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Abstract

We calculate the capacity of a multiple-antenna wireless link in a Rician fading channel. We consider the
standard Rician fading channel where the channel coeÆcients are modeled as independent circular Gaussian
random variables with non-zero means (non-zero specular component). The channel coeÆcients of this model
are constant over a block of T symbol periods but, independent over di�erent blocks. For such a model, the
capacity and capacity achieving signals are dependent on the specular component. We obtain asymptotic
expressions for capacity in the low and high SNR scenarios. We also consider the capacity of the wireless
system that uses pilot symbol-based training to estimate the channel. We establish that for low SNR the
specular component of channel coeÆcients completely determines the form of the optimum signal whereas
for high SNR it has no e�ect on the optimum signal structure. We further conclude that beamforming is the
optimum signaling strategy for low SNR whereas for high SNR the optimum signal structure is same as that
for purely Rayleigh fading channels. Finally, we establish that training is not e�ective at low SNR.
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1 Introduction

The demand for high date rates in wireless channels has led to the investigation of employing multiple

antennas at the transmitter and the receiver [7, 8, 14, 17, 19]. Telatar [17], Marzetta and Hochwald [14]

and Zheng and Tse [19] have analyzed the maximum achievable rates possible for multiple antenna wireless

channels in the presence of Rayleigh fading.

Rayleigh fading models are not suÆcient to describe many channels found in the real world. It is

important to consider other models and investigate their performance as well. Rician fading is one such

model [3, 5, 6, 15, 16]. Rician fading model is applicable when the wireless link between the transmitter and

the receiver has a direct path component in addition to the di�used Rayleigh component. Farrokhi et. al.

[6] calculate the coherent capacity (when the channel is known at the receiver) for a Rician fading model

where they assume that the transmitter has no knowledge of the specular component. Godavarti et. al [9]

extend the results to non-coherent capacity (unknown channel at both the transmitter and the receiver) for

the same model. In [11], the authors consider another non-traditional model where the specular component

is also modeled as random with isotropic distribution and varying over time. They establish results similar

to those reported by Marzetta and Hochwald for Rayleigh fading in [14].

In this paper, we analyze the standard Rician fading model for channel capacity under the average

energy constraint on the input signal. Throughout the paper, we assume that the specular component is

deterministic and is known to both the transmitter and the receiver. The specular component in this paper is

of general rank except in Section 2 where it is restricted to be of rank one. The Rayleigh component is never

known to the transmitter. There are some cases we consider where the receiver has complete knowledge of

the channel. In such cases, the receiver has knowledge about the Rayleigh as well as the specular component

whereas the transmitter has knowledge only about the specular component. The capacity when the receiver

has complete knowledge about the channel will be referred to as coherent capacity and the capacity when the

receiver has no knowledge about the Rayleigh component will be referred to as non-coherent capacity. This

paper is organized as follows. In Section 2 we deal with the special case of a rank-one specular component

with the characterization of coherent capacity in Section 2.1. The general case of no restrictions on the rank

of the specular component is dealt with in Section 3. The coherent capacity for this case is considered in

Section 3.1, the non-coherent capacity for low SNR in Section 3.3 and the non-coherent capacity for high

SNR in Section 3.4. Finally, in Section 4 we consider the performance of a Rician channel in terms of capacity

2



when pilot symbol based training is used in the communication system.

2 Rank-one Specular Component

We adopt the following model for the Rician fading channel

X =

r
�

M
SH +W (2.1)

where X is the T �N matrix of received signals, H is the M �N matrix of propagation coeÆcients, S is

the T �M matrix of transmitted signals, W is the T �N matrix of additive noise components and � is the

expected signal to noise ratio at the receivers.

A deterministic rank one Rician channel is de�ned as

H =
p
1� rG+

p
rNMHm (2.2)

where G is a matrix of independent CN (0; 1) random variables, Hm is an M � N deterministic matrix of

rank one such that trfHy
mHmg = 1 and r is a non-random constant lying between 0 and 1. Without loss of

generality we can assume that Hm = ��y where � is a lengthM vector and � is a length N vector such that

Hm =

2
6664

1
0
...
0

3
7775 [1 0 : : : 0] (2.3)

where the column and row vectors are of appropriate lengths.

In this case, the conditional probability density function of X given S is given by,

p(X jS) = e�trf[IT+(1�r)(�=M)SSy]�1(X�prNMSHm)(X�prNMSHm)yg

�TN detN [IT + (1� r)(�=M)SSy]
:

The conditional probability density enjoys the following properties

1. For any T � T unitary matrix �

p(�X j�S) = p(X jS)

2. For any (M � 1)� (M � 1) unitary matrix  

p(X jS	) = p(X jS)

where

	 =

�
1 0
0y  

�
: (2.4)
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2.1 Coherent Capacity

The mutual information (MI) expression for the case where H is known by the receiver has already been

derived in [7]. The informed receiver capacity-achieving signal S is zero mean Gaussian independent from

time instant to time instant. For such a signal the MI is

I(X ;SjH) = T �E log det
h
IN +

�

M
Hy�H

i
where � = E[S�t S

�
t ] for t = 1; : : : ; T , St is the t

th row of the T �M matrix S. S�t denotes the transpose of

St and S
�
t
def
= (S�t )

y.

Theorem 1 Let the channel H be Rician (2.2) and be known to the receiver. Then the capacity is

CH = max
l;d

TE log det[IN +
�

M
Hy�(l;d)H ] (2.5)

where the signal covariance matrix �(l;d) is of the form

�(l;d) =

�
M � (M � 1)d l1M�1

l1�M�1 dIM�1

�

where d is a positive real number such that 0 � d �M=(M �1) and l is such that jlj �
q
( M
M�1 � d)d. IM�1

is the identity matrix of dimension M � 1 and 1M�1 is the all ones column vector of length M � 1.

Proof: This proof is a modi�cation of the proof in [17]. Using the property that 	yH has the same

distribution as H where 	 is of the form given in (2.4) we conclude that

T � E log det
h
IN +

�

M
Hy�H

i
= T �E log det

h
IN +

�

M
Hy	�	yH

i
:

If � is written as

� =

�
c A
Ay B

�
where c is a positive number such that c � AyB�1A (to ensure positive semi-de�niteness of the covariance

matrix �), A is a row vector of length M � 1 and B is a positive de�nite matrix of size (M � 1)� (M � 1).

Then

	�	y =
�

c A y

 Ay  B y

�
:

Since B = UDUy where D is a diagonal matrix and U is a unitary matrix of size (M�1)�(M�1), choosing

 = �U where � is a (M � 1)� (M � 1) permutation matrix, we obtain that

T �E log det
h
IN +

�

M
Hy�H

i
= T � E log det

h
IN +

�

M
Hy��H

i
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where

�� =

�
c AUy�y

�UAy �D�y

�
:

Since log det is a concave (convex cap) function we have

T �E log det
h
IN +

�

M
Hy �� H

i
� T � 1

(M � 1)!

X
�

E log det
h
IN +

�

M
Hy��H

i
= I(X ;S)

where �� = 1
(M�1)!

P
� �� and the summation is over all (M � 1)! possible permutation matrices �.

Therefore, the capacity achieving � is given by �� and is of the form

� =

�
c b1M�1

b1�M�1 dIM�1

�

where d = trfBg=(M � 1). Now, the capacity achieving signal matrix has to satisfy trf�g = M since MI

is monotonically increasing in trf�g. Therefore, c = M � (M � 1)d. And since c � LyD�1L this implies

M � (M � 1)d � (M�1)jlj2
d and we obtain the desired signal covariance structure. 2

The problem remains to �nd the l and d that achieve the maximum in (2.5). This problem has an

analytical solution for the special cases of: 1) r = 0 for which d = 1 and l = 0 (rank M signal S); and 2)

r = 1 for which d = l = 0 (rank 1 signal S). In general, the optimization problem (2.5) can be solved by

using the method of steepest descent over the space of parameters that satisfy the average power constraint

(See Appendix A). Results for � = 100; 10; 1; 0:1 are shown in Figure 1. The optimum values of l for di�erent

values of � turned out to be zero, i.e. the signal energy transmitted is uncorrelated over di�erent antenna

elements and over time. As can be seen from the plot the optimum value of d stays close to 1 for high SNR

and close to 0 for low SNR. That is, the optimum covariance matrix is close to an identity matrix for high

SNR. For low SNR, all the energy is concentrated in the direction of the specular component or in other

words the optimal signaling strategy is beamforming. These observations are proven in Section 3.1.

3 General Rank Specular Component

In this case the channel matrix can be written as

H =
p
1� rG+

p
rHm (3.1)

where G is the Rayleigh Fading component and Hm is a deterministic matrix such that trfHmH
y
mg =MN

with no restriction on its rank. Without loss of generality, we can assume Hm to be an M � N diagonal

matrix with positive real entries.
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Figure 1: Optimum value of d as a function of r for di�erent values of �

3.1 Coherent Capacity

For high SNR, we show that the capacity achieving signal structure basically ignores the specular component.

Proposition 1 Let H be Rician (3.1). Let CH be the capacity for H known at the receiver. For high SNR

�, CH is attained by an identity signal covariance matrix when M � N and

CH = T �E log det[
�

M
HHy] +O(

log(
p
�)p
�

):

Proof: The expression for capacity, CH is

CH = T � E log det[IN +
�

M
Hy�H ]:

Let H have SVD H = ��	y then

log det[IN +
�

M
Hy�H ] = log det[IN +

�

M
�y�y���]:

Let �y�� = D. Then

log det[IN +
�

M
�yD�] = log det[IM +

�

M
D��y]:

The right hand side expression is maximized by choosing � such thatD is diagonal [4, page 255] (We will show

�nally that the optimum D does not depend on the speci�c realization of H). Let D = diagfd1; d2; : : : ; dMg
and �i be the eigenvalues of ��

y and de�ne

EA[f(x)]
def
= E[f(x)�A(x)] (3.2)
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where �A(x) is the indicator function for the set A (�A(x) = 0 if x =2 A and �A(x) = 1 otherwise). Then for

large �

E log det[IM +
�

M
D��y] =

MX
i=1

E�i<1=
p
� log[1 +

�

M
di�i] +

MX
i=1

E�i�1=
p
� log[1 +

�

M
di�i]:

Let K denote the �rst term in the right hand side of the expression above and L denote the second term. It

is easy to show that

E log det[IM +
�

M
D��y] = log

�

M
+

MX
i=1

log(di) +

MX
i=1

E�i>1=
p
�[log(�i)] +

O(log(
p
�)=

p
�)

since

K � log[1 +
p
�]

MX
i=1

P (�i < 1=
p
�) = O(log(

p
�)=

p
�)

and

L = log
�

M
+

MX
i=1

log(di) +

MX
i=1

E�i>1=
p
�[log(�i)] +O(1=

p
�):

On account of log being a convex cap function the �rst term in the expression on the last line above is

maximized by choosing di = d for i = 1; : : : ;M such that M � d =M . 2

For M > N , optimization using the steepest descent algorithm similar to the one described in Appendix

A shows that for high SNR the capacity achieving signal matrix is an identity matrix as well and the capacity

is given by

CH � T �E log det[IN +
�

M
HyH ]:

We next show that for low SNR the Rician fading channel essentially behaves like an AWGN channel

in the sense that the Rayleigh fading component has no e�ect on the structure of the optimum covariance

structure.

