/c, can
be obscured by non-LOS multipath that arrive < 2/RC

after the LOS TOA. If the LOS component is attenuated,
it can be difficult to distinquish the LOS TOA.
We estimate the LOS TOA by template-matching [21],

in which samples of the leading edge of the PDP are com-
pared to an oversampled template of RPN (τ). The TOA
estimate t̃i,j is the delay that minimizes the squared-error
between the samples of the PDP and the template. Since
non-LOS multipath are delayed in time, t̃i,j usually has
a positive bias. We estimate the bias to be the average
of t̃i,j − di,j/c, ∀i, j which in these measurements is 10.9
ns. In this paper we assume this bias is known for en-
vironments of interest, however, similar to np, this bias
could be estimated as a ’nuisance’ parameter. Subtracting
out the bias from our measurements, we get the unbiased
TOA estimator ti,j . Finally, the average of the 10 ti,j mea-
surements for the link between i and j we call Ti,j . The
measured standard deviation, σT , is 6.1 ns.
It has been shown that a wideband estimate of received

power, pi,j , is obtained by summing the powers of the mul-
tipath in the PDP [19]. This wideband method reduces the
frequency-selective fading effects. The geometric mean of
the 10 pi,j measurements for the link between i and j,
which we call Pi,j , reduces fading due to motion of ob-
jects in the channel. Shadowing effects, caused by per-
manent obstructions in the channel, remain predominant
in Pi,j since sensors are assumed to be stationary. Shad-
owing loss is often reported to be a log-normal random
variable [22][16][19], which leads to the log-normal shad-
owing model in (5). As shown in Fig. 3, The measured
Pi,j match the log-normal shadowing model in (5) with
n = 2.30 and σdB = 3.92 dB, using d0 = 1m. The low
variance may be due to the wide bandwidth, averaging,
and the homogeneity of the measured cubicle area.
We experimentally verify the log-normal and Gaussian

distributions of the RSS and TOA measurements by exam-
ining Pi,j(dBm)− P̄i,j(dBm) and Ti,j −di,j/c via quantile-
quantile plots in Fig. 4. RSS and TOA data fit the models
well between the -2 and +2 quantiles, but the tails are
heavier than the Gaussian distribution in the TOA case.
Finally, assuming i.i.d. measurements is somewhat over-

simplified [23] but necessary for analysis. Using measure-
ments remains important to verify true performance.

B. Measurement Results

Four devices near the corners are chosen as reference de-
vices. The remaining 40 devices are blindfolded devices.
The four reference device coordinates and either the RSS
or TOA measurements, Pi,j or Ti,j , are input to the MLE
in (15) or (13). The minimum in each case is found via a

conjugate gradient algorithm. The estimated device loca-
tions are compared to the actual locations in Fig. 5(a) and
(b). To generalize the results, the RMS location error of all
40 unknown-location devices is 2.18m in the RSS case and
1.23m in the TOA case. Since shadowing and non-LOS er-
rors are not ergodic, as discussed in Section IV-A, exper-
imentally determining the MLE variances would require
several measurement campaigns with the same device ge-
ometry but in different office areas. This was not possible
due to resource and time limitations. Nevertheless, it is
interesting to report the CRB for the measured network.
We use the measured channel parameters, σdB/np = 1.70
and σT = 6.1 ns, the four reference devices used above,
and the actual coordinates of all of the devices to calcu-
late the FIMs in (10) for the RSS case and (11) for the
TOA case. Taking the inverses of these two matrices, we
have the CRBs. For the RSS and TOA cases, the quantity(∑40

i=1 σ
2
i /40

)1/2

, is 0.76m and 0.69m, respectively.

We also notice that the devices close to the center are
located more accurately than the devices on the edges,
particularly in the RSS case. The MLE is seen not to suffer
from error accumulation. Poor performance at the edges
is expected since devices have fewer nearby neighbors to
benefit their location estimate.
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Fig. 5. True (•#T) and estimated (H#E) location using (a) RSS
and (b) TOA data for measured network with 4 reference devices
(X#). Higher errors are indicated by darker text.

