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Fundamental Limits on Parametric Shape Estimation Performance

Robinson Piramuthu, Alfred O. Hero

Abstract

This paper considers the problem of extraction of shape information from noise corrupted images ac-
quired from a resolution limited imaging instrument, a problem that is closely related to shape estimation and
segmentation. The problem is formulated as estimation of coefficients in a basis expansion of the boundary of
2D and 3D star—-shaped objects. We derive an expression for the Fisher information matrix and twe-Cram”
Rao (CR) bound under a polar shape descriptor model, homogeneous object intensity, Gaussian point spread
function, and additive white Gaussian noise. We analyze boundary estimation performance for both finite
and infinite dimensional sets of shape basis functions. We show that circles and spheres are the easiest to
estimate in the sense that they minimize the CR bound over the class of star shaped 2D and 3D obijects,
respectively. We show that irregularly shaped objects with sharp corners are worst case shapes in the sense
that they maximize the CR bound. Finally we discuss the CR bound sensitivity with respect to variation of
the center point position for the star—shaped object. In particular, the object centroid is not in general the
optimum center location.

Index Terms: Parametric shape estimation, star—shaped objects g&+&a0 bound, Fisher information,

B—splines, estimator performance limits.
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I. INTRODUCTION

In this paper we derive the Fisher information and the @aRao (CR) bound for 2D and 3D shape estimation
problems which are applicable to the class of smooth star-shaped objects. The CR bound is an important and usefu
guantity since it permits comparisons between unbiased estimators of shape parameters and an estimator-independe
lower bound. The CR bound and its associated Fisher information can also be used to explore the intrinsic sensitivity
of shape estimator variance to object shape variations, imaging system imperfections, and noise. This allows the stud)
of classes of shapes that are inherently simple or inherently difficult to estimate with low variance for a given class
of shape models. Furthermore, as shown in [11]. the shape-estimator Fisher information plays an important role in
minimax fusion of shape imagery and associated functional imagery of the same imaging volume, e.g. as arises in
fusion of anatomical MRI scans to functional PET scans in medical imaging. This very important in applications
such as diagnosis of medical images where shape extraction gives vital information about organ or tumor anatomy.
Depending on prior knowledge about the a priori class of shapes of the organ or tumor, one can assess statistica

reliability of the extracted information.

Shape extraction and segmentation methods can be either non-parametric or model-based. @Greslevieling
is the simplest and most wide-spread non-parametric shape extraction technique [29]. While computationally cheap
and fast, thresholding methods are very sensitive to noise. Another of the difficulties with thresholding methods is the
choice of threshold. Usually, the threshold is determined from the histogram [26] or by optimizing certain criterion
such as connectivity of edges. If the object has a varying intensity level, using a single global threshold [19] may
not perform well. In such cases, the image can be partitioned and local thresholds determined for subimages. Othel
non-parametric methods for shape extraction etge detection operatossich as Laplacian [1], Sobel [28], Kirsch
[18], Marr—Hildreth [22] and Canny [4] operators. This is usually followed by other processing such as thresholding,
median filtering, boundary tracing etough transformatiofil 2], [14].

As contrasted to non-parametric shape estimation, parametric approaches to shape extraction are model-based. E
amples of parametric methods includeurier descriptord31], [36], piecewise poynomials such Bgzier curves
B—splinesor Beta—spline$3], [37], and spherical harmonic expansions [23], [5]. These parametric methods require
the object to be star—shaped, i.e. its boundary is uniquely specified by some radial function in polar (2D shapes) or
spherical (3D shapes) coordinates with origin located at a center of description inside the object. It is for such models
that the CR bounding approach in this paper are applicable. Star shaped models have been applied to a very wids
ranging set of applications areas including: three dimensonal brain segmentation [17], estimating shape torsion anc

scale relative to a reference shape [10], viral imaging and structure determination [39]. The results of this paper permit
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exploration of fundamental estimation theoretic limitations for these and other applications.

There also exist model-based shape extraction schemes which do not require star—shaped object medele®.g.,
[16], [20], [21], [24], [25], [27], [38] anddeformable templatdg], [6], [15]. However, the specification of CR bounds

for these models requires a different approach than that described in this paper.

The focus of this paper is gmarametricshape extraction for star-shaped objects whose boundary function is rep-
resentable as a linear combinationeopriori known set of basis functions. The covariance of any estimator can be
used to quantify uncertainty in any unbiased estimate. It is well-known that the covariance of any estimator can be
bounded from below by the inverse of the Fisher information (the CR bound) as long as the estimator is unbiased. We
obtain expressions for the Fisher information and its inverse for 2D and 3D shape estimation under the assumptions
of homogeneous Gaussian additive noise, constant object intensity, and system resolution characterized by a Gaussic
blur function. Simple asymptotic expressions for Fisher information are obtained which are applicable to the case of
fine spatial resolution of the imaging. The Fisher information depends on factors such as contrast between the interior
and background intensities, noise and blur levels in the observed image, shape of the object to be estimated, and on
priori constraints (for example, smoothness imposed by a selected finite basis). More significantly, for 2D shapes the
Fisher information depends on the (angular) speed of the curve describing the shape boundary. The particular spee!
function arising here is a measure of deviation from circularity of the shape boundary. For 3D shapes the Fisher infor-
mation depends on a speed function which is a generalization to surfaces of the concept of speed of a curve. Finally
we explore the extremal shapes which maximize and minimize the CR bound. For 2D shapes of fixed perimeter we
establish that disk—shaped objects are the easiest to estimate while flower-shaped objects are the hardest to estime
among the class of objects representable by the B—spline basis. Similar results are shown for 3D shapes. The sensitivit

of the CR bound to the center of description is also investigated.

An outline of the paper is as follows. First, we specify the model assumptions in Section 2. In Section 3, we
give expressions for Fisher information and the CR bound for 2D shapes supported on a finite basis set. Under some
additional assumptions we also treat the case of an infinite (complete) basis in this section. Then we study extremal
shapes for both the finite and infinite dimensional basis sets. In Section 4, we study the effect of changing the center—
of—description (all the while retaining a star—shaped curve) on the CR bound. An extension of the theory to 3D shapes

is presented in Section 5. Most of the proofs are relegated to appendices in order to improve the flow of the paper.

II. 2D SHAPE MODEL

In this section, we define the model for uncorrupted image, observed image and feature of shape/region of interest.
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A. Model for Uncorrupted Image

An object of uniform intensity on a uniform background in 2D or 3D euclidean space is specified by its shape or
boundary, which is either a closed curve in 2D or a closed surface in 3B dsgtote a parameterization that completely
describes the shape and I¢f denote the interior of the object. Define the indicator funclignfor the regionizs as

follows:

1, fxeR
IR“’(X):{ 0 o.\}/(v. ’ 1)

Thus, the exterior (complement) & can be indicated by — I, (x).

Let the object have a uniform intensitynt > 0 over Ry and let the background intensity over the complement of

Rg beCge > 0. The uncorrupted image can then be represented as
Iy(x) = it - IR, (%) + CBa - (1 = IR, (%)). )

The contrast of the object within the imagedgnT — Csal.

B. Model for Observed Data

Let the observed datéy (x) be
Y (x) = (Ig + +H)(x) + n(x), 3)

wherex« denotes convolutioni (-) is the system spatial response and) is system noise. We assume the point
spread functiot (-) to be a spatial invariant symmetric Gaussian with blur paranegteand the additive noise(-) to
be zero mean white Gaussian with power spectral dengityrhis restriction to Gaussian point spread is not a severe

limitation for many imaging modalities and it simplifies the analysis to follow.