Proposition 2 Let H be Rician (3.1) and let the receiver have complete knowledge of the Rayleigh component

G. For low SNR, CH is attained by the same signal covariance matrix that attains capacity when r = 1,

irrespective of the value of M and N , and

CH = T�[r�max(HmH
y
m) + (1� r)N ] +O(�2):
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Proof: Let kHk denote the matrix 2-norm of H , 
 be a positive number such that 
 2 (0; 1) then

CH = T �E log det[IN +
�

M
Hy�H ]

= T �EkHk�1=�
 log det[IN +
�

M
Hy�H ] +EkHk<1=�
 log det[IN +

�

M
Hy�H ]

= TEtrf �
M
Hy�Hg+O(�2�2
)

where EkHk�1=�
 [�] is as de�ned in (3.2). This follows from the fact that P (kHk � 1=�
) � O(e�
1

TM�
 ) and

for kHk < 1=�
 log det[IN + �
MHy�H ] = tr[ �MHy�H ] +O(�2�2
). Since 
 is arbitrary

E log det[IN +
�

M
Hy�H ] = Etr[

�

M
Hy�H ] +O(�2):

Now

Etr[Hy�H ] = trf(1� r)E[Gy�G] + rHy
m�Hm]g

= trf(1� r)�E[GGy] + r�HmH
y
mg:

Therefore, we have to choose � to maximize trf(1 � r)N� + r�HmH
y
mg. Since Hm is diagonal the trace

depends only on the diagonal elements of �. Therefore, � can be chosen to be diagonal. Also, because of

the power constraint, trf�g �M , to maximize the expression we choose trf�g =M . The maximizing � has

as many non-zero elements as the multiplicity of the maximum eigenvalue of (1 � r)NIM + rHmH
y
m. The

non-zero elements of � multiply the maximum eigenvalues of (1� r)NIM + rHmH
y
m and can be chosen to

be of equal magnitude summing up to M . This is the same � maximizing the capacity for additive white

Gaussian noise channel with channel Hm. 2

Note that if we choose � = IM then varying r has no e�ect on the value of the capacity. Therefore, this

explains the trends seen in [9] and [11] where we have seen how for low SNR the change in capacity is not

as pronounced as for high SNR when the channel varies from a purely Rayleigh fading channel to a purely

specular one.

3.2 Non-Coherent Capacity Upper and Lower Bounds

It follows from the data processing theorem that the non-coherent capacity, C can never be greater than the

coherent capacity CH , that is, the uninformed capacity is never decreased when the channel is known to the

receiver.

Proposition 3 Let H be Rician (3.1) and the receiver have no knowledge of the Rayleigh component. Then

C � CH :
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Now, we establish a lower bound which is similar in 
avor to those derived in [9] and [11].

Proposition 4 Let H be Rician (3.1). A lower bound on capacity when the receiver has no knowledge of G

is

C � CH �NE
h
log2 det

�
IT + (1� r)

�

M
SSy

�i
(3.3)

� CH �NM log2(1 + (1� r)
�

M
T ): (3.4)

Proof: Proof is similar to that of Proposition 2 in [11] and won't be repeated here. 2

We notice that the second term in the lower bound goes to zero when r = 1: as expected.

3.3 Non-Coherent Capacity: Expressions for Low SNR

In this section, we introduce some new notation for ease of description. If X is a T � N matrix then let

~X denote the \unwrapped" NT � 1 vector formed by placing the transposed rows of X in a single column

in an increasing manner. That is, if Xi;j denotes the element of X in the ith row and jth column then

~Xi;1 = Xbi=Nc;i%N , where bi=Nc denotes the greater integer less than or equal to i=N and i%N denotes the

operation i modulo N . The channel model X =
p

�
M SH +W can now be written as ~X =

p
�
M Ĥ ~S+ ~W . Ĥ

is given by Ĥ = IT 
H� where H� denotes the transpose of H . The notation A
B denotes the Kronecker

product of the matrices A and B and is de�ned as follows. If A is a I � J matrix and B a K � L matrix

then A
B is a IK � JL matrix

A
B =

2
6664

(A)11B (A)12B : : : (A)1JB
(A)21B (A)22B : : : (A)2JB

...
...

. . .
...

(A)I1B (A)I2B : : : (A)IJB

3
7775 :

This way, we can describe the conditional probability density function p(X jS) as follows

p(X jS) = 1

�TN j� ~Xj ~S j
e
�( ~X�

p
r �

M
Ĥm ~S)y��1

~Xj ~S
( ~X�

p
r �

M
Ĥm ~S)

where j� ~Xj ~S j = det(ITN + (1� r)SSy 
 IN ).

For low SNR, it will be shown that the channel behaves as an AWGN channel. Calculation of capacity

for the special case of peak power constraint has been shown in Appendix B.

Theorem 2 Let the channel H be Rician (3.1) and the receiver have no knowledge of G. For �xed M , N
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and T if S is a Gaussian distributed source then as �! 0

I(X ;SG) = rT��max(HmH
y
m) +O(�2)

where I(X ;SG) is the mutual information between the output and the Gaussian source.

Proof: First, I(X ;S) = H(X)�H(X jS). Since S is Gaussian distributed, E[log det(IN + �
M Ĥ� ~SĤ

y)] �
H(X) � log det(IN + �

M� ~X) where the expectation is taken over the distribution of H and Ĥ� ~SĤ
y = � ~XjH

is the covariance of ~X for a particular H . Next, we show that H(X) = �
M trf� ~Xg + O(�2). First, the

upper bound to H(X) can be written as �
M trf� ~Xg + O(�2) because H is Gaussian distributed and the

probability that kHk > R is of the order e�R
2

. Second, using notation (3.2) E[log det(ITN + �
M Ĥ� ~SĤ

y)] =

EkHk<(M
�
)
 [�] + EkHk�(M

�
)
 [�] where 
 is a number such that 2� 
 > 1 or 
 < 1. Then

E[log det(ITN +
�

M
Ĥ� ~SĤ

y)] =
�

M
EkHk<(M

�
)
 [trfĤ� ~SĤ

yg] +

O(�2�
) +O(log((
M

�
)
)e�(M

�
)
 )

=
�

M
E[trfĤ�Ĥyg] +O(�2�
):

Since 
 is arbitrary, we have H(X) = �
ME[trfĤ� ~SĤ

yg] +O(�2). Note that � ~X = E[� ~XjH ] and since H(X)

is sandwiched between two expressions of the form �
M trf� ~Xg+O(�2) the assertion follows.

Now H(X jS) = E[log det(ITN + (1 � r) �M SSy 
 IN )]. It can be shown similarly that H(X jS) = (1 �
r) �M trfE[SSy 
 IN ]g+O(�2).

Recall that H =
p
rHm+

p
1� rG. Therefore, � ~X = E[Ĥ� ~SĤ

y] = rĤm� ~SĤ
y
m+(1�r)E[SSy]
IN and

we have, for a Gaussian distributed input, I(X ;SG) = r �
M trfĤm� ~SĤ

y
mg + O(�2). Since Hm is a diagonal

matrix only the diagonal elements of � ~S matter and we we can choose the signals to be independent from

time instant to time instant. Also, to maximize trfĤm� ~SĤ
y
mg under the condition trf�g � TM it is best

to concentrate all the available energy on the largest eigenvalues of Hm. Therefore, we obtain

I(X ;SG) = r
�

M
TM�max(HmH

y
m) +O(�2):

2

Corollary 1 For purely Rayleigh fading channels when the receiver has no knowledge of G a Gaussian

transmitted signal satis�es lim�!0 I(X ;SG)=� = 0.
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The peak constraint results in Appendix B and the Gaussian input results imply that for low SNR,

Rayleigh fading channels are at a capacity disadvantage as compared to Rician fading channels for equal

values of �. But, it has been shown in [2, 18] for single antenna transmit and receive channel Rayleigh

fading provides as much capacity as a Gaussian channel for low SNR. We next extend that result to multiple

transmit and receive antenna channel for the general case of Rician fading. The result for Rayleigh fading

will follow as a special case.

Theorem 3 Let H be Rician (3.1) and the receiver have no knowledge of G. For �xed M , N and T

lim
�!0

C

�
= T

�
r�max(HmH

y
m) +N(1� r)

�
:

Proof: First, absorb
p

�
M into ~S and rewrite the channel as

~X = Ĥ ~S +W

with the average power constraint on the signal ~S E[trf ~S ~Syg] � �
M TM = �T .

It has been shown [18] that if the input alphabet includes the value \0" (symbol with 0 power) for a

channel with output X , and conditional probability denoted by p(X jS), then

lim
PC!0

C

PC
= sup

s2S
D( p(X jS = s) k p(X jS = 0) )

Ps

where S is the set of values that the input can take, PC is the average power constraint on the input (in our

case, E[trfSSyg] � PC = �T ) and Ps = trfssyg is the energy in the speci�c realization of the input S = s

and D(pAkpB) is the Kullback-Leibler distance for continuous density functions with argument x de�ned as

D(pAkpB) =
Z
pA(x) log

pA(x)

pB(x)
dx:

Applying the above result to the case of Rician fading channels, we obtain

lim
�!0

C

�T
= sup

~S

D( p( ~X j ~S) k p( ~Xj0) )
trf ~S ~Syg :

First, we have

p( ~X j ~S) = 1

�TN j� ~Xj ~Sj
e
�( ~X�prĤm ~S)y ��1

~Xj ~S
( ~X�prĤm ~S)

and

p( ~Xj0) = 1

�TN
e� ~Xy ~X :

11



Therefore,

D( p( ~Xj ~S) k p( ~X j0) ) =

Z
p( ~Xj ~S)

"
log

1

j� ~Xj ~S j
+ ~Xy ~X �

�
~X �prĤm

~S
�y

��1
~Xj ~S

�
~X �prĤm

~S
��
d ~X

= log
1

j� ~Xj ~S j
+ tr

n
rĤm

~S ~SyĤy
m +� ~Xj ~S

o
� TN

= log
1

det(ITN + (1� r)SSy 
 IN )
+

tr
n
rĤm

~S ~SyĤy
m + (1� r)SSy 
 IN

o
:

This gives,

D( p( ~X j ~S) k p( ~Xj0) )
trf ~S ~Syg = �N

PT
i=1 log(1 + �i(SS

y))PT
i=1 �i(SS

y)
+

trfrĤm
~S ~SyĤy

mgPT
i=1 trfSiSyi g

+

N(1� r)

where we have used the facts that det(ITN+(1�r)SSy
IN ) = det(IT +(1�r)SSy)N , trf ~S ~Syg = trfSSyg =PT
i=1 trfS�i S�i g where Si is the ith row in the matrix S.