V. Testbed Experimentation

To provide an easy means for M2M radio channel mea-
surement and location estimation tests, we developed and
fabricated at Motorola Labs a testbed of 12 prototype
peer-to-peer wireless sensor devices with RSS measure-
ment capability. The devices have FSK transceivers with a
50 kHz data rate which operate in the 900-928 MHz band
at one of 8 center frequencies separated by 4 MHz, which
is approximately the coherence bandwidth of the chan-
nel. Devices slowly hop center frequencies so that RSS
measurements can be taken at each fc. While one device
transmits, other devices measure its RSS. Packet trans-
missions are infrequent and packets are short, thus the
channel is almost always silent. Devices are asynchronous
and use a CSMA protocol. Thus RX measurements are
not subject to multi-user interference. Every two seconds,
each device creates a packet of measured RSS data and
transmits it to a central ’listening’ device, which uploads
data to a laptop computer. The laptop has access to the
known coordinates of the reference devices and the TX
power and the RSS characteristic of the devices as mea-
sured prior to deployment. The laptop stores the RSS for
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Fig. 6. True (•#T) and estimated (H#E) location for the (a)
parking lot and (b) residential home tests, using 4 reference devices
(X#). Higher errors are indicated by darker text.

each pair of devices, each frequency that was measured,
and each measurement over time.
First, we use the testbed as an easy way to estimate the

path loss exponent np. When all of the device locations
are known, the laptop uses the path loss vs. path length
data to estimate the path loss exponent, np [24]. After
estimating np, the blindfolded device coordinates are re-
moved from the laptop and we operate the relative location
estimation algorithm using the estimated np.
Then, the relative location estimation algorithm aver-

ages the measurements over time (using the most recent
four RSS measurements), frequency (across 8 center fre-
quencies), and the reciprocal channel. As presented in
Section IV-A, log-normal shadowing remains predominant
in the averaged measurement Pi,j . The maximum of the
MLE in (15) is found using a conjugate gradient algorithm,
which takes less than one second on the Pentium laptop.
Each second an updated location is calculated and dis-
played on a map in a Visual Basic GUI. Real time tracking
of slow movement (eg., walking) is possible.

A. Parking Lot Area

Testbed devices are placed in a 9 m by 9 m area in a 3 m
grid in an empty area at the edge of the parking lot at the
Motorola facility. The devices are kept at a height of 0.35
m. Using the testbed, we estimate np to be 3.2. Then, we
place four reference devices at the corners of the area and
place blindfolded devices at 7 of the remaining 12 spots
in the grid (for 11 devices total). Devices record RSS and
send packets as described above. The blindfolded devices
are then moved to different positions in the grid for a new
trial. 16 trials are run. The RMS location errors for the
individual trials range from 0.9 m to 2.4 m. However, by
moving 7 blindfolded devices around between positions,
we record enough point-to-point ranges to see what would
happen if there were 12 blindfolded devices, one in each
spot on the grid. We use the recorded range data off-line
to calculate that the RMS error would have been 1.46 m in
this case. Furthermore, if we extended the duration of the
time averaging from 4 ranges to 32 ranges, we would see
the location estimates shown in Fig. 6(a), and we would
reduce the RMS error to 1.02 m. Since shadow fading is
not severe in this environment, time averaging is effective
at improving location estimates.
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Fig. 7. Map of the grid of sensors in the Perkins home.

B. Residential Home

Next, we test the system in the Perkins home, a single-
family, ranch-style house in Sunrise, Florida (Fig. 7). An
identical 9 m by 9 m grid is used in this test, which spanned
across many interior rooms and an outdoor patio. The
obstructions include indoor walls, furnishings, appliances,
and exterior walls & windows, and np is estimated using
the testbed to be 4.0. Here, there are 4 reference devices
in the corners of the grid and 8 other blindfolded devices.
In 16 individual trials, the RMS location errors range from
1.0 m to 2.7 m. If all device ranges are used together, as de-
scribed previously, we see the results in Fig. 6(b), in which
the RMS error is 2.1 m. This error doesn’t reduce signif-
icantly when the duration of time-averaging is increased
from 4 to 32 ranges. The error is predominantly due to
device #15, which has an error of 4.5 m. As shown in Fig.
7, device #15 is actually 3 m from device #14. However,
significant shadowing is caused by the office closet and
master bedroom closet that both lie directly in between
the two devices (P14,15(dBm)− P̄14,15(dBm) = −22), and
as a result the range estimate between the two is found to
be 10.5 m. Unfortunately, this shadowing can’t be coun-
tered by time or frequency averaging.