C. Model for Boundary

We assume that the object interiBlp is a star—shaped region and cn therefore be described by a radius function
r(¢) as a scalar function of angle € [—n, 7), with respect to some origi@® specified inside?,. We refer toO as
the center—of-descriptianWe additionally assume that the shape can be described by a linear combination of basis
functions{ B;(#)}£ | in the sense that
ro(¢) =B ()0, (4)
whereB(¢) = [B1(¢),..., Bx(4)]" is a vector of linearly independent basis functions[em, 7). Some basis

sets used to represent closed boundaries are periodic planar curve models such as Fourier descriptors, fitting of lin
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segments, cubics, Bezier curves, Beta-splines and B-splines [3]. Whd#)'éhare taken from a complete basis set

{B;}:2,, any L, bounded curve, has the representatiop(®) = >~ 6;B;(¢), ¢ € [-7, 7).

I1l. 2D SHAPE ESTIMATION

Here we consider the CR bound for two cases of 2D shape estimation, néimtdgndinfinite dimensional collec-

tions of basis functions.

A. Cranmer—Rao Bound for Finite Dimensional Case

For this case the numbé¢ of basis elements is finite. The finite dimensional CR bound is a lower bound on the

K x K estimator covariance matrix associated with any unbiased estithafdy
covs(6) > Fy', (5)

whereFy is the Fisher information matrix [7], [13]. The inequality in the CR bound is shorthand notation fqi(#gev

F(,‘1 is a non—negative definite matrix.

The Fisher information matri¥y was derived in [33] for the model (3) and (4):

“ > > 2
7 -7
F@:CCN //exp |:_H 0(¢)4020(7)H ré((b) ré('Y)B((b) BT(’y) d(bd'y (6)
where
Coni — (Cint — CBG)? B (contrast)®
ON = Arolo? o Arolo?

is the normalized contrast amg(¢) represents the radius vector of the boundary at apglhus, |75 (¢) — 7y (v)|| is

the Euclidean distance between boundary poiptg) andrs (). More details on this expression can be found in [33,
pp. 58-60] and [11]. The CR bound for covariance*0f, an unbiased estimate gf(-) that also lies in the span of
the given basis set, is given iR B, (¢, v) = BT (¢) F, ' B() and an asymptotic form was shown in [11] as

CRP,0(601) = 5= BT [ [ o BB ] B + o)

(7)

where

ho() = o(V) @®)

Vr2w) + ()
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Om = max{ V20, } = max{ V20, } (9)
75 () \/[ro(¢)]2+[f‘;;(¢)]2

andry(¢) = drg(¢)/do.

The quantity\/[r9(¢)]2 + [ry(9)] ? gives the magnitude of rate at which the radius vector changes with angle and is
known as the (angular) “speed” [30] of the curve. Hence we refer,tn (9) as the maximum resolution—speed ratio.
Note thats,, decreases when the shape is magnified. On the other hand,swhisnsmall, the spatial resolution is

high enough to resolve finer details in the boundary shape.

B. Interpretation ofiy (1))

The quantityhy (1) from (8) has some interesting interpretations not discussed in [11]. Refer to Figure 1. It can be

shown that the distance from the center—of—descrigiida the tangent line ab is
rg(v)
2
Jr + (122)

. To see this consider the segméht in Figure 1:0A = OPsin(r — 7) = OPsin 7. ThereforeOA = %

It is easily shown thatan 7 = % [32, pp. 473]. ThusQ A = hy(2)).

We therefore conclude thdly (1)) is the distance between the center—of—description and the tangent line to the
boundary at angle. For fixed perimeter this distance is obviously minimized for a circular boundary. Also note that
he (1) can be written as a ratio of (') (same dimensions as perimeter) and the dimensionless qugritity {:i%} 2.

This dimensionless quantity is the ratio of speed [30] of the curve at angdethe speed of a circle of radiug(v)

passing through the same point, i\y,(rg(lﬁ) + [ré(qb)]z/ ra(i) 4 02,

If we defineP to be the perimeter of the shape afdo be its area, then the dimensionless quartity: 47 A/ P?
is a measure ofircularity [8] that varies from 0 to 1. For example, circles achieve a maximum circularity of unity.
Squares have circularity equal to 0.7854 and equilateral triangles have circularity 0.6046. An important feature of

this measure is its scale invariance: scaling of the shape does not change its circularity measure. Recdtliag that

o \/ro (¢)]*dy andA = L [T r2(4)dy, we can interpret the ratie% as a dimensionless
re(V)+[ro(¥)
measure ofnstantaneous circularitper unit). Note that this measure also takes values in 0 to 1 and is invariant to

scaling of shape.
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C. Craner—Rao Bound for Infinite Dimensional Case

Let { B;(-) };=1 be a complete orthonormal basis set. Define the radial function

K
ric(¢) =Y 0:Bi(9) (10)

=1

and its estimate X
Prc(¢) =Y 0:Bi(¢). (11)

=1

We make the following assumptions:

(Al) Letr(:) = limg oo ric () @ndr(-) = lim g o0 75 (+) (M.S.).
(A2) Assume thaf(-) is an unbiased estimate of-), with finite mean-square valueg. E [#*(¢)] < ).

(A3) Assume that the first two derivativesf (¢) andr(¢) w.r.t. ¢ exist for all¢ and K.

Since,E [#%(¢)] < oo and since the integrand and the limits of integration are finite, the estimator covariance function
satisfies [34, page 180]
|| ot it dod < . (12

As the basis functions; (-), Bz(-), . .. are complete and orthonormalfinr, =), we have

/ U BB () do = 5 (13)

and 3 [" jo)BOBG) B = 59 (1)

where f(-) is any continuous function that is integrablg i, =) andd;; is the Kronecker delta function. The former
equation expresses orthonormality of the basis. The latter equation follows from the fgct théty) B;(v) dv = f;,
wheref; is the projection off (-) onto the basis functioB; (-), and using_:>, fiBi(¢) = f(¢).

Define
M) = Conenp | IO ) (15)
(o) = Coxep [T ) (16)
Ff = // his (6,7) Bi(¢) Bj(7) do dy. (17)

and FZ']‘ = // hF(¢7 ’y) BZ((b) B]‘(’y) d(b d’y. (18)
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whereF* is the Fisher information for finite dimensional case wiftcoefficients.

The Fisher information for this infinite dimensional case is given by the following Lemma, which is proven in

Appendix A.

Lemma 1:Let the assumptions A1, A2 and A3 be satsified. The Fisher information for the infinite dimensional case

is then given byF;;, Whereﬂff uniformly converges td;; ask — oc. Furthermore,

Kis

S By < Cox / 2(6) do. (19)
=1 —r
|

Define the following 2 additional conditions

(A4) Suppose there exists;; such that
Y Gaky =) FaGij = 6. (20)
=1 =1

(A5) For any square summable sequefieg:2,, assume that the covariancefpfatisfies

ZZ wiCOV(éi,é]‘)wj > ZZ wiGi]w]‘. (21)
=1 j=1 =1 j=1
If both (A4) and (A5) are satisfied, then by definitigs;; is the CR bound on the covariancefpf Note that if either

one of (A4) and (A5) fail to hold, then the determination of the infinite dimensional CR bound is an open problem.