Since,

Ĥm
~S ~SyĤy

m =

2
6664
H�
mS

�
1S

�
1H

�
m H�

mS
�
1S

�
2H

�
m : : : H�

mS
�
1S

�
TH

�
m

H�
mS

�
2S

�
1H

�
m H�

mS
�
2S

�
2H

�
m : : : H�

mS
�
2S

�
TH

�
m

...
...

. . .
...

H�
mS

�
TS

�
1H

�
m H�

mS
�
TS

�
2H

�
m : : : H�

mS
�
TS

�
TH

�
m

3
7775

we have trfĤm
~S ~SyĤy

mg =
PT

i=1 trfH�
mS

�
i S

�
iH

�
mg = trfH�

mH
�
m

PT
i=1 S

�
i S

�
i g. Therefore,

D( p( ~Xj ~S) k p( ~X j0) )
trf ~S ~Syg = �N

PN
i=1 log(1 + �i(S

yS))PN
i=1 �i(S

yS)
+ r

trfH�
mH

�
m

PT
i=1 S

�
i S

�
i gPT

i=1 trfS�i S�i g
+N(1� r):

Note that since Hm is a diagonal matrix only the diagonal elements of SiS
y
i a�ect the second term. Therefore,

for a given
PT

i=1 S
�
i S

�
i the second term in right hand side of the expression above can be maximized by

choosing Si such that S�i S
�
i is diagonal. In addition the non-zero values of SiS

y
i should be located at the

same diagonal positions as the maximum entries of H�
mH

�
m. In such a case the expression above evaluates to

D( p( ~Xj ~S) k p( ~X j0) )
trf ~S ~Syg = �N log(1 + trfSySg)

trfSySg + r�max(H
�
mH

�
m) +N(1� r):

The �rst term can be made arbitrarily small by letting trfSySg ! 1. Therefore, we have lim�!0
C
�T =

r�max(HmH
y
m) +N(1� r). 2

Theorem 3 suggests that at low SNR all the energy has to be concentrated in the strongest directions of

the specular component. In [2] it is shown that the optimum signaling scheme for Rayleigh fading channels

is an \on-o�" signaling scheme. We conjecture that the capacity achieving signaling scheme for low SNR in

the case of the Rician fading is also a similar \on-o�" signaling scheme.
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3.4 Non-Coherent Capacity: Expressions for High SNR

In this section we apply the method developed in [19] for the analysis of Rayleigh fading channels. The only

di�erence between the models considered in [19] and here is that we assume H has a deterministic non-zero

mean. For convenience, we use a di�erent notation for the channel model:

X = SH +W

with H =
p
rHm +

p
1� rG where Hm is the specular component of H and G denotes the Rayleigh

component. G andW consist of Gaussian circular independent random variables and the covariance matrices

of G and W are given by (1 � r)IMN and �2ITN , respectively. Hm is a deterministic matrix satisfying

trfHmH
y
mg =MN . G satis�es E[trfGGyg] =MN and r is a number between 0 and 1 so that E[trfHHyg] =

MN .

Lemma 1 Let the channel be Rician (3.1) and the receiver have no knowledge of G. Then the capacity

achieving signal, S can be written as S = �V	y where � is a T �M unitary matrix independent of V and

	. V and 	 are M �M .

Proof: Follows from the fact that p(�X j�S) = p(X jS). 2

In [19] the requirement for X = SH +W was that X had to satisfy the property that in the singular

value decomposition of X , X = �V	y � be independent of V and 	. This property holds for the case

of Rician fading too because the density functions of X , SH and S are invariant to pre-multiplication by

a unitary matrix. Therefore, the leading unitary matrix in the SVD decomposition of any of X , SH and

S is independent of the other two components in the SVD and isotropically distributed. This implies that

Lemma 6 in [19] holds and we have

Lemma 2 Let R = �R�R	
y
R be such that �R is independent of �R and 	R. Then

H(R) = H(Q�R	y
R) + log jG(T;M)j+ (T �M)E[log det�2

R];

where Q is anM�M unitary matrix independent of V and 	 and jG(T;M)j is the volume of the Grassmann

manifold and is equal to QT
i=T�M+1

2�i

(i�1)!QM
i=1

2�i

(i�1)!

:

The Grassmann manifold G(T;M) [19] is the set of equivalence classes of all T �M unitary matrices such

that if P;Q belong to an equivalence class then P = QU for some M �M unitary matrix U .

13



3.4.1 M = N , T � 2M

To calculate I(X ;S) we need to compute H(X) and H(X jS). To compute H(X jS) we note that given S,
X is a Gaussian random vector with columns of X independent of each other. Each row has the common

covariance matrix given by (1� r)SSy + �2IT = �V 2�y + �2IT . Therefore

H(X jS) =ME[

MX
i=1

log(�e((1� r)ksik2 + �2)] +M(T �M) log(�e�2):

To compute H(X), we write the SVD: X = �X�X	
y
X . Note that �X is isotropically distributed and

independent of �X	
y
X , therefore from Lemma 2 we have

H(X) = H(Q�X	y
X) + log jG(T;M)j+ (T �M)E[log det �2

X ]:

We �rst characterize the optimal input distribution in the following lemma.

Lemma 3 Let H be Rician (3.1) and the receiver have no knowledge of G. Let (s�i ; i = 1; : : : ;M) be the

optimal input signal of each antenna at when the noise power at the receive antennas is given by �2. If

T � 2M ,

�

ks�i k
P�! 0; fori = 1; : : : ;M (3.5)

where
P�! denotes convergence in probability.

Proof: See Appendix C. 2

Lemma 4 Let H be Rician (3.1) and the receiver have no knowledge of G. The maximal rate of increase of

capacity, maxp(S):E[trfSSyg]�TM I(X ;S) with SNR isM(T�M) log � and the constant norm source ksik2 = T

for i = 1; : : : ;M attains this rate.

Proof: See Appendix C. 2

Lemma 5 Let H be Rician (3.1) and the receiver have no knowledge of G. As T ! 1 the optimal source

in Lemma 4 is the constant norm input

Proof: See Appendix C. 2

From now on, we assume that the optimal input signal is the constant norm input. For the constant

norm input �V	y = �V since � is isotropically distributed.

14



Theorem 4 Let the channel be Rician (3.1) and the receiver have no knowledge of G. For the constant

norm input, as �2 ! 0 the capacity is given by

C = log jG(T;M)j+ (T �M)E[log detHyH ]�M(T �M) log�e�2 �

M2 log�e+H(QV H) + (T � 2M)M logT �M2 log(1� r)

where Q, V and jG(T;M)j are as de�ned in Lemma 2.

Proof: Since ks2i k � �2 for all i = 1; : : : ;M

H(X jS) = ME[
MX
i=1

log�e((1� r)ksik2 + �2)] +M(T �M) log(�e�2)

� ME[

MX
i=1

log�e(1� r)ksik2] +M(T �M) log�e�2

= ME[log det(1� r)V 2] +M2 log�e+M(T �M) log�e�2

and from Appendix D

H(X) � H(SH)

= H(QV H) + log jG(T;M)j+ (T �M)E[log det(HyV 2H)]

= H(QV H) + log jG(T;M)j+ (T �M)E[log detV 2] +

(T �M)E[log detHHy]:

Combining the two equations

I(X ;S) � log jG(T;M)j+ (T �M)E[log detHyH ]�M(T �M) log�e�2 +

H(QV H)�M2 log�e+ (T � 2M)E[log detV 2]�M2 log(1� r):

Now, since the optimal input signal is ksik2 = T for i = 1; : : : ;M , we have

C = I(X ;S)

� log jG(T;M)j+ (T �M)E[log detHyH ]�M(T �M) log�e�2 �

M2 log�e+H(QV H) + (T � 2M)M logT �M2 log(1� r):

2

Theorem 5 Let H be Rician (3.1) and the receiver have no knowledge of G. As T ! 1 the normalized

capacity C=T ! E[log det �
MHyH ] where � =M=�2.
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Proof: First, a lower bound to capacity as �2 ! 0 is given by

C � log jG(T;M)j+ (T �M)E[log detHyH ] +M(T �M) log
T�

M�e
�

M2 log T �M2 log(1� r) �M2 log �e:

In [19] it's already been shown that limT!1( 1T log jG(T;M)j+M(1�M
T ) log T

�e ) = 0. Therefore we have

as T !1

C=T �ME[log det
�

M
HyH ]:

Second, since H(QV H) �M2 log(�eT ) an asymptotic upper bound on capacity is given by

C � log jG(T;M)j+ (T �M)E[log detHyH ] +M(T �M) log
T�

M�e
�

M2 log(1� r):

Therefore, we have as T !1

C=T � E[log det
�

M
HyH ]:

2

3.4.2 M < N T �M +N

In this case we show that the optimal rate of increase is given by M(T �M) log �. The higher number of

receive antennas can provide only a �nite increase in capacity for all SNRs.

Theorem 6 Let the channel be Rician (3.1) and the receiver have no knowledge of G. Then the maximum

rate of increase of capacity with respect to log � is given by M(T �M).

Proof: See Appendix C. 2

4 Training in Non-Coherent Communications

It is important to know whether training based signal schemes are practical and if they are how much time

can be spent in learning the channel and what the optimal training signal is like. Hassibi and Hochwald

[12] have addressed these issues for the case of Rayleigh fading channels. They showed that 1) pilot symbol
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training based communication schemes are highly suboptimal for low SNR and 2) when practical the optimal

amount of time devoted to training is equal to the number of transmitters, M when the fraction of power

devoted to training is allowed to vary and 3) the orthonormal signal is the optimal signal for training.