VI. Conclusions

The motivation of this article has been to show with
what accuracy wireless sensor networks can estimate sen-
sor locations. First, location estimation variance bounds
in ad hoc networks are shown to decrease as more devices
are added to the network. Next, CRBs can be readily cal-
culated for arbitrary numbers and geometries of devices,
and examples are presented. MLEs are presented and used
in several real channels, both for TOA and RSS measure-
ments. Sensor location estimation with about 1 m RMS
error has been demonstrated using TOA measurements.
However, despite the reputation of RSS as a coarse means
to estimate range, it is also able to achieve an accuracy of
about 1 m RMS in a testbed experiment. Fading outliers
can still impair the RSS relative location system, implying
the need for a robust estimator. Extension of this work
to include 3-D location estimation will also be important
in many applications. The results presented in this article
should help wireless sensor network researchers determine
if the accuracy possible from relative location estimation
can meet their application requirements.

Appendix

A. CRB for Network Self-Calibration

The diagonal elements, fk,k, of F given in (2) are,

fk,k = E
(

∂
∂θk
l(X |θ)

)2

= E
( ∑
j∈H(k)

∂
∂θk
lk,j

)2

fk,k =
∑

j∈H(k)

∑
p∈H(k)

E
(

∂
∂θk
lk,j

)(
∂

∂θk
lk,p

)

Since Xk,j and Xk,p are independent random variables,
and E[ ∂

∂θk
lk,j ] = 0, the expectation of the product is only

nonzero for p = j. Thus fk,k simplifies to the k = l result
in (3). The off-diagonal elements similarly simplify,

fk,l =
∑

j∈H(k)

∑
p∈H(l)

E
(

∂
∂θk
lk,j

)(
∂

∂θl
ll,p

)

Here, due to independence and zero mean of the two terms,
the expectation of the product will be zero unless both
p = k and j = l. Thus the k 	= l result in (3).

B. Proof of Theorem 1

To prove Theorem 1, we compare F, the FIM for the n
device problem, to G, the FIM for the n + 1 device case.
Partition G into blocks,

G =
[

Gul gur

gll glr

]

where Gul is an n × n matrix, glr is the scalar Fisher
information for the n + 1st parameter, and gur = gT

ll are
n× 1 vectors with kth element,

gur(k) = IH(n+1)(k) E
(

∂
∂θk
lk,n+1

)(
∂

∂θn+1
lk,n+1

)
,

glr =
∑

j∈H(n+1)

E
(

∂
∂θn+1

ln+1,j

)2

.

Let ln(X |θn) be the joint log-likelihood function in (1)
for the n parameter case and ln+1(X |θn+1) be the same
function for the n+ 1 parameter case, given by

ln+1(X |θn+1) =
n+1∑

i=
1−m

∑
j∈H(i)

j<i

li,j = ln(X |θn) +
∑
j∈

H(n+1)

ln+1,j .

Since ln+1,j is a function only of parameters θn+1 and θj,

∂2

∂θk∂θl

∑
j∈

H(n+1)

ln+1,j =

{
IH(n+1)(k) ∂2

∂θ2
k
ln+1,k, l = k

0, l 	= k

Thus Gul = F + diag(h), where h = {h1, . . . , hn} and
hk = IH(n+1)(k)E( ∂

∂θk
ln+1,k)2. Now, compare the CRB

for the covariance matrix of the first n devices in the n and
n+ 1 blindfolded device cases, given by F−1 and [G−1]ul,
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respectively. Here, [G−1]ul is the upper left n× n subma-
trix of G−1,

[G−1]ul =
{
Gul − gurg

−1
lr gll

}−1
= {F+ J}−1

where J = diag(h)− gurg
T
ur

glr

Both F and J are Hermitian. We know that F is positive
semidefinite. Let λk(F), k = 1 . . . n be the eigenvalues of
F and λk(F+J), k = 1 . . . n be the eigenvalues of the sum,
both listed in increasing order, then if we can show that J
is positive semidefinite, then it is known [25] that:

0 ≤ λk(F) ≤ λk(F+ J), ∀k = 1 . . . n (16)

Since the eigenvalues of a matrix inverse are the inverses
of the eigenvalues of the matrix,

λk

({F+ J}−1
) ≤ λk(F−1), ∀k = 1 . . . n, (17)

which proves property 1 of Theorem 1. If in addition, we
can show that trJ > 0, then trF+ J > trF, and therefore∑n

k=1 λk(F + J) >
∑n

k=1 λk(F). This with (16) implies
that λj(F + J) > λj(F) for at least one j ∈ 1 . . . n. Thus
in addition to (17),

λj

({F+ J}−1
)
< λj(F−1), for some j ∈ 1 . . . n

which implies that tr
({F+ J}−1

)
< trF−1, which proves

property 2 of Theorem 1.
1) Showing positive semidefiniteness and positive trace

of J: The diagonal elements of J, [J]k,k are,

[J]k,k = hk − g2
ur(k)
glr

.