If both (A4) and (A5) are satisfied, then a restricted CR bound for infinite dimensional case can be obtained from the

following Lemma, which is proven in Appendix B.

Lemma 2:Let the assumptions A1, A2, A3, and A5 be satisfied. Suppose there exists an integrable funttion

that satisfies

Kis

/ b (6, ¥)ha (0, 7) dib = 6(, 7). (22)

—T

i.e. hg(+, ) is the operator inverse @fx(-, -). Then
Gy = [[ hatoon) Bito) Bi) do @3)
satisfies (20). Hence A4 is satisfied. From assumption (A5), the covarian¢e)dasatisfies

cov(#(¢), (7)) — ha(é,v) isn.n.d.
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D. Best—Shape Analysis for Finite Dimensional Case

We need the following Lemma, which is proven in Appendix C.

Lemma 3:Assume that the derivatives r”, " exist and are finite. The only star-shaped object that satisfies
r*(v)
V) + ()

—c, Vo (24)

wherec is a constant, is a circular disk.

This allows us to establish the optimality of the disk shapes

Theorem 3.1:Let K be finite and define&x the set of shapes having boundary functign) in the linear span
of the basis{¢;} . If Sk contains the class of disk shapes then, to order, ), the maximum eigenvalue of the

Cramer—Rao bound is minimized ovél; by this class of shapes.

0
Proof of Theorem 3.1:
The asymptotic form for the Fisher information matrix is given by [11]
_ (contrast)? /7r T
Fo= e | () BEBY(0)d0 + ofow). (25)

Let x be anyK -dimensional vector such that' x = 1. Then an upper bound on the maximum eigenvaluk ofs

obtained as follows

2 ™
xFx = G [ o) TR + ol
2 ™
< mthg(lb) %/_T (xTB(¥)) % + o(0,,)
with equality if and only if
2
ho (¢) = ro (¢) = ¢, v¢ € [_777 77)7

V2w + [y ()]’

for some positive constamtindependent of,. From Lemma 3 this is true only for a disk. Thus, as the maximum
eigenvalue ofFy is identical to the minimum eigenvalue of the CR bound on the covariance matrix, the Theorem

follows.
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E. Worst—Shape Analysis for Finite Dimensional Case

Here we explore shapes which minimize the trace of the asymptotic Fisher information matrix (25):
tracgFy} = C , he(¢) fB(P)de (26)

(contrast)?

2/mos02 and

whereC' =

K
I8(#) =B (¢)B(9) = }_ BI(9)

Since, by Schwarz’s inequality, for ani—dimensional symmetric positive definite matr, trac§ A=} >
K/tracg{A}, K /trace{Fy} < tracg{F,'}. Hence minimizing the trace dfy maximizes a lower bound on the

trace of the CR bound.

First we used numerical methods (constrained gradient search) to find shapes, specjficalip the class of

B—splines withK™ equally spaced knots, which minimize trd&® } subject to the fixed perimeter constraint

P= [ b+ oo =1, @)

The worst—case shapes found by numerical optimization are shown in Figure 2. Each of these shapes is a rhodone

(rose shaped) curve [35] with a number of petals equal to one half the number of kiratgdn).

The global worst—case shapes in Figure 2 represent extreme deviations from circularity which for many applications
may not be frequently encountered in practice. To explore the sensitivity of the Fisher information over a more rep-
resentative set of shapes we investigated worst—case shapes over the class of nearly circular shapes whose boundz

functionsrg(¢) satisfy both the perimeter constraint (27) and the circularity constraint:
drA 4m f(;r:_w rg(¢)dod
P2 - ;
(S JIro () + [rp(@)12d0)

wherey € [0, 1] is a specified circularity parameter close to one. As the circle maximizes enclosed area among all

5> (28)

closed curves of fixed permeter, the left hand side of the inequality in (28) takes on its maximum value of unity when

rg corresponds to a disk shape, fe=1 = [1,...,1]7 [9, Thm. 4.5].

Under the assumption thatclose to one, a second order Taylor development abeut yields the following local

approximation to the left hand side of the perimeter constraint (27)

/ V(@) + [rp(¢))2dé = a6 + 0TD0—|—0(H0—1H)
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and the local approximation to the trace of the Fisher information (26)

1
trace{Fg} = C(a}f - §0TDf0) +o(|l0 — 1])%)

where
a = /¢ B (29)
a = [ B (30)
D= [ BB @)
p=—
D, = [ BB @mew. (32)

andB’ denotes the vector of first derivatives of the basis elemBnts$) with respect tas. Furthermore, under the

perimeter constraint, the circularity constraint reducest@” Q8 > v where

Kis

Q=) BB

Therefore, by forcingy to be close to one the problem of minimization ofef the trace of the Fisher information
subject to the perimeter and circularity constraints is approximately quadrétisiih associated Lagrangian
1 1
L(8) =al6 - §0TD 0+ 207Q0 + N (aTe + §0TD0)
whereX; and A, are undetermined multipliers selected so as to satisfy the local perimeter and circularity constraints
jointly expressed as
1
P=alo+ §0TD0 = 1 (33)

A=0TQ8 = ~/(4n). (34)

Using a/—dimensional subset of the quadratic B—spline basis funcidigs, the plot of fg(-) for various number
K of knots is given in Figure 3. The corresponding worst—shapes local to cirete(.9) are shown in Figure 4 and

exhibit characteristic flower shaped boundaries.

F. Best—Shape Analysis for Infinite Dimensional Case

We refer to (19) of Lemma 1 for the relation between sunt'gfover all: and the total area of the shape, recalling

that area = [ r%(¢) d¢. For a fixed perimeter, the area is maximized for a circle. Hence, circular disks are again

-7



SUBMITTED TOIEEE TRANSACTIONS ON IMAGE PROCESS|BIGEY 2000 12

estimated with most confidence. So, for both finite and infinite dimensional cases, circular disks are estimated with

least error.

G. Worst—Shape Analysis for Infinite Dimensional Case

We refer to Lemma 1. From (19), we see that the uncertaindy iofcreases for shapes with smaller area. A smaller
area is achieved for a fixed perimeter when there are sharp and narrow spikes on the shape. The area is minimize
whenr(¢) is very close to zero for alp. Since there is a constraint on perimeter, we conjecturerilagtwill have

sharp spikes, uniformly spread alongs [—, ) in such a way that the perimeter constraint is met.

IV. OPTIMUM CENTER-OF—DESCRIPTION FOR2D SHAPE ESTIMATION

As mentioned earlier, the choice of center—of—description is an important issue. For example, suppose we are esti-
mating circular shapes, if the center—of—description is the geometric center of the circular shape, then estimation error
will be minimum, as we saw earlier. However, if the center—of—description is on the boundary or very close to the
boundary of the circular shape, then estimation error will be greater. In this section, we show an approach to find
optimum center. The optimum center can be found using the Fisher information for finite or infinite dimensional cases.

For concreteness we focus on the infinite dimensional case.

A. Set up of Problem

We assume that a descriptiefi) of the boundary is known with respect to a known cefitexs in Figure 5. Le©
be a new center—of—description so that the same object can be describgd byhere the angle is with respect to
the previous origirD. Recall from Lemma 1, we have;2, F;; < Con 7 r%(¢) d¢. So, we can maximize a bound

on the trace of th&'y over shape by maximizing

F=1 r*¢)de. (35)
Let the new cente®) be located afr., ¢.) with respect taD. This is shown in Figure 5. Now, using a trigonometric
equality,
Fg(qb) =ri4 r2(¢) = 2r.1r(¢) cos(¢pe. — @).