In [19] the authors demonstrate a very simple training method that achieves the optimal rate of increase

with SNR. The same training method can also be easily applied to the Rician fading model with deterministic

specular component. The training signal is the M �M diagonal matrix dIM . d is chosen such that the

same power is used in the training and the communication phase. Therefore, d =
p
M . Using S = dIM , the

output of the MIMO channel in the training phase is given by

X =
p
M
p
rHm +

p
M
p
1� rG+W:

The Rayleigh channel coeÆcients G can be estimated independently using scalar minimum mean squared

error (MMSE) estimates since the elements of W and G are i.i.d. Gaussian random variables

Ĝ =

p
1� r

p
M

(1� r)M + �2
[X �

p
M
p
rHm];

where we recall that �2 is the variance of the components of W . The elements of the estimate Ĝ are

i.i.d. Gaussian with variance (1�r)M
(1�r)M+�2 . Similarly, the estimation error matrix G � Ĝ has i.i.d Gaussian

distributed elements with zero mean and variance �2

(1�r)M+�2 .

The output of the channel in the communication phase is given by

X = SH +W

=
p
rSHm +

p
1� rSĜ+

p
1� rS(G� Ĝ) +W;

where S consists of zero mean i.i.d circular Gaussian random variables with zero mean and unit variance.

This choice of S is sub-optimal as this might not be the capacity achieving signal, but this choice gives us

a lower bound on capacity. Let Ŵ =
p
1� rS(G � Ĝ) +W . For the choice of S given above the entries of

Ŵ are uncorrelated with each other and also with S(
p
rHm+

p
1� rĜ). The variance of each of the entries

of Ŵ is given by �2 + (1 � r)M �2

(1�r)M+�2 . If Ŵ is replaced with a white Gaussian noise with the same

covariance matrix then the resulting mutual information is a lower bound on the actual mutual information

[4, p. 263]. This result is formally stated in Proposition 5. In this section we deal with normalized capacity

C=T instead of capacity C. The lower bound on the normalized capacity is given by

C=T � T � Tt
T

E log det
�
IM +

�eff
M

H1H
y
1

�
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where �eff in the expression above is the e�ective SNR at the output (explained at the end of this paragraph),

and H1 is a Rician channel with a new Rician parameter rnew where rnew = r

r+(1�r) (1�r)M

(1�r)M+�2

. This lower

bound can be easily calculated because the lower bound is essentially the coherent capacity with H replaced

by
p
rnewHm +

p
1� rnewĜ. The signal covariance structure was chosen to be an identity matrix as this

is the optimum covariance matrix for high SNR. The e�ective SNR is now given by the ratio of the energy

of the elements of S(
p
rHm +

p
1� rĜ) to the energy of the elements of Ŵ . The energy in the elements of

S(
p
rHm +

p
1� rĜ) is given by M(r + (1� r)2 M

(1�r)M+�2 ) and the energy in the elements of Ŵ are given

by �2 + (1�r)M�2

(1�r)M+�2 . Therefore, the e�ective SNR, �eff is given by �[r+r(1�r)�+(1�r)2�]
[1+2(1�r)�] where � = M

�2 is the

actual SNR. Note, for r = 1 no training is required since the channel is completely known.

This simple scheme achieves the optimum increase of capacity with SNR and uses only M of the T

symbols for training. The performance of this scheme is plotted with respect to di�erent SNR values for

comparison with the asymptotic upper bound to capacity in the proof of Theorem 5. The plot also veri�es

the result of Theorem 5. The plots are for M = N = 5, r = 0:9 and T = 50 in Figure 2 the specular

component is a rank-one specular component given by (2.3).
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Figure 2: Asymptotic capacity, Capacity Upper and Lower bounds for di�erent values of SNR

We can quantify the amount of training required using the techniques in [12]. In [12], the authors use

the optimization of the lower bound on capacity to �nd the optimal allocation of training as compared to

communication. Let Tt denote the amount of time devoted to training and Tc the amount of time devoted

to actual communication. Let St be the Tt �M signal used for training and Sc the Tc �M signal used for
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communication.

Let the \energy allocation factor" � denote the fraction of the energy used for communication. Then

T = Tt + Tc and trfStSyt g = (1� �)TM and trfScSycg = �TM .

Xt = St(
p
rHm +

p
1� rG) +Wt

Xc = Sc(
p
rHm +

p
1� rG) +Wc

where Xt is Tt �N and Xc is Tc �N . G is estimated from the training phase. For that we need Tt � M .

Since G and Wt are Gaussian the MMSE estimate of G is also the linear MMSE estimate conditioned on S.

The optimal estimate is given by

Ĝ =
p
1� r(�2IM + (1� r)SytSt)

�1Syt (Xt �
p
rStHm):

Let �G = G� Ĝ then

Xc = Sc(
p
rHm +

p
1� rĜ) +

p
1� rSc �G+Wc:

Let Ŵc =
p
1� rSt �G +W . Note that elements of Ŵc are uncorrelated with each other and have the same

marginal densities when the elements of Sc are chosen to be i.i.d Gaussian. If we replace Ŵc with Gaussian

noise that is zero-mean and spatially and temporally independent the elements of which have the same

variance as the elements of Ŵc then the resulting mutual information is a lower bound to the actual mutual

information in the above channel. This is stated formally in the following proposition.

Proposition 5 (Theorem 1 in [12]) Let

X = SH +W

be a Rician fading channel with H known to the receiver. Let S and W satisfy 1
ME[SSy] = 1 and

1
ME[WW y] = �2 and be uncorrelated with each other. Then the worst case noise has i.i.d. zero mean

Gaussian distribution, i.e. W � CN (0; IN ). Moreover, this distribution has the following minimax property

IW�CN (0;�2IN );S(X ;S) � IW�CN (0;�2IN );S�CN (0;IM )(X ;S) � IW;S�CN (0;IM )(X ;S)

where IW�CN (0;�2IN );S(X ;S) denotes the mutual information between X and S when W has a zero mean

complex circular Gaussian distribution and S has any arbitrary distribution.

The variance of the elements of Ŵc is given by

�2wc = �2 +
1� r

NTc
trfE[ �G �Gy]�TIMg
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= �2 +
(1� r)�TM

Tc

1

NM
trfE[ �G �Gy]g

= �2 +
(1� r)�TM

Tc
�2�G

and the lower bound is

Ct=T � T � Tt
T

E log det
�
IM +

�eff
M

H1�H
y
1

�
; (4.1)

where the \post training SNR" �eff , is the ratio of the energies in the elements of ScĤ and energies in

the elements of Ŵc and H1 =
p
rnewHm +

p
1� rnewĜ where rnew = r

r+(1�r)�2
Ĝ

. � is the optimum signal

correlation matrix the form of which depends on the distribution of H1 according to Proposition 2 for low

SNR and Proposition 1 for high SNR and M � N as given in Section 3.1.

To calculate �eff , the energy in the elements of SĤ is given by

�2SH =
1

NTc
[rtrfHmH

y
m�TIMg+ (1� r)trfĜĜy�TIMg]

=
�TM

Tc

1

NM
[rNM + (1� r)trfĜĜyg]

=
�TM

Tc
[r + (1� r)�2

Ĝ
];

which gives us

�eff =
�T�[r + (1� r)�2

Ĝ
]

Tc + (1� r)�T��2�G
:

4.1 Optimization of St, � and Tt

We will optimize St, � and Tt to maximize the lower bound (4.1). In this section we merely state the main

results and their interpretations. Derivations and details are given in the Appendices.

Optimization of the lower bound over St is diÆcult as St e�ects the distribution of Ĥ , the form of � as

well as �eff . To make the problem simpler we will just �nd the value of St that maximizes �eff .

Theorem 7 The signal St that maximizes �eff satis�es the following condition

SytSt = (1� �)TIM

and the corresponding �eff is

��eff =
�T�[Mr + �(1� �)T ]

Tc(M + �(1� �)T ) + (1� r)�T�M
:
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Proof: See Appendix E. 2

The optimum signal derived above is the same as the optimum signal derived in [12].

The corresponding capacity lower bound using the St obtained above is

Ct=T � T � Tt
T

E log det
�
IM +

�eff
M

H1�H
y
1

�
;

where �eff is as given above andH1 =
p
rnewHm+

p
1� rnewG where rnew = r

1+(1�r)(1��) �
M
T

r+(1�r)(1��) �
M
T and as before

G is a matrix consisting of i.i.d. Gaussian circular random variables with mean zero and unit variance. Now,

� is the covariance matrix of the source Sc when the channel is Rician and known to the receiver. The form

of � was derived for �eff ! 0 and �eff !1 in Section 3.1.

Optimization of (4.1) over the energy allocation factor �, is straightforward as � a�ects the lower bound

only through the post training SNR �eff , and can be stated as the following proposition.

Theorem 8 For �xed Tt and Tc the optimal power allocation � in a training based scheme is given by

� =

8<
:

minf
 �p
(
 � 1� �); 1g for Tc > (1� r)M
minf 12 + rM

2T� ; 1g for Tc = (1� r)M

minf
 +p
(
 � 1� �); 1g for Tc < (1� r)M

where 
 = MTc+T�Tc
T�[Tc�(1�r)M ] and � =

rM
T� . The corresponding lower bound is given by

Ct=T � T � Tt
T

E log det
�
IM +

�eff
M

H1�H
y
1

�

where for Tc > (1� r)M

�eff =

(
T�

Tc�(1�r)M (
p

 �p
 � 1� �)2 when� = 
 �p
(
 � 1� �)
r�

1+(1�r)� when� = 1

for Tc = (1� r)M

�eff =

(
T 2�2

4(1�r)M(M+T�) (1 +
rM
T� )

2 when� = 1
2 +

rM
2T�

rT�
(1�r)(M+T�) when� = 1

and for Tc < (1� r)M

�eff =

(
T�

(1�r)M�Tc (
p�
 �p�
 + 1 + �)2 when� = 
 +

p

(
 � 1� �)

r�
1+(1�r)� when� = 1

and rnew is given by substituting the appropriate value of � in the expression

r
1 + (1� r)(1� �) �M T

r + (1� r)(1� �) �M T
:
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Proof: See Appendix F. 2

For optimization over Tt we draw similar conclusions as in [12]. In [12] the optimal setting for Tt was

shown to be Tt = M for all values of SNR. We however show that for small SNR the optimal setting is

Tt = 0 i.e., no training is required. When training is required, the intuition is that increasing Tt linearly

decreases the capacity through the term (T �Tt)=T , but only logarithmically increases the capacity through
the higher e�ective SNR �eff [12]. Therefore, it makes sense to make Tt as small as possible. For small SNR

we show that � = 1 i.e., all energy is allocated to communications. It is clear that optimization of Tt makes

sense only when � is strictly less than 1. When � = 1 no power is devoted to training and Tt can be made

as small as possible which is zero. When � < 1 the smallest value Tt can be is M since it takes at least that

many intervals to completely determine the unknowns.