If k /∈ H(n+1) then hk = 0 and gur(k) = 0, thus [J]k,k =
0. Otherwise, if k ∈ H(n+ 1),

[J]k,k = E
(

∂ln+1,k

∂θk

)2

−
[
E
(

∂ln+1,k

∂θk

)(
∂ln+1,k

∂θn+1

)]2
∑

j∈H(n+1) E
(

∂ln+1,j

∂θn+1

)2 .

Because of the reciprocity assumption, the numerator of
the fraction is equal to the square of the j = k term in the
sum in the denominator. Thus

[J]k,k ≥ E
(
∂

∂θk
ln+1,k

)2

− E
(

∂ln+1,k

∂θk

∂ln+1,k

∂θn+1

)
= 0.

The equality will hold if k is the only member of the set
H(n+ 1). When condition (2) of Theorem 1 holds, [J]k,k

will be strictly greater than zero. Thus trJ > 0.
Next, we show that J is diagonally dominant [25], i.e.,

[J]k,k ≥
n∑

j=1
j �=k

|[J]k,j | =
n∑

j=1
j �=k

|gll(k)gll(j)|
glr

,

where [J]k,k is given in (18). Since H(n + 1) 	= ∅, thus
glr > 0, and an equivalent condition is,

glrhk ≥ |gll(k)|
n∑

j=1

|gll(j)|. (18)

If k /∈ H(n + 1) then hk = 0 and gll(k) = 0, and the
equality holds. If k ∈ H(n+ 1), then

glrhk = E
(

∂lk,n+1
∂θk

)2 ∑
j∈H(n+1)

E
(

∂ln+1,j

∂θn+1

)2

.

Because of condition (1) of Theorem 1,

E
(

∂lk,n+1
∂θk

)2

=
∣∣∣E(∂lk,n+1

∂θn+1

∂lk,n+1
∂θk

)∣∣∣
Thus

glrhk = |gll(k)|
[ ∑

j≥1
j∈H(n+1)

|gll(j)|+
∑
j≤0

j∈H(n+1)

∣∣∣E(∂lj,n+1
∂θn+1

∂lj,n+1
∂θj

)∣∣∣ ]

Since gll(j) = 0 if j /∈ H(n+1) we can include in the first
sum all j ∈ 1 . . . n. Since the 2nd sum is ≥ 0, (18) is true.
Diagonal dominance implies J is positive semidefinite,

which proves (17). Note that if H(n + 1) includes ≥ 1
reference device, the 2nd sum is > 0 and the inequality in
(18) is strictly > 0,which implies positive definiteness of J
and assures that the CRB will strictly decrease.

C. CRB for Location Estimation
For the elements of FR, using (6) and (1),

li,j = log

(
10 log 10√
2πσ2

dB

1
Pi,j

)
− b

8

(
log

d2i,j

d̂2i,j

)2

. (19)

Recall di,j =
√
(xi − xj)2 + (yi − yj)2. Thus,

∂

∂xj
li,j = −b

(
log

d2i,j

d̃2i,j

)
xj − xi

d2i,j
, (20)

Note that ∂
∂xj
li,j = − ∂

∂xi
li,j , thus the log-normal distribu-

tion of RSS measurements meets condition (1) of Theorem
1. The 2nd partials differ based on whether or not i = j
and if the partial is taken w.r.t. yi or xi. For example,

∂2li,j
∂xj∂yj

= −b (xi − xj)(yi − yj)
d4i,j

[
− log

(
d2i,j

d̃2i,j

)
+ 1

]

∂2li,j
∂xj∂yi

= −b (xi − xj)(yi − yj)
d4i,j

[
log

(
d2i,j

d̃2i,j

)
− 1

]
(21)

All of the 2nd partials depend on the term, log(d2i,j/d̂
2
i,j),

which has an expected value of zero. The terms in (3) for
each block of FR in (9) simplify considerably and the final
FIM takes the form in (10).
For the TOA case, the derivation is very similar, and

the details are omitted for brevity.
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