Define the function
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= /7r [rf +72(¢) — 2r.r () cos(pe — (b)] do. (36)

-7

In order to locate an optimum center, we should maximize the fun¢~t@0g ¢.) with respect to-. ande..

B. Determining Optimum Center—of—Description

To minimize f(r., ¢.) with respect tor. and¢., the necessary condtions are given by

o 3 T
87{ =0 = r.= % - r(¢) cos(¢p. — @) do (37)
andgg =0 = ’ r(¢)sin(¢. — ¢) do = 0. (38)

Observe from (37) and (38) that the optimum center is not necessarily the centroid. An analogous procedure can be

used for the finite dimensional case to determine optimum center—of—description.

C. Sensitivity of CR bound to Center—of—Description

To see how the center—of—description affects the trace of asymptotic CR bound, we performed two experiments: one
with a circle and the other with a test shape. We shifted the center—of—description for these two shapes and evaluate
the trace of asymptotic CR bound in (7). Because of the symmetry of the circle, for the former case we shifted the
center—of—description along a fixed angle radial segment. The plot of the trace of the asymptotic CR bound against
radial shift of center—of—description for a circle of radius 5 units is shown in Figure 6. Obeserve that the optimum
position of the center—of—description is at the centroid, i.e. geometric center of the disc. Note that the trace of CR
bound is not monotonic, it starts to decrease when the center—of—description approaches the boundary. This is due t
the trade—off between the value lgf(+’) for boundary points close to the center—of—description and boundary points
away from the center—of-description. This trade—off depends on the shape in general. Thus, for the circle of radius 5

units, the peak of trace bound occurs for a shift less than 5 units.

Figure 7 shows a test object for the second experiment. The area marked by dotted lines is the region of center-
of—description locations for which the shape can be described as a star—shape. The figure shows the shape centroi
optimum center and worst center. The optimum center and worst center were found using exhaustive search. This is
an example where the centroid is not the optimum center—of—description. The best center appears to be the center—of
description that maximizes the minimum distance to boundary. Also note that the worst center for this test shape lies
on the boundary of the region marked by dotted lines, i.e. at the limit of the center—of-description for which the object

can be described as star—shaped.



SUBMITTED TOIEEE TRANSACTIONS ON IMAGE PROCESS|BIGEY 2000 14

V. 3D SHAPE ESTIMATION

In this section, we extend the finite dimensional results for 2D shape estimation. The infinite dimensional extension
is not treated here. We follow a similar procedure to derive the Fisher information and its asymptotic expression. The

model for uncorrupted 3D image is
l(2,y,2) = Cint - IRy (2,4, 2) + Cra - (1 = Ig, (2,9, 2)). (39)
The model for observed data is
Ym(@,y,2) = (g x« H)(z,y,2) + n(2,y, 2) (40)

wherex % x denotes three—dimensional convolution. As in the 2D case we assume that the point spread function
H(-,-,-)is spatial invariant symmetric Gaussian with blur parameteand noise:(-, -, ) is zero mean white Gaus-

sian with power spectral density’. Again, we focus on star—shapes. The radipy, 3) is described as a func-

tion of angle of elevatiorn and angle of azimutly as defined in Figure 8, wheiis a vector of basis coeffi-
cients. Similarly to the 2D case, the basis functions can be represented in vector féfvas) andB(«o, 3) =

[Bi(a, B3), Ba(a, B), ..., Bi(a, 3)]T. As an explicit example, tensor spline model represents the radius function as a

tensor product

Ko Koz

=" 0:;Bf () BY*(3) (41)

=1 j=1
where B! (-) and B¢*(+) are basis functions along axes for elevation and azimuth angles, respectively. Alternatively,

this representation can be rearranged lexigraphically to obtain a more general form:
K
=1

A. Fisher Information for 3D Shape

An expression for Fisher information is given in the following Lemma, whose proof is in Appendix D.

Lemma 4:The Fisher informatiody for parametric estimation of 3 Dimensional shapes is given by

Fp = Cox- / e / / ew (Hfowﬂﬁ_ ;;mz,ﬁz)u?)

2

rg(ai, B1) rg(oa, B2) - By, B1); B (0427 B32) cos vy cos ag day dfy dagy df3y (43)

where

(Cint — Cpa)?  contrast?
CCN = =

3/253 52 3/25352"
873/20302 873/2¢302 ad
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This expression is similar to the Fisher information for 2D case in (6). In the following Lemma, we give an asymp-

totic expression foFy. This Lemma is proven in Appendix E.

Lemma 5:Assumery(a, 3) > 0 andrg(a, 3), r;%(c, 3), 1§ (e, B), g («, B), r3°(r, B) andrg?(«, 3) are bounded

foralla € [-7/2,7/2)andj € [—=, x). The superscripts0, 01, 11, 20 and02 are short—hand notation for the partial

derivativesi:, 7%, 5275, 4> and - respectively. Then
Fg = 47Cono? /j_z/:_7r hg(, 3) B(a, 3)BT (a, B) cos® avda df + o(0,,) (44)
where 2
ho (v, B) = re(@ ) (45)
V172 dIP 70 0 = (70, ), 7, 8))°
S Hiﬁo T 1 4o
o, B) = T ‘*‘f"%_po (47)
oa(a, ) = Py ‘*‘f"%_po (48)
ando, = rg%xffl( ﬁ);ffz( 8) (495)

Again, this expression is similar to the asymptotic expression for 2D case in (25). We Hi&fiter, 3)|| to be
the speed of the differential surface element shown in Figure 8 along the axis of elevation. SifhildHyy, 3)|| is
the speed of differential surface element along the axis of azinpgtis. the linear correlation coefficient between the
elevation and azimuth components of the radial gradient fieldognds the maximum of average resolution—speed

ratio along elevation and azimuth axes. Note the similarity betwegfor the 2D case as in (9).

B. Interpretation ofig («, 3)

The reader is referred to Figure 8. L@tbe the center—of—description for the shape representeg(by 3). Let

P be a point on the surface. L&tP = z1 + yj + z k, wherez, j and k are unit vectors along, Y and Z axes

respectively. Hence,

Fpla, ) = OP =rg(e,3) cosacos f1+ cosasin ] + sina k (50)
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and (51)
01 =
it (o, 3) = To (f‘:(@ g()% ) + ro(a, B) |- cosasin 81 — cosacos 3] + cosak
(52)
Define
f; = —sinacosBi—sinasinB]+cosak (53)
ty = —cosasinfi—cosacosf3 ]+ cosak (54)
and i := cosacosf31+ cosasinf3 ]+ sinak. (55)
Then
>10 _ .10 - g
Ty (avﬁ) = Ty (Oé,ﬁ)n—l—f‘o(&,ﬁ)tl (56)
PP e, B) = 1 a, B) 7+ rela, B) Lo (57)

Note that, £; andii are unit vectors and are mutually orthogonal. Thus, we have decomfip¥ed 3) andi,” («, 3)
into weighted sum of mutually orthogonal unit vectors. Consider a spherical surface passing threithhO as its
center, as shown in Figure 8. Then the unit vectgrandi, span the tangent space Atfor the sphere, and is a

normal vector to the sphere &t Thus

7% )))* = [re'*(e, 3)]" + 13 (e, B) (58)
7 e, D* = [re (e )] + rg(er, B) (59)

and
<F010(a7ﬁ)7F001(a7ﬁ)> = rolo(avﬁ)reol(avﬁ) (60)

Folo(avﬁ)XFOOI(avﬁ) = rolo(oe,ﬁ)rg(oa,ﬁ)t_i—|—rool(oa,ﬁ)rg(oe,ﬂ)t}—I—rg(oa,ﬁ)ﬁ.