Theorem 9 The optimal length of the training interval is Tt = M whenever � < 1 for all values of � and

T > M , and the capacity lower bound is

Ct=T � T �M

T
E log det

�
IM +

�eff
M

H1�H
y
1

�
(4.2)

where

�eff =

8><
>:

T�
T�(2�r)M (

p

 �p
 � 1� �)2 for T > (2� r)M

T 2�2

4(1�r)M(M+T�) (1 +
rM
T� )

2 for T = (2� r)M
T�

T�(2�r)M (
p�
 �p�
 + 1 + �)2 for T < (2� r)M

The optimal power allocations are easily obtained from Theorem 8 by simply setting Tc = T �M .

Proof: See Appendix G 2

4.2 Equal training and data power

As stated in [12], sometimes it is diÆcult for the transmitter to assign di�erent powers for training and

communication phases. In this section, we will concentrate on setting the training and communication

powers equal to each other in the following sense

(1� �)T

Tt
=
�T

Tc
=

�T

T � Tt
= 1

this means � = 1� Tt=T and that the power transmitted in Tt and Tc are equal.

In this case,

�eff =
�[r + �TtM ]

1 + �[TtM + (1� r)]
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and the capacity lower bound is

Ct=T � T � Tt
T

E log det(IM +
�eff
M

H1�H
y
1)

where �eff is as given above and H1 =
p
rnewHm +

p
1� rnewG where rnew = r

1+(1�r) �
M
Tt

r+(1�r) �
M
Tt
.

4.3 Numerical Comparisons

Throughout the section we have chosen the number of transmit antennas M, and receive antennas N, to be

equal and Hm = IM .

The Figures 3 and 4 show rnew and � respectively as a function of r for di�erent values of SNR. The plots

have been calculated for a block length given by T = 40 and the number of transmit and receive antennas

given by M = N = 5. Figure 3 shows that for low SNR values the channel behaves like a purely AWGN

channel given by
p
rHm and for high SNR values the channel behaves exactly like the original Rician fading

channel. Figure 4 shows that as the SNR goes to zero less and less power is allocated for training. This

agrees with the plot in Figure 3.
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Figure 3: Plot of rnew as a function of Rician parameter r

In Figure 5 we plot the training and communication powers for M = N = 10 and dB = 18 for di�erent

values of r. We see that as r goes to 1 less and less power is allocated to the training phase. This makes

sense as the proportion of the energy through the specular component increases there is less need for the

system to estimate the unknown Rayleigh component.
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Figure 6: Plot of capacity as a function of number of transmit antennas for a �xed T

Figure 6 shows capacity as a function of the number of transmit antennas for a �xed block length T = 40

when dB = 0 and N = 40. We can easily see calculate the optimum number of transmit antennas from

the �gure. In this case, we see that for a �xed T the optimum number of transmit antennas increases as as

r increases. This shows that as r goes to 1 there is a lesser need to estimate the unknown Rayleigh part

of the channel and this agrees very well with Figure 5 and Figure 7 as well which shows that the optimal

amount of training decreases as r increases. Figure 7 shows the optimal training period, constrained to

integer multiples of the symbol interval T , as a function of the block length for the case of equal transmit

and training powers.

4.4 E�ect of Low SNR on Capacity Lower Bound

Let's consider the e�ect of low SNR on the optimization of � when r 6= 0. For Tc > (1� r)M , as �! 0 it is

easy to see that 
 �p
(
 � 1� �)!1. Therefore, we conclude that for small � we have � = 1. Similarly,

for Tc = (1� r)M and Tc < (1� r)M . Therefore, the lower bound tells us that no energy need be spent on

training for small �. Also, the form of � is known from Section 3.1.

Evaluating the case where the training and transmission powers are equal we come to a similar conclusion.

For small �, �eff � r� which is independent of Tt. Therefore, the best value of Tt is Tt = 0. Which also

means that we spend absolutely no time on training. This is in stark contrast to the case when r = 0. In

this case, for low SNR Tt = T=2 [12] and �eff behaves as O(�2).
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Note that in both cases of equal and unequal power distribution between training and communication

phases the signal distribution during data transmission phase is Gaussian. Therefore, the lower bound

behaves as r��maxfHmH
y
mg. Also, rnew = 1 for small � showing that the channel behaves as a purely

Gaussian channel.

These conclusions mimic those in Section 3.3 for capacity results with Gaussian input. The low SNR

non-coherent capacity results for the case of a Gaussian input tell us that the capacity behaves as r��max

with Gaussian input. Moreover, the results in [12] also agree with the results derived in Section 3.3. We

showed that for purely Rayleigh fading channels with Gaussian input the capacity behaves as �2 which is

what the lower bound results in [12] also show. This makes sense because the capacity lower bound assumes

that the signaling input during communication period is Gaussian. This shows that the lower bound derived

in [12] and extended here is quite tight for low SNR values.

4.5 E�ect of High SNR on Capacity Lower Bound

For high SNR, 
 becomes Tc
Tc�(1�r)M and the optimal power allocation � becomes

� =

p
Tcp

Tc +
p
(1� r)M

and

�eff =
T

(
p
Tc +

p
(1� r)M)2

�:
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In the case of equal training and transmit powers, we have for high �

�eff = �
Tt

Tt +M(1� r)
:

For high SNR, the channel behaves as if it is completely known to the receiver. Note that in this case

rnew = r and � is an identity matrix for the case M � N . From the expressions for �eff given above we

conclude that unlike the case of low SNR the value of r a�ects the amount of time and power devoted for

training.

Next consider the capacity lower bound for high SNR. The optimizing signal covariance matrix �, in this

regime is an identity matrix. We know that at high SNR the optimal training period is M . Therefore, the

resulting lower bound is given by

Ct=T � T �M

T
E log det

0
BBB@IM +

��q
1� M

T +
q

(1�r)M
T

�2

HHy

M

1
CCCA :

Note that the lower bound has H �guring in it instead of H1. That is so because for high SNR, rnew = r.

This lower bound can be optimized over the number of transmit antennas used in which case the lower bound

can be rewritten as

Ct=T � max
M 0�M

max

n�
�

M
M 0

� T �M 0

T
E log det

0
BBB@IM 0 +

��q
1� M 0

T +
q

(1�r)M 0

T

�2

HnHny

M 0

1
CCCA ;

where now Hn is the nth matrix out of a possible M chooseM 0 (the number of ways to chooseM 0 transmit

elements out of a maximum M elements) matrices of size M 0 � N . Let Q = minfM 0; Ng and �ni be an

arbitrary nonzero eigenvalue of 1�p
1�M0

T
+
p

(1�r)M0

T

�2 HnHny

M 0 then we have

Ct=T � max
M 0�M

max

n�
�

M
M 0

��1� M 0

T

� QX
i=1

E log(1 + ��ni ):

At high SNR, the leading term involving � in
PQ

i=1 E log(1 + ��i) is Q log � which is independent of n.

Therefore,

Ct=T � max
M 0�M

(
(1� M 0

T )M 0 log � ifM 0 � N

(1� M 0

T )N log � ifM > N:

The expression (1� M 0

T )M 0, is maximized by choosing M 0 = T=2 when minfM;Ng � T=2 and by choosing

M 0 = minfM;Ng when minfM;Ng � T=2. This means that the expression is maximized when M 0 =
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minfM;N; T=2g. This is a similar conclusion drawn in [12] and [19]. Also, the leading term in � for high

SNR in the lower bound is given by

Ct=T � (1� K

T
)K log �

where K = minfM;N; T=2g. This result suggests that the number of degrees of freedom available for

communication is limited by the minimum of the number of transmit antennas, receive antennas and half

the length of the coherence interval. Moreover, from the results in Section 3.4 we see that the lower bound

is tight for the case when M � N and large T in the sense that the leading term involving � in the lower

bound is the same as the one in the expression for capacity.

4.6 Comparison of the training based lower bound (4.2) with the lower bound
derived in Section 3.2

It is quite natural to use the lower bound to investigate training based techniques as the lower bound to the

overall capacity of the system. Actually, using this \training" based lower bound it can be shown that the

capacity as T !1 converges to the capacity as if the receiver knows the channel. We will see how the new

lower bound (3.3) derived in this work compares with this training based lower bound. The three �gures

(Figure 8, Figure 9 and Figure 10) below show that the new lower bound is indeed useful as it does better

than the training based lower bound for r = 0. The plots are for M = N = 1 for di�erent values of SNR.

However, we note that for r = 1 the training based lower bound and the lower bound derived in Section

3.2 agree perfectly with each other and are equal to the upper bound.

5 Conclusions and Future Work

In this paper, we have analyzed the standard Rician fading channel for capacity. Most of the analysis was

for a general specular component but, for the special case of a rank-one specular component we were able to

show more structure on the signal input. For the case of general specular component, we were able to derive

asymptotic closed form expressions for capacity for low and high SNR scenarios.

A big part of the analysis e.g. the non-coherent capacity expression and training based lower bounds can

be very easily extended to the non-standard Rician models considered in [9] and [11].

One important result of the analysis is that for low SNRs beamforming is very desirable whereas for high

SNR scenarios it is not. This result is very useful in designing space-time codes. For high SNR scenarios,
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Figure 8: Comparison of the two lower bounds for dB = �20

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Block length T

C
ap

ac
ity

 (b
its

/T
)

Upper bound 

Training based lower bound 

New lower bound 

Figure 9: Comparison of the two lower bounds for dB = 0
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Figure 10: Comparison of the two lower bounds for dB = 20

one the standard codes designed for Rayleigh fading work for the case of Rician fading as well.