(61)

Recall that if@ and b are the adjacent sides of a parallelogram, th&nx b|| is its area. Also/|@ x b|?> =
I|@||2][6]|% - (@, b)2. The denominator (45) dfy(«v, 3) is thus the area of the parallelogram determinedf(as, 32)

andf_‘bOl (0427 ﬁg)

Note that'°(a, 5) andr,’! («, 8) lie in the tangent plane of the surfacg ., 3) at P and7,'%(«a, 8) x 7t (a, 5)

gives the direction of the normal &. Thus the distance between the tangent plane from the a@ritegiven by the
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projection ofO P on the unit normal vector. Using (61), this is given by

(0P, 7% (a, 9) x @01<a,ﬂ>>
175" (e, B) x 7™ (e, B)|

<T‘9(O&,ﬁ)ﬁ, rolo(avﬁ)rﬁ(avﬁ) _i —I_roOl( ﬁ)rﬁ( 7ﬁ){2+r02(047ﬁ) ﬁ>

|75 (er, ) x 7P (v, B

ryle. 5) ‘
7% ) % 7 e B

sincet1, t; and# are mutually orthogonal unit vectors.

Thus, hg (e, 3) is the product of distance of poirit on surface located at angle, 5) from the centeD and the

distance of tangent plane Btfrom O. Using (61),

3
hg(a, 3) = . (62)

Similarly, we get

7‘1004 7‘0104
polcr ) = o (2 F)ry () (63)

VI 8)) + 13 (e By [ (o, )] + 13, B)
B VaoaJTrd e ) 1 3o )
o1(a,B) = = ; (64)
rola, )3/ [rgt®(e, )] + [rt (o, )] + 13 (e, )

a0, ) = V30, [rg (0, 5))° + 13 (0, 9) o5

ro(on B [rg (s B)] + [ (@, )] + 30, 9)

We can writehg (v, 3) as a ratio of-3(«, 3) (same dimensions as area) and the dimensionless quantity

e [ [5e).

The dimensionless quantity is also the ratio of speed of the surfdoe @f to the speed of spherical surface of radius

re(«, §) passing through the same point. This quantity will be called the instantaneous sphericity of the 3D object and

is analogous to the measure of circularity which characterized the CR bound for the case of 2D objects.

C. Extremal Shape Analysis

Since the form of the asymptotic 2D and 3D Fisher information matrices are very similar an analog to Theorem 3.1

is easily shown: the sphere is the optimum 3D shape.
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Similarly to the 2D case studied previously, we can explore worst—shapes by employing numerical minimization of

the trace of the Fisher matrix subject to the surface area constraint

/2 ™
S = /__W2 /__7r \/[rg(a, 8)2 + [réo(a, 8)2 + [rgl( a, B)]? re(a, p) cos(a)dads = 1. (66)

For the numerical studies we used a tensor quadratic B—spline basis with equal number of equally spaced knots for
both the azimuth and elevation basis sets. In Figs. 9-10 we show 4 different views of the worst—shapes fond

4 x 4 knots in the tensor bases, respectively. The knot positions are indicated by light colored boxes. These worse case
shapes are not necessarily unique but indicate that highly non-convex star-shaped objects are hardest to estimate. Not
as in the 2D case, for each of these shapes the set of valid choices of center—of—description reduces to a single point

one of the knot positions.

Using a completely analogous analysis as presented for the 2D case a worst case analysis of shapes local to th
sphere can be performed under the additional sphericity constfaift?/S® > v whereS andV are the surface area
and volume of the shape, respectively, and [0, 1] is close to unity. The sphericity measure on the left hand side of
this constraint inequality takes on its maximum value of unity for a sphere [9, p. 289]. The local Lagrangian for this

case reduces to the quadratic objective:

L(0) =0"[Q; - —Df]0+ A (07QO —aT8) + My (= 0T[D +Qlo+aT0)

where, now

7/ Fis

a = /:_1/2 /ﬁ:_WB(a B) cos(ar)dad3
/2 p-

= T

Q = /:_7r/2 /ﬁ: B(a, 8)B (o, §) cos(a)dad3
/2 p-

Qf = / / B(Oé7 ﬁ)BT(Og7 ﬁ)fB (047 ﬁ) C082 (Oé)dOédﬂ
=-n/2JB=
/2 p-

D = /_ /ﬁ [Bio(e, 8)Biy(a, 8) + Boi (, 8)BE; (v, 8)] cos(a)dad3

—7'['/ =
D, = / / / [Bio(a, B)BYy(, 3) + Boy (o, B)BL, (o, B)] fB(ev, B) cos?(a)dad3
=—7/2 =—T7
and\; and), are selected to ensure the constraints

= —0TD0—|— (0TQ0 )+ale=1
vV = 6?T(§26?—aT6?—|—4/37T:\/'y/367r7

andBi(«, 5) andBg; («, §) denote vectors of partial derivativesBf «, 5) with respect tax and3, respectively.
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The local worst—shapes for tensor quadratic B—splines are shown in Figure3dl ¥ foy4 x 4, 8 x 8 and12 x 12
knots. Similarly to the 2D case these worse case shapes have oscillatagesusthere the period of akation is

determined by the number and placement of the knots.

VI. CONCLUSIONS

We have analyzed the performance of parametric estimators of boundaries of 2D and 3D star—shaped objects usin
the CR bound and Fisher information. Asymptotic expressions for Fisher information for both 2D and 3D shapes were
presented and similarities between them were observed. Our results predict that estwcairacy depends on the
circularity (2D) or sphericity (3D) of the boundary of the underlying shape as measured by the speed of the curve (2D)
or surface (3D). We showed that circles and spheres are the shapes which are easiest to accurately estimate in th
they minimize the maximum eigenvalue of the CR bound. We also showed that for quadratic B—splines flower—shaped

objects are the hardest to estimate in that they minimize the trace of the Fisher information matrix.

APPENDIX
I. PROOF OFLEMMA 1 (UNCONSTRAINED FISHER INFORMATION FOR 2D SHAPE)

The Fisher informatior¥/ for finite dimensional case can be obtained from (6). So, we get (17) directly. By
assumption A3y (¢) anddrk (¢)/d¢ exist for all ¢ and K. Note thathX (¢, ) is integrable sincéX (¢,~) <
Conri(@)ric(y) and [[7_ri (¢)r(v)dody < oo (finite area). By assumption Al, it follows thag (¢) converges
uniformly tor(¢), for all ¢. Hence, using bounded area, it can then be showrkghat ) as defined in (15) converges
uniformly to/ (-, -) as defined in (16). Also, the basis functions are square integrable. So, itfollov]/%ﬂtmnverges

uniformly to /; asiK — oo.

Hence, using Fubini's theorem

K

- S

=1
s

= Y [ o) B B dods ©7)

-7

Kis

= Cox / hi(6,6) do, using (14)

-7
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Kis

< Con [ o) (68)

—T

[I. PROOF OFLEMMA 2 (UNCONSTRAINED CR BOUND FOR 2D SHAPE)

Suppose there exists an integrable funcfiei-, -) that satisfies

Kis

/ b (6, ¥)ha (0, 7) dib = 6(, 7). (69)

i.e. hg (-, ) is the inverse oh (-, -) in the sense of operators. Recall that this exists ony-if-, -) is positive definite.

If such a functiorm. (-, -) exists, then we will show that
G 32/] ha(#,7) Bi(¢) Bj(y) do dy (70)
satisfies (20). Note that; (-, -) is symmetric, sincé’;; is symmetric. Now, again by Fubini’s theorem,
f: FaGij
=1

= hr (1, 71)ha (D2, v2) Bi (1) Bi(v1) Bi(¢2) B; (v2) dprdyiddadry,
ZZ//// (61,1006 (62 72) Bi(60) B (1) Bu62) By (32) dérdndndy

://]hc;(@mz)Bi(%)Bj(’Vz)
-

:/ Bi(¢1)B;(¢1) d¢1, using (69)

—T

S [ helor ) B Biéayin| dordondy.
=1

Bi (qbl)B] (72) dqbld’m, from (14)

/ hp (@1, $2)ha (D2, v2) do:

= d;;, from (13).
By symmetry> ", G F;; = §;;. Hence(,; satisfies (20).

Using assumption Al, the covariancergf) is given by

K K

cov(#(¢), #(y)) = lim Y Y " cov(6:,0;)Bi(¢) B;(v

Ix—)oo
=1 j=1

\_/
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By completeness of the given basis $¢€t) lies in the linear span of the basis set. Therefore, using the CR bound for
covariance of);, we get

K K

CoM(#(¢), 7(¥)) — Jlim > Y GiBi(¢)B;(y) isn.nd (71)
=1 j=1
Note that, whert;; satisfies (70), by Fubini
K K
lim ZZ GIX (7)
I&—)ooZ 1o
K K [T
= tim S [ ha(0.3) Bi(6) B,(3) B0} B, () dda
— 00 =1 =1 M
-3/ {Z [ @B (GB () 45| Buld)Bu(o)
2:1_7r 71=1 g

= Z/ he; (6,7)Bi(9) Bi(¢) d, from (14)
= ha(e,v), from (14).

So, co7(¢), 7 (7)) — ha(¢,y) isn.nd.

|
[1l. PROOF OFLEMMA 3 (UNIQUE 2D SHAPE SATISFYING AN ODE)
We would like to prove that the only star—shaped object that satisfies
2
U E——— (72)
V) + )P

wherec is a constant, is a circular disk.

Clearly, a circle (which has constant radius) satisfies (72). Here, we should recall that by “circle”, we mean a circle

defined around the center—of—description.

We observe that > 0, for otherwise the shape is actually a point, which is a trivial solution. Also, we see that
r(¢) > 0 wheneven’(v) # 0. This tells us that shapes with boundary passing through its center—of—description are

excluded, unless(+’) andr’(¢>) are both zero only at finitely many points.
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Squaring both sides of (72), we get

Therefore, for’(v) to be real, we require,

r2g) >

— () ¢ >0, Vi > 0 (since,(¢) > 0)

v

Differentiating both sides of (73), we get

27"(1&)7‘”(1#) _ 27‘(1&) |:27‘C§¢) _ 1:| r/(¢)
Whenever’' (i) # 0, it is then true that
) = o) 21 -]

Recall from (74) tha{ﬁc(—;”) - 1] > 0 and from (75) that(¢>) > 0. So we have

[27‘2(1#)

Note the strict inequality in the previous equation. So, it is true that whem&uey # 0

(1) > 0.

Also note that whem(v) increases;” (v) also increases and that whef) decreases;” (1) also decreases.

Whenever’' (1) = 0, by differentiating (76), we get

2 [ ()] + 2 ()r) = (9 + () ()] = 2r () (@) — 2 [ ()]

c

Sincer’(¢y) = 0 andr’’(v) is finite we get

()" =

Therefore, when'(y)) = 0 andr” () # 0, we get
2r3(¢)

e = T e
= (o) [ ]

> 0 (from equations (74) and (75))

22

(73)

(74)

(75)

(76)

(77)

(78)
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So, itis true that whenevef (i) = 0

() > 0. (79)

So, from equations (78) and (79), itis true that

() > 0 (with strict inequality whenever'(v)) # 0). (80)

Let¢ andw be angles suchthat— 7 < £ < w + #. Then

&
[ rwas=re -,

Again,
wtm ¢ wtm wtm
/ / () dypd¢é = / r'(&) d¢ — r(w—m)d¢
—w—7 —w—7 —w—7 E=w—m
= rw+n) —rw-7x) =21 (w—-n)
= 0 (since the boundary is a closed curve)
Thus,

VweR: / / V) dypdé = — 27! (w — 7). (81)

Note that from (80), we get
VweR: / / ) dipd€ > 0. (82)

However, sincev is arbitrary and since we ignore the “point object”, which is a trivial solution, and eliminate the

circle for whichVw : r'(w — 7) = 0, there exists atleast onefor which'(w — x) > 0. So, we get from (81) that

JweER: / / ) dipdg < 0.

This contradicts (82). Thus, we have proven that the only smooth star—shaped object that satisfies (72) is the circle.

IV. PROOF OFLEMMA 4 (FISHER INFORMATION FOR 3D SHAPE)

We will follow a procedure similar to the 2D case as in [33, pp. 139-142]. Définey, z) = (Ig xxx I ) (2, y, 2).
Then the log-likelihood is given by

In f(Yar, 6) = c+( ) ///Rf V(2,9 2) — (e, y, ) da dyd (83)
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whereC' is independent of and R is the field of view. Thus,
-1
Vg In f(Ym,0) = (0—2) /// Ym(z,y, 2) — L3z, y,2)| Vg Lgdz dy d=
n Rf

1
() ] |outeo) 15t V35 - Wity 9§5)] ey
f

n

=n(z,y, z).
Taking expectation of negative Hessian,
1
E[-VgInf(Yu,0)] = (0—2) // Voly - Vo lsde dydz (84)
n Rf
Recall
lg(z,y,2) = Cror-Iry(z,y,2) + Cea- (Ir, (2,y,2) — Igy(2,y,2))

= (CROI - CBG) : IR9($7 Y, Z) + CBG . IRf ($7 Y, Z)
= V@Ij(ac, Y, Z) = (CROI — CBg) . V@ (IRQ * %k ok H) (ac, Y, Z). (85)

LetC, := “ror=Cnc Writing I3 (z, y, 2) explicitly, we get

(2m)*/203

I5(2,y,2) = CS.///RQ exp [(x_“)”(y_”)” =1 i dry dr (86)

952
20

Consider the cartesian coordinate g, =) to spherical coordinate («, 3) transformation defined by (see Figure 8):

x = rcosacosf
y = rcosasinj
z = rsina

whereq, 3 are the parameters for elevation and azimuth angles respectively.
The Jacobian for this tranformation is giveniicos a.

Therefore,

z T re(a,3)
IZ($7y7Z) — Cs/ Tr/ / o
a:—E =—7 Jy=

[(x — ycosacos )2 + (y — ycosasin B)* + (z — vsin a)?
exp

—5n2 72 cos avdry dov d.