A lot more work needs to be done such as for case of M > N . We believe that more work along the lines

of [19] is possible for the case of Rician fading. We conclude as in [19] that at least for the case M = N

the number of degrees of freedom is given by M T�M
T . The training based lower bound gives an indication

that the number of degrees of freedom of a Rician channel is the same as that of a Rayleigh fading channel

minfM;N; T=2g (derived in [19] and [12]). It also seems reasonable that the work in [1] can be extended to

the case of Rician fading.

APPENDICES

A Capacity Optimization in Section 2.1

We have the following expression for the capacity

C = E log det(IN +
�

M
Hy�H)

where � is of the form

� =

�
M � (M � 1)d l1�M�1

l1M�1 dIM�1

�
:
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Let lr denote the real part of l and li the imaginary part. We can �nd the optimal value of d and l iteratively

by using the method of steepest descent as follows

dk+1 = dk + �
@C

@dk

lrk+1 = lrk + �
@C

@lrk

lik+1 = lik + �
@C

@lik

where dk, l
r
k and lik are the values of d, lr and li respectively at the kth iteration. We use the following

identity (Jacobi's formula) to calculate the partial derivatives.

@ log detA

@d
= trfA�1 @A

@d
g:

Therefore, we obtain

@C

@d
= Etrf[IN +

�

M
Hy�H ]�1 �

M
Hy @�

@d
Hg

and similarly for lr and li where

@�

@d
=

� �(M � 1) 0�M�1

0M�1 IM�1

�
@�

@lr
=

�
0 1�M�1

1M�1 0M�1

�
@�

@li
=

�
0 1�M�1

�1M�1 0M�1

�
:

The derivative can be evaluated using monte carlo simulation.

B Non-coherent Capacity for low SNR values under Peak Power

Constraint

In this section, we will use the notation introduced in Section 3.3. Here we concentrate on calculating the

capacity under the constraint trfSSyg � TM .

Theorem 10 Let the channel H be Rician (3.1) and the receiver have no knowledge of G. For �xed M , N

and T under the peak power constraint

C = rT��max(HmH
y
m) +O(�3=2):
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Proof: First, De�ne p( ~X) = E[p( ~X j ~S)] where

p( ~Xj ~S) = 1

�TN� ~Xj ~S
e
�( ~X�

p
r �
M
Ĥm ~S)y ��1

~Xj ~S
( ~X�

p
r �
M
Ĥm ~S)

Now

H( ~X) = Ek ~Xk<(M
�
)
 [log p(

~X)] +Ek ~Xk�(M
�
)
 [log p(

~X)]

Ek ~Xk�(M
�
)
 is de�ned by (3.2). Since P (k ~Xk � (M� )


) < O(e�(M
�
)
=TM ) where we have chosen 
 such that

1� 2
 > 1=2 or 
 < 1=4. We have

H( ~X) = Ek ~Xk<(M
�
)
 [log p(

~X)] +O(e�
1
TM

(M
�
)
 ):

For k ~Xk < (M� )



p( ~Xj ~S) =
1

�TN
e� ~Xy ~X

�
1 +

r
r
�

M
( ~XyĤm

~S + ~SyĤy
m
~X)�

�

M

�
trf(1� r)SSy 
 INg+ trfr ~SyĤy

mĤm
~Sg
�
+

(1� r)
�

M
~XySSy 
 IN ~X + r

1

2

�

M

�
~SyĤy

m
~X ~SyĤy

m
~X + ~SyĤy

m
~X ~XyĤm

~S+

~XyĤm
~S ~SyĤy

m
~X + ~XyĤm

~S ~XyĤm
~S
�
+O(�3=2�3
)

i
:

Since the capacity achieving signal has zero mean, for k ~Xk < (M� )



p( ~X) =
1

�TN
e� ~Xy ~X

h
1� �

M

�
trf(1� r)E[SSy]
 INg+ trfrĤmE[ ~S ~S

y]Ĥy
mg
�
+

�

M
((1� r) ~XyE[SSy]
 IN ~X + r ~XyĤmE[ ~S ~S

y]Ĥy
m
~X +O(�3=2�3
)

i

=
1

�TN det(� ~X)
e�

~Xy��1
~X

~X +
1

�TN
e� ~Xy ~X [O(�3=2�3
)]

where � ~X = ITN + �
M (1� r)E[SSy]
 IN + �

M rĤmE[ ~S ~S
y]Ĥy

m. Also,

H( ~X) = log det(ITN +
�

M
(1� r)E[SSy]
 IN +

�

M
rĤmE[ ~S ~S

y]Ĥy
m) + O(�3=2�3
)

=
�

M
trf(1� r)E[SSy]
 IN + rĤmE[ ~S ~S

y]Ĥy
mg+O(�3=2�3
):
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Since P (kSk2 > TM) = 0 we can show H( ~Xj ~S) = (1� r) �M trfE[SSy] 
 INg+ O(�2). Since 0 < 
 < 1=4,

I(X ;S) = r �
M trfĤmE[ ~S ~S

y]Ĥy
mg+ O(�3=2). It is very clear that to maximize C we need to choose E[ ~S ~Sy]

in such a way that all the energy is concentrated in the direction of the maximum eigenvalues of HmH
y
m. So

that we obtain, C = r �
M �max(HmH

y
m)trE[

~S ~Sy] + O(�3=2). trE[ ~S ~Sy] is maximized by choosing trf ~S ~Syg to
be the maximum possible which is TM . Therefore,

C = r�T�max(HmH
y
m) +O(�3=2):

2

Corollary 2 For purely Rayleigh fading channels lim�!0 C=� = 0

C Proof of Lemma 3 in Section 3.4.1

In this section we will show that as �2 ! 0 or as �!1 for the optimal input (s
(�)
i ; i = 1; : : : ;M), 8Æ; � > 0,

9�0 such that for all � < �0

P (
�

ks�i k
> Æ) < � (C.1)

for i = 1; : : : ;M . s
(�)
i denotes the optimum input signal being transmitted over antenna i, i = 1 : : : ;M when

the noise power at the receiver is �2. Also, throughout we use � to denote the average signal to noise ratio

M=�2 present at each of the receive antennas.

The proof in this section has basically been reproduced from [19] except for some minor changes to account

for the deterministic specular component (Hm) present in the channel. The proof is by contradiction. We

need to show that if the distribution P of a source s
(�)
i satis�es P ( �

ksik > Æ) > � for some � and Æ and for

arbitrarily small �2, there exists �2 such that s
(�)
i is not optimal. That is, we can construct another input

distribution that satis�es the same power constraint, but achieves higher mutual information. The steps in

the proof are as follows

1. We show that in a system with M transmit and N receive antennas, coherence time T � 2N , if

M � N , there exists a �nite constant k1 <1 such that for any �xed input distribution of S, I(X ;S) �
k1 +M(T �M) log �. That is, the mutual information increases with SNR at a rate no higher than

M(T �M) log �.
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2. For a system with M transmit and receive antennas, if we choose signals with signi�cant power only

in M 0 of the transmit antennas, that is ksik � C� for i = M 0 + 1; : : : ;M and some constant C, we

show that the mutual information increases with SNR at rate no higher than M 0(T �M 0) log �.

3. We show that for a system with M transmit and receive antennas if the input distribution doesn't

satisfy (C.1), that is, has a positive probability that ksik � C�, the mutual information achieved

increases with SNR at rate strictly lower than M(T �M) log �.

4. We show that in a system with M transmit and receive antennas for constant equal norm input

P (ksik =
p
T ) = 1, for i = 1; : : : ;M , the mutual information increases with SNR at rate M(T �

M) log �. Since M(T �M) �M 0(T �M 0) for any M 0 �M and T � 2M , any input distribution that

doesn't satisfy (C:1) yields a mutual information that increases at lower rate than constant equal norm

input, and thus is not optimal at high enough SNR level.

Step 1 For a channel with M transmit and N receive antennas, if M < N and T � 2N , we write the

conditional di�erential entropy as

H(X jS) = N
MX
i=1

E[log((1� r)ksik2 + �2)] +N(T �M) log�e�2:

Let X = �X�X	
y
X be the SVD for X then

H(X) � H(�X ) +H(�X j	) +H(	) +E[log JT;N (�1; : : : ; �N )]

� H(�X ) +H(�X ) +H(	) +E[log JT;N (�1; : : : ; �N )]

= log jR(N;N)j+ log jR(T;N)j+H(�X) +E[log JT;N (�1; : : : ; �N )]

where R(T;N) is the Steifel manifold for T � N [19] and is de�ned as the set of all unitary T �N matrices.

jR(T;N)j is given by

jR(T;N)j =
TY

i=T�N+1

2�i

(i� 1)!
:

JT;N (�1; : : : ; �N ) is the Jacobian of the transformation X ! �X�X	
y
X [19] and is given by

JT;N = (
1

2�
)N

Y
i<j�N

(�2i � �2j )
2
NY
i=1

�
2(T�M)+1
i :

We have also chosen to arrange �i in decreasing order so that �i > �j if i < j. Now

H(�X) = H(�1; : : : ; �M ; �M+1; : : : ; �N )

� H(�1; : : : ; �M ) +H(�M+1; : : : ; �N )
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Also,

E[log JT;N (�1; : : : ; �N )] = log
1

(2�)N
+

NX
i=1

E[log �
2(T�N)+1
i ] +

X
i<j�N

E[log(�2i � �2j )
2]

= log
1

(2�)M
+

MX
i=1

E[log�
2(T�N)+1
i ] +

X
i<j�M

E[log(�2i � �2j )
2] +

X
i�M;M<j�N

E[log(�2i � �2j )
2| {z }

�log �4
i

] +

log
1

(2�)N�M
+

NX
i=M+1

E[log�
2(T�N)+1
i ] +

X
M<i<j�N

E[log(�2i � �2j )
2]

� E[log JN;M (�1; : : : ; �M )]

+E[log JT�M;N�M (�M+1; : : : ; �N )]

+2(T �M)

MX
i=1

E[log�2i ]:

Next de�ne C1 = �1�1	
y
1 where �1 = diag(�1; : : : ; �M ), �1 is a N �M unitary matrix, 	1 is a M �M

unitary matrix. Choose �1, �1 and 	1 to be independent of each other. Similarly de�ne C2 from the rest

of the eigenvalues. Now

H(C1) = log jR(M;M)j+ log jR(N;M)j+H(�1; : : : ; �M ) +E[log JN;M (�1; : : : ; �M )]

H(C2) = log jR(N �M;N �M)j+ log jR(T �M;N �M)j

+H(�M+1; : : : ; �N ) +E[log JT�M;N�M (�M+1; : : : ; �N )]:

Substituting in the formula for H(X), we obtain

H(X) � H(C1) +H(C2) + (T �M)

MX
i=1

E[log�2i ] + log jR(T;N)j+ log jR(N;N)j

� log jR(N;M)j � log jR(M;M)j � log jR(N �M;N �M)j �

log jR(T �M;N �M)j

= H(C1) +H(C2) + (T �M)
MX
i=1

E[log�2i ] + log jG(T;M)j:

Note that C1 has bounded total power

trfE[C1C
y
1 ]g = trfE[�2i ]g = trfE[XXy]g � NT (M + �2):

Therefore, the di�erential entropy of C1 is bounded by the entropy of a random matrix with entries iid

35



Gaussian distributed with variance T (M+�2)
M [4, p. 234, Theorem 9.6.5]. That is

H(C1) � NM log

�
�e
T (M + �2)

M

�
:

Similarly, we bound the total power of C2. Since �M+1; : : : ; �N are the N �M least singular values of X ,

for any (N �M)�N unitary matrix Q.

trfE[C2C
y
2 ]g � (N �M)T�2:

Therefore, the di�erential entropy is maximized if C2 has independent iid Gaussian entries and

H(C2) � (N �M)(T �M) log

�
�e

T�2

T �M

�
:

Therefore, we obtain

H(X) � log jG(T;M)j+NM log

�
�e
T (M + �2)

M

�
+ (T �M)

MX
i=1

E[log�2i ]

+(N �M)(T �M) log�e�2 + (N �M)(T �M) log
T

T �M
:

Combining with H(X jS), we obtain

I(X ;S) � log jG(T;M)j+NM log
T (M + �2)

M
+ (N �M)(T �M) log

T

T �M| {z }
�

+(T �M �N)

MX
i=1

E[log�2i ]| {z }
�

+

N

 
MX
i=1

E[log�2i ]�
MX
i=1

E[log((1� r)ksik2 + �2)]

!
| {z }




�M(T �M) log�e�2:

By Jensen's inequality

MX
i=1

E[log�2i ] � M log(
1

M

MX
i=1

E[�2i ])

= M log
NT (M + �2)

M
:

For 
 it will be shown that

MX
i=1

E[log�2i ]�
MX
i=1

E[log((1� r)ksik2 + �2)] � k
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where k is some �nite constant.

Given S, X has mean
p
rSHm and covariance matrix IN 
 ((1� r)SSy + �2IT ). If S = �V	y then

XyX = HySySH +W ySH +HySyW +W yW

d
= Hy

1V
yV H1 +W yV yH1 +Hy

1V W +W yW

where H1 has the covariance matrix as H but mean is given by
p
r	yHm. Therefore, X

yX = Xy
1X1 where

X1 = V H1 +W

Now, X1 has the same distribution as ((1 � r)V V y + �2IT )
1=2Z where Z is a random Gaussian matrix

with mean
p
r((1� r)V V y + �2IT )

�1=2	yHm and covariance INT . Therefore,

XyX d
= Zy((1� r)V V y + �2IT )Z:

Let (XyX jS) denote the realization of XyX given S then

(XyX jS) d
= Zy

2
666666664

(1� r)ks1k2 + �2

. . .

(1� r)ksMk2 + �2

�2

. . .

�2

3
777777775
Z:

Let Z = [Z1jZ2] be the partition of Z such that

(XyX jS) d
= Zy1((1� r)V 2 + �2IM )Z1 + �2Zy2Z2

where Z1 has mean
p
r((1�r)V 2+�2IM )�1=2V	yHm and covariance INM and Z2 has mean 0 and covariance

IN(T�M)

We use the following Lemma from [13]

Lemma 6 If C and B are both Hermitian matrices, and if their eigenvalues are both arranged in decreasing

order, then
NX
i=1

(�i(C) � �i(B))
2 � kC �Bk22

where kAk22 def=
P
A2
ij , �i(A) denotes the i

th eigenvalue of Hermitian matrix A.

Applying this Lemma with C = (XyX jS) and B = Zy1(V
2 + �2IM )Z1 we obtain

�i(C) � �i(B) + �2kZy2Z2k2
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for i = 1; : : : ;M Note that �i(B) = �i(B
0) where B0 = ((1� r)V 2 + �2IM )Z1Z

y
1 . Let k = E[kZy2Z2k2] be a

�nite constant. Now, since Z1 and Z2 are independent matrices (covariance of [Z1jZ2] is a diagonal matrix)

MX
i=1

E[log �2i jS] �
MX
i=1

E[log(�i(((1� r)V 2 + �2IM )Z1Z
y
1) + �2kZy2Z2k2)]

=

MX
i=1

E[E[log(�i(((1� r)V 2 + �2IM )Z1Z
y
1) + �2kZy2Z2k2) j Z1]]

�
MX
i=1

E[log(�i(((1� r)V 2 + �2IM )Z1Z
y
1) + �2k)]

= E[log det(((1� r)V 2 + �2IM )Z1Z
y
1 + k�2IM )]

= E[log detZ1Z
y
1 ] +E[log det((1� r)V 2 + �2IM + k�2(Z1Z

y
1)
�1)]

where the second inequality follows from Jensen's inequality and taking expectation over Z2. Using Lemma

6 again on the second term, we have

MX
i=1

E[log�2i jS] � E[log detZ1Z
y
1 ] +E[log det((1� r)V 2 + �2IM

+k�2k(Z1Z1)
�1k2IM )]

� E[log detZ1Z
y
1 ] +E[log det((1� r)V 2 + k0�2IM )]

where k0 = 1 + kE[kZ1Z
y
1k2] is a �nite constant. Next, we have

MX
i=1

E[log�2i jS]�
MX
i=1

log((1� r)ksik2 + �2) � E[log detZ1Z
y
1 ] +

MX
i=1

log
(1� r)ksik2 + k0�2

(1� r)ksik2 + �2

� E[log detZ1Z
y
1 ] + k00

where k00 is another constant. Taking Expectation over S, we have shown that
PM

i=1 E[log�
2
i ]�
PM

i=1 E[log((1�
r)ksik2 + �2)] is bounded above by a constant.

Note that as ksik ! 1, Z1 !
q

1
1�rH1 so that E[Z1Z

y
1 ]! 1

1�rE[H1H
y
1 ] =

1
1�rE[HH

y].

Step 2 Now assume that there areM transmit and receive antennas and that for N�M 0 > 0 antennas,

the transmitted signal has bounded energy, that is, ksik2 < C�2 for some constant C. Start from a system

with only M 0 transmit antennas, the extra power we send on the rest M �M 0 antennas accrues only a

limited capacity gain since the SNR is bounded. Therefore, we conclude that the mutual information must

be no more than k2 +M 0(T �M 0) log � for some �nite k2 that is uniform for all SNR level and all input

distributions.
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Particularly, if M 0 = M � 1, ie we have at least 1 transmit antenna to transmit signal with �nite SNR,

under the assumption that T � 2M (T greater than twice the number of receivers), we have M 0(T �M 0) <

M(T �M). This means that the mutual information achieved has an upper bound that increases with log

SNR at rate M 0(T �M 0) log �, which is a lower rate than M(T �M) log �.

Step 3 Now we further generalize the result above to consider the input which on at least 1 antennas,

the signal transmitted has �nite SNR with a positive probability, that is P (ksMk2 < C�2) = �. De�ne the

event E = fksMk2 < C�2g, then the mutual information can be written as

I(X ;S) � �I(X ;SjE) + (1� �)I(X ;SjEc) + I(E;X)

� �(k1 + (M � 1)(T �M + 1) log �) + (1� �)(k2 +M(T �M) log �) +

log 2

where k1 and k2 are two �nite constants. Under the assumption that T � 2M , the resulting mutual

information thus increases with SNR at rate that is strictly less than M(T �M) log �.

Step 4 Here we will show that for the case of M transmit and receive antennas, the constant equal

norm input P (ksik =
p
T ) = 1 for i = 1; : : : ;M , achieves a mutual information that increases at a rate

M(T �M log �.

Lemma 7 For the constant equal norm input,

lim inf
�2!0

[I(X ;S)� f(�)] � 0

where � =M=�2, and

f(�) = log jG(T;M)j+ (T �M)E[log detHHy] +M(T �M) log
T�

M�e
�M2 log[(1� r)T ]

where jG(T;M)j is as de�ned in Lemma 2.

Proof: Consider

H(X) � H(SH)

= H(QV H) + log jG(T;M)j+ (T �M)E[log detHy	V 2	yH ]

= H(QV H) + log jG(T;M)j+M(T �M) logT + (T �M)E[log detHHy]

H(X jS) � H(QV H) +M

MX
i=1

E[log((1� r)ksik2 + �2)] +M(T �M) log�e�2

� H(QV H) +M2 log[(1� r)T ] +M2 �2

(1� r)T
+M(T �M) log�e�2:
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Therefore,

I(X ;S) � log jG(T;M)j+ (T �M)E[log detHHy]�M(T �M) log�e�2 +

M(T �M) logT �M2 log[(1� r)T ]�M2 �2

(1� r)T

= f(�)�M2 �2

(1� r)T
! f(�):

2

Combining the result in step 4 with results in Step 3 we see that for any input that doesn't satisfy (C.1)

the mutual information increases at a strictly lower rate than for the equal norm input. Thus at high SNR,

any input not satisfying (C.1) is not optimal and this completes the proof of Lemma 3.

D Convergence of H(X) for T > M = N

The results in this section are needed in the proof of Theorem 4 in Section 3.4.1. We need the following two

theorems, proved in [10], for proving the results in this section.

Theorem 11 Let fXi 2 Cl P g be a sequence of continuous random variables with probability density func-

tions, ffig and X 2 Cl P be a continuous random variable with probability density function f such that fi ! f

pointwise. If 1) maxffi(x); f(x)g � A < 1 for all i and 2) maxfR kxk�fi(x)dx; R kxk�f(x)dxg � L < 1
for some � > 1 and all i then H(Xi)! H(X). kxk =

p
xyx denotes the Euclidean norm of x.

Theorem 12 Let fXi 2 Cl P g be a sequence of continuous random variables with probability density func-

tions, fi and X 2 Cl P be a continuous random variable with probability density function f . Let Xi
P�! X.

If 1)
R kxk�fn(x)dx � L and

R kxk�f(x)dx � L for some � > 1 and L < 1 2) f(x) is bounded then

lim supi!1H(Xi) � H(X).