(87)
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By applying Leibnitz’s rule for differentiation of integral, we obtain

Volz(x,y,z):CS-/2 /

(x — rg(a, B) Cosoecosﬁ)2 + (y — rg(e, ) cosasin ﬁ)2 + (2 — rg(ev, B) sin 04)2]

952
20

exp

-rg(oe, B)cosa (Vare(a, B)) dadp.

Let f(0,2,y, 2z, &, () :=

exp [(x —rg(o, ) cos v cos ﬁ)2 + (y — rg(a, B) cosasin ﬁ)2 + (z — rg(a, B) sin 04)2]
—20?

andg(8, a1, a2, B1, B2) ==

ra(an, B1) rg(ar, B2) (Vare(ai, £1)) (Va re(az, B2)) cos a; cos as.

Then the Fisher information is given by

052 % a % s
F0 = 0—2 . /// / Tr / / i /
e Rf oz1:—5 1=—T a2:_5 o=—T

f(97 T,Y, 2,01, ﬁl)f(& T,Y,z, 0y, 52)9(07 aq, Qg 3, 52) doy dpy dag dBy dx dy dz.

Note that (88)

(x — rg(er, B) Cosoecosﬁ)2 + (y — rg(a, ) cosasin ﬁ)2 + (2 — ro(a, ) sina)2

2acos® 3

= 2% — 2arg(a,B) cosacos B + rj(a, 3)cos
+y? — 2yre(a, B) cosasin B + ri(«a, B) cos® asin’ 3

422 — 2zrg(o, B)sina + r}(a, ) sin? o

= 2?2ty + 22 g (e, B) — 2rp(a, B) (z cosavcos 3+ ycos asin 3+ zsin a).

Let us denote the numerator of the negative exponent in the prg@lict, v, z, oy, 51)- f(6, 2,1y, 2, az, 52) by V.

ThenA/ can be written as

N = 2 [962 — 2 (rg(aq, B1) cosaq cos By + rg(ag, B2) cosag cos ﬁg)]
+ 2 [y* — y (re(ay, B1) cos oy sin By + rg(az, B2) cos ag sin B)]
+ 2 [2* — 2 (rg(au, B1) sin o + rg(az, Ba) sin ay)]

+rgan, 1) + rg(as, Ba).
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Let us now define

a = rg(ar,Br)cosaycos By 4 rg(az, B2) cos az cos By
b = rg(ar,f1)cosaysin By + rg(az, f2) cos agsin (3
c = rglay, By)sinay + rg(ag, Bz)sin a;,.

Using this, we can writdV" as

N = 2% —ax) + 2" = by) + 2(z" = c2) + rglas, B1) + rglaz, fa). (89)

Completing the squares,

N = 2 [(gg_%)2 L (9—3)2 N (2_5)2] B %(a2—|—52+02)
g0, B1) + rglaz, B2)) (90)

Define

D = rg(oel,ﬁl) + 7‘3(0427ﬁ2) — —(a2 +b%+ 02)

wat =[-8 (1) ()

Then, V=24, + D. We make the following approximation:

o2 3/2
I oo (£5) ravs = a2 (%) = (mat).
Ry Ts 2

From the definitions oD and 4,, we can write the Fisher information of (88) as

C? 3 @ 3 @ D
Fo = _S/ / / / g(8, a1, aq, By, 32) 'GXP( )
0-7% Ozlz—g 1=—T og2:—E 2=—Tr _20"2
/// exp ( ) dr dydzdoy dfy dag dfs (91)
Ry o

02 7TO' 3/2 T z T
/ / [ stenansim
1=—7m Jap=—5 J fp=—7

D
- exp (_202) doy dfy day dfs.

2

(92)
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Now,
a® = rg(oel, B1) cos? oy cos? By + 7‘3(0427 B2) cos? ag cos? fy
+ 2rg (o, B1)rg(az, B2) cos ay cos 31 cos az cos [z
E— rg(oel, B1) cos?aqsin? fy + 7‘3(042, B2) cos? ag sin? 3,
+ 2rg (o, B1)rg(az, B2) cosay sin B cos ag sin g
e = rg(oel, B1) sin? oy + 7‘3(0427 B2) sin? ag + 2rg(aq, B1)re(ag, B2) sin aq sin az.
Therefore,
A+ +E = rg(oel,ﬁl) + 7‘3(0427ﬁ2)
+ 2rg(an, B1)rg(ag, B2) [sin aq sin ay + cos g cos ag cos(f1 — F2)].
Therefore,

D - %{rg(al,ﬁl) + 13 (0, B2)

— 2rg(ay, B1)re(ag, B2) [sin a; sin ag 4 cos ay cos az cos(f1 — f2)]} .

Consider two point$ry, aq, 31) and(rz, ag, 32) in a three dimensional space. The square of the Euclidean distance

between them is given by

|7 (aq, 51) — F(oeg,ﬁg)Hz = (rycosajcos By — rycosa;zcos ﬁ2)2

+ (rpcosaysin 31 — rycos azsin ﬁ2)2 + (risinag — rgsin 042)2

2 2

= ricos® ajcos® By + r3cos’

(87 COS2 — 2r1r9 COS (o] COS COS (g COS
2 2 172 1 1 2 2

2 2

+ 12 cos? oy sin? + r2cos? aysin? — 2r{r9 Cos (&1 Sin 31 Cos g sin
1 1 1 3 2 2 172 1 1 2 2

+r2sin®a; 4+ risinfag — 2rirysin aqsin «
1 1 2 2 172 1 2

=7 + r2 — 2riry (cosay cosagcos(fB — B2) + sin ay sin ay) .
Using this formula for Euclidean distance, we observe that

D = |lrg(ay, 1) — rg(aa, B2)|1*/2.
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So, we can write the Fisher information in (92f as

3 u 2 7r ro(ay, B1) — ro(cz, B2
[Fo]m‘ = CCN'/ / / / exp(H o1, 51) - 20( 2, B2 || )
a=—F% Jp=—71 Jag==7F Jfo=—m7 —40;

rg(on, Bi) rg(ou, Ba2) - Bi(an, B1); Bj(as, B2) cos ay cos ay day dfy dop dfs (93)
c? (7rcr2)3/2 . . .
whereCon = ———*— andVrg(o, ) = B;(a, 3). Here,B;(«, ) is value of thei—th basis at elevation and

n

azimuth anglega, 3).

V. PROOF OFLEMMA 5 (ASYMPTOTIC FISHER INFORMATION FOR 3D SHAPE)

We will reduce the complexity of th&y in (43) by reducing the number of integrals to 2. In order to achieve this,

we will collect all terms that involver; and3;. Define the vector

Alag, f2) = /E__E/W__ exp(Hfo(a17ﬂ1)_;£(0427ﬂ2)”2)

rg (o, 1) B(aq, B1) cosay day dfy

so that

% pis
Fg =Con - / / Aoy, B) ra(ag, Bo) BY (g, B2) cos avg dag d3; (94)
oz2:—g Q=—T

Using Taylor’s series expansion with remainder for the vegos, 51),

Fe(a17 51) = Fe(O% 52) + Folo(Om 52)(041 - 042) + Fool(Om ﬁz)(ﬁl - 52)
% {77°(a7, B7) (an = a2)® 4 27" (3, 53) (1 — o) (B1 = Ba) + 792 (3, 55) (Br — Ba2)? }

(95)

wherea] is a point betweem; anda;, on the line segment connecting them; similagy,is a point betwee,; and

32 on the line segment connecting them. Thus,

17a(eur, B1) — Fa(ava, B)| = || (cva, B)||” (cr — @) + || 7P (o, B2)||” (81 — )
+2 (7' %z, B2), Ty (2, B2)) (a1 — ) (B1 — B2) + Qa1 B1, a2, B2)
(96)

whereQg (v, 81, ava, 32) consists of higher order terms of order less than— az)? + (8 — (2)*%.