First, we will show convergence for the case T =M = N needed for Theorem 4 and then use the result

to to show convergence for the general case of T > M = N . We need the following lemma to establish the

result for T =M = N .

Lemma 8 If �min(SS
y) � � > 0 then 8n there exists an M such that jf(X)� f(Z)j <MÆ if jX �Zj < Æ.

Proof: Let Z = X + �X with j�X j < Æ and [�2IT + (1 � r)SSy] = D. First, we will �x S and show

that for all S, f(X jS) satis�es the above property. Therefore, it will follow that f(X) also satis�es the same
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property. Consider f0(X jS) the density de�ned with zero mean which is just a translated version of f(X jS).

f(X +�X jS) = f(X jS)[1� tr[D�1(�XXy +X�Xy +O(k�Xk22))]]

then

jf(X +�X jS)� f(X jS)j � f(X jS)jtr[D�1(�XXy +X�Xy)] + tr[D�1k�Xk22]j:

Now

f(X jS) � 1

�TN detN [D]
�minf 1p

tr[D�1XXy]
; 1g:

Next, make use of the following inequalities

trfD�1XXyg � trf�min(D�1)XXyg

� �min(D
�1)�max(XX

y) = �min(D
�1)kXk22:

Also,

jtrfD�1(X�Xy +�XXy +O(k�Xk22)gj �
X
i

j�i(D�1[�XXy +X�Xy])j+

kD�1k2k�Xk22
� TkD�1k2kXk2k�Xk2 +

TkD�1k2k�Xk22:

Therefore,

jf(X +�X jS)� f(X jS)j � 1

�TN detN [D]
�minf 1p

�min(D�1)kXk2
; 1g �

TkD�1k2k�Xk2(kXk2 + k�Xk2):

Since, we have restricted �min(SS
y) � � > 0 we have for some constant M

jf(X +�X jS)� f(X jS)j � Mk�Xk2:

From which the Lemma follows. Note that det[D] compensates for
p
�min(D�1) in the denominator. 2

Let's consider the T �N random matrix X = SH +W . The entries of M �N matrix H , T =M = N ,

are independent circular complex Normal random variables with non-zero mean and unit variance whereas

the entries of W are independent circular complex Normal random variables with zero-mean and variance

�2.
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Let S be a random matrix such that �min(SS
y) � � > 0 with distribution, Fmax(S) chosen in such a

way to maximize I(X ;S). For each value of �2 = 1=n, n an integer !1, the density of X is

f(X) = ES

"
e�trf[�2IT+(1�r)SSy]�1(X�prNMSHm)(X�prNMSHm)yg

�TNdetN [�2IT + (1� r)SSy]

#
:

where the expectation is over Fmax(S). It is easy to see that f(X) as a function of �2 is a continuous function

of �2. As lim�2!0 f(X) exists, let's call this limit g(X).

Since we have imposed the condition that �min(SS
y) � � > 0 w.p. 1, f(X) is bounded above by 1

(��)TN .

Thus f(X) satis�es the condition for Theorem 11. From Lemma 8 we also have that for all n there exists a

common Æ such that jf(X)� f(Z)j < � for all jX �Zj < Æ. Therefore, H(X)! Hg . Since � is arbitrary we

conclude that for all optimal signals with the restriction �min(SS
y) > 0, H(X) ! Hg . Now, we claim that

the condition �min > 0 covers all optimal signals. Otherwise, if �min(SS
y) = 0 with �nite probability then

for all �2 we have min ksik2 � L�2 for some constant L with �nite probability. This is a contradiction of

the condition (3.5). This completes the proof of convergence of H(X) for T =M = N . 2

Now, we show convergence of H(X) for T > M = N . We will show that H(X) � H(SH) for small values

of � where S = �V	y with � independent of V and 	.

Let S0 = �0V0	
y
0 denote a signal with its density set to the limiting optimal density of S as �2 ! 0.

H(X) � H(Y ) = H(Q�Y	y
Y ) + log jG(T;M)j+ (T �M)E[log det�2

Y ]

where Y = SH and Q is an isotropic matrix of size N �M . Let

YQ = QV	yH

Then H(Q�Y	y
Y ) = H(YQ).

From the proof of the case T =M = N , we have lim�2!0H(YQ) = H(QV0	y
0H). Also,

lim
�2!0

E[log det�2
Y ] = E[log det�2

Y0 ]

where Y0 = S0H Therefore, lim inf�2!0H(X) � lim�2!0H(Y ) = H(S0H).

Now, to show lim�2!0H(X) � H(S0H). From before

H(X) = H(Q�X	y
X) + jG(T;N)j+ (T �M)E[log det�2

X ]:

Now Q�X	
y
X converges in distribution to QV0	

y
0H . Since the density of QV0	

y
0H is bounded, from

Theorem 12 we have lim sup�2!0H(Q�X	y
X) � H(QV0	y

0H). Also, note that lim�2!0 E[log det�
2
X ] =

E[log det�2
Y0
] = lim�2!0E[log det �

2
Y ]. Which leads to lim sup�2!0H(X) � H(S0H) = lim�2!0H(SH).
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Therefore, lim�2!0H(X) = lim�2!0H(SH) and for small �2, H(X) � H(SH).

E Proof of Theorem 7 in Section 4.1

First we note that �2
Ĝ
= 1� �2�G. This means that

�eff =
�T�+ Tc

(1� r)�T��2�G + Tc
� 1:

Therefore, to maximize �eff we just need to minimize �2�G. Now,

�2�G =
1

NM
trfE[ ~�G~�G

y
]g

where

E[ ~�G~�G
y
] = (IM + (1� r)

�

M
SytSt)

�1 
 IN

where � = M
�2 . Therefore, the problem is the following

min
St:trfSytStg�(1��)TM

1

M
trf
�
IM + (1� r)

�

M
SytSt

��1

g:

The problem above can be restated as

min
�1;:::;�M :

P
�m�(1��)TM

1

M

MX
m=1

1

1 + (1� r) �M �m

where �m, m = 1; : : : ;M are the eigenvalues of SytSt. The solution to the above problem is �1 = : : : = �M =

(1� �)T . Therefore, the optimum St satis�es S
y
tSt = (1� �)TIM .

This gives �2�G = 1
1+(1�r) �

M
(1��)T . Also, for this choice of St we obtain the elements of Ĝ to be zero mean

independent with Gaussian distribution. This gives

�eff =
�T�[Mr + �(1� �)T ]

Tc(M + �(1� �)T ) + (1� r)�T�M
:

F Proof of Theorem 8 in Section 4.1

First, from Theorem 7

�eff =
�T�[Mr + �(1� �)T ]

Tc(M + �(1� �)T ) + (1� r)�T�M

=
T�

Tc � (1� r)M

(1� �)�+ � rMT�
MTc+T�Tc

T�[Tc�(1�r)M ] � �
Tc 6= (1� r)M
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=
T 2�2

Tc(M + T�)
[(1� �)�+ �

rM

T�
] Tc = (1� r)M:

Consider the following three cases for the maximization of �eff over 0 � � � 1.

Case 1. Tc = (1� r)M :

We need to maximize (1��)�+� rMT� over 0 � � < 1. The maximum occurs at � = �0 = minf 12+ rM
2T� ; 1g.

In this case

�eff =
T 2�2

(1� r)M(M + T�)
[�0

rM

T�
+ �0(1� �0)]:

Case 2. Tc > (1� r)M :

In this case,

�eff =
T�

Tc � (1� r)M

(1� �)�+ ��


 � �

where � = rM
T� and 
 = MTc+T�Tc

T�[Tc�(1�r)M ] > 1. We need to maximize (1��)�+��

�� over 0 � � � 1 which occurs at

� = minf
 �
p

2 � 
 � �
; 1g. Therefore,

�eff =
T�

Tc � (1� r)M
(
p

 �

p

 � 1� �)2

when � < 1. When � = 1 we obtain Tc = T . Substituting � = 1 in the expression for �eff

�eff =
�T�[Mr + �(1� �)T ]

Tc(M + �(1� �)T ) + (1� r)�T�M

we obtain �eff =
rT�

T+(1�r)T� .

Case 3. Tc < (1� r)M :

In this case,

�eff =
T�

(1� r)M � Tc

(1� �)�+ ��

�� 


where 
 = MTc+T�Tc
T�[Tc�(1�r)M ] < 0. Maximizing (1��)�+��


�� over 0 � � � 1 we obtain � = minf
+
p

2 � 
 � 
�; 1g.

Therefore, when � < 1

�eff =
T�

Tc � (1� r)M
(
p�
 �

p
�
 + 1 + �)2

Similar to the case Tc < (1� r)M , when � = 1 we obtain Tc = T and �eff =
rT�

T+(1�r)T� .
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G Proof of Theorem 9 in Section 4.1

Note that optimization over Tc makes sense only when � < 1. If � = 1 then Tc obviously has to be set equal

to T . First, we examine the case Tc > (1� r)M . The other two cases are similar. Let Q = minfM;Ng and
let �i denote the i

th non-zero eigenvalue of
H1H

y
1

M , i = 1; : : : ; Q. Then we have

Ct �
QX
i=1

Tc
T
E log(1 + �eff�i):

Let Cl denote the RHS in the expression above. The idea is to maximize Cl as a function of Tc. We have

dCl
dTc

=

QX
i=1

�
1

T
E log(1 + �eff�i) +

Tc
T

d�eff
dTc

E

�
�i

1 + �eff�i

��
:

Now, �eff for Tc > (1� r)M is given by

�eff =
T�

Tc � (1� r)M
(
p

 �p
 � 1� �)2

where 
 = MTc+T�Tc
T�[Tc�(1�r)M ] and � =

rM
T� . It can be easily veri�ed that

d�eff
dTc

=
T�(

p

 �p
 � 1� �)2

[Tc � (1� r)M ]2

"s
(1� r)M(M + T�)

Tc(Tc + T�+ rM)
� 1

#
:

Therefore,

dCl
dTc

=
1

T

QX
i=1

E

"
log(1 + �eff�i)�

�eff�i
1 + �eff�i

Tc
Tc � (1� r)M

"
1�

s
(1� r)M(M + T�)

Tc(Tc + T�+ rM)

# #
:

Since, Tc
Tc�(1�r)M

h
1�

q
(1�r)M(M+T�)
Tc(Tc+T�+rM)

i
< 1 and log(1 + x) � x=(1 + x) � 0 for all x � 0 we have dCl

dTc
> 0.

Therefore, we need to increase Tc as much as possible to maximize Cl or Tc = T �M .
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