2For clarity, we ignore the approximation symbol and use étyua
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Recall defiiitions of o1 (a2, 32), 02(az, 82) andpg (az, 52) from equations (46), (47) and (48). Consider the Gaus-

sian kernelg ,, 5, (o1, 1) with meanay, 3, and spread factors, («s, 32), o2( a2, 32) respectively and coefficient

po(az, Ba):
1

Go,aQ,ﬁg (0517ﬁ1) = :
2101 (ay, f2), 0a(ag, Ba) /1 — pglaz, B2)

-1 o —az \?
{m (i)
+2pp(012, B2) g(ilaz_ Ziiiféa;% + (Uf(laz,ﬂé)) ” (97)

Substituting foro; (g, 32), g (g, B2) andpg (s, B2),

a ﬁ ) \/Hf‘g 042752 H qu 042752)“2 - <F910(042752)7 Fgol(a2752)>2
8,00,0> (0417 1 = 4770_3

o] [ P o -
+2 (73 (a2, Ba), g (a2, B2)) (o1 — a2) (B1 — B2)

+ 178" (a2 B2)|” (8 = 52)?] } (98)
Define the vector
g(a1, B1) = exp {Qq (1, B1, az, B2) }rg (o, B1) B(aq, B1) cosay. (99)
Therefore
Aro?

S

A(O%ﬁz) 1o 2 o0 o1 3
VI, )| |70 (0. Bo)[|* = (75002, o), 7 (s, 52)

X/ ﬁ/ g(an, $1)Go ay,8, (a1, 1) dag dfy
(100)

Finally we show that to ordef(c,,), whereo,, = max, s w, the double integral evaluatesggasz, 32).

This occurs since for smadl,,, and fixeday, 5, the width of the Gaussian kernel iy, - is considerably narrower

than the width ofy (a2, f2).

dro? ro(ag,ﬁg) (cvg, B2) cosay + o(om). (101)
\/Hf‘g (g, o) H Hf‘ (g, o) H - <F910(042752)7 Fool(a2752)>2

A(Og27 ﬁQ —

Here we used the fact théin:_.o £ exp(—c&) = 0 for ¢ > 0. Defining

7‘3(0427 32) (102)
\/Hfolo(azyﬁﬁHZ |70 (2, B2) H — (702, Ba), 7‘901(0427ﬁ2)>2

h0 (0427 ﬁQ) =
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we obtain

% T
Fg = 47TCCNUZ/ _ / hg(a, B2) Bag, B2)BT (a2, B2) cos® oz davy dBz + 0(0,,). (103)
Oz2:—5 Q=—T
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Fig. 1. Relation between tangent line aing{¢)).
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11 Knots 12 Knots 13 Knots 14 Knots
5
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2
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-2
-5 -5 -5 -4
-5 0 5 -5 0 -5 0 -5 0

Fig. 2. Collection of worst shapes based on minimizing trace of Fisher information using iterative algorithm for the finite dimensional casesAibsieahe

same perimeter. These shapes are represented by quadratic B—splines basis.
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Plot of f B((p) for various number of knots

4 knots 5 knots 6 knots
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_1 L L _1 S . 5
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7 knots 8 knots 9 knots
1 i T s 1 . . q
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 0 1 -1 0 1 -1 0 1
10 knots 11 knots 12 knots
0.5 0.5
0 0
-0.5 -0.5
-1 L . L L L . L -1 X ) \ - .
-1 0 1 -1 0 1 -1 0 1

Fig. 3. Plot offg (+) for quadratic B—splines with equally spaced knots.
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Plot of r t(cp) for various number of knots
4 knots wors 5 knots 6 knots

1

-1 0 1 -1 0 1 -1 0 1
7 knots 8 knots 9 knots

-1 0 1 -1 0 1 -1 0 1
10 knots 11 knots 12 knots

-1 0 1 -1 0 1 -1 0 1

Fig. 4. Worst—shapes local to a circle for finite dimensional case with quadratic B—splines and equally spaced knots.

r(o

Fig. 5. Change of center—of—description.
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Shift in center—of-description of a circle of radius 5 units
0.055 T T T T T T T T T

0.05

0.045

0.04

0.035

0.03

Trace of asymptotic expression for constrained CR bound

0.025

0.02
0 0.5 1 15 2 25 3 35 4 45 5
Radial shift in center, r c (max. at r.= 4.899)
Fig. 6. Sensitivity of CR bound to shift in center—of—description of a disk—shaped object.
Sensitivity of CR bound to center of test shape
25 :
——  Shape
20 === Region allowing star—shape
O Centroid (0.0090)
+ Optimum Center (0.0075)
15 O Worst Center (0.0228)
10
5 -
2
s of
>
_5 -
_10 -
_15 -
_20 -
-25 I I I I I I
-30 -20 -10 0 10 20

X axis

Fig. 7. Sensitivity of CR bound to shift in center—of—description of a test shape. The region delimited by a dotted line is the collection of altpatsistof—
description for which the test shape can be represented as a star—shape.
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<

X

Fig. 8. Unit tangent and normal vectors for a spherical surface thrbugtere,O is the center of the sphere as well as the center—of—description.
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Woral shape bor % knots (equsl Bor aximth and slewslion basis)
1

(a) View from an angle

Woral shape bor 3 knots [equsl Bor it h and slevalion basis)

36

Woral shape bor 3 knots [equsl Bor it h and slevalion basis)

(b) View from X-axis

Woral shape bor 3 knots [equsl Bor it h and slevalion basis)

(c) View from Y-axis

(d) View from Z-axis

Fig. 9. Different views of worst—shape farx 3 knots. Knot po#ions are marked as light colored boxes.
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Worsl shape b 4 knots (equal for sximesth and dlevslion basis) Waral afape lor 4 koot (el Tor agimulh and slesalion heais)
1 x .
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¥ 4 ".—'“""'.. i 1 '
= g 58 & 8 -1 a5 4 a3z 1w @ 21
o ¥
(a) View from an angle (b) View from X-axis
‘Worad ahage [or & knole [egusd bor scimulh and elivalion hasia)
Worsd shape for 4 knoks (equal for azimesy md elesstion basisy

T

1

an

-
2
i 21
a8 - -1 -1 BB B B 7 A% B BB 3. -2 18 -1 -0 4 pE 1 1@ gz B
K ®

(c) View from Y-axis (d) View from Z-axis

Fig. 10. Different views of worst—shape férx 4 knots.
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Woral shape bor % knots (equsl Bor aximth and slewslion basis)

L]

(8)3 x 3 Knots

Woral shape bor & knots (equsl Bor aximeth and slewslion basis)

Woral shape bor 4 knots [equsl Bor aximgth and slewslion basis)

(b) 4 x 4 Knots

‘Weorsd ahage Tor 12 knols fequal kor aeimeth and elivalion basia)
1

(c)8 x 8 Knots

Fig.

-0 &

(d)12 x 12 Knots

11. Worst-shapes local to a sphere.
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