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Fundamental Limits on Parametric Shape Estimation Performance

Robinson Piramuthu, Alfred O. Hero

Abstract

This paper considers the problem of extraction of shape information from noise corrupted images ac-

quired from a resolution limited imaging instrument, a problem that is closely related to shape estimation and

segmentation. The problem is formulated as estimation of coefficients in a basis expansion of the boundary of

2D and 3D star–shaped objects. We derive an expression for the Fisher information matrix and the Cram`er–

Rao (CR) bound under a polar shape descriptor model, homogeneous object intensity, Gaussian point spread

function, and additive white Gaussian noise. We analyze boundary estimation performance for both finite

and infinite dimensional sets of shape basis functions. We show that circles and spheres are the easiest to

estimate in the sense that they minimize the CR bound over the class of star shaped 2D and 3D objects,

respectively. We show that irregularly shaped objects with sharp corners are worst case shapes in the sense

that they maximize the CR bound. Finally we discuss the CR bound sensitivity with respect to variation of

the center point position for the star–shaped object. In particular, the object centroid is not in general the

optimum center location.

Index Terms: Parametric shape estimation, star–shaped objects, Cram`er–Rao bound, Fisher information,

B–splines, estimator performance limits.
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I. INTRODUCTION

In this paper we derive the Fisher information and the Cram`er-Rao (CR) bound for 2D and 3D shape estimation

problems which are applicable to the class of smooth star-shaped objects. The CR bound is an important and useful

quantity since it permits comparisons between unbiased estimators of shape parameters and an estimator-independent

lower bound. The CR bound and its associated Fisher information can also be used to explore the intrinsic sensitivity

of shape estimator variance to object shape variations, imaging system imperfections, and noise. This allows the study

of classes of shapes that are inherently simple or inherently difficult to estimate with low variance for a given class

of shape models. Furthermore, as shown in [11]. the shape-estimator Fisher information plays an important role in

minimax fusion of shape imagery and associated functional imagery of the same imaging volume, e.g. as arises in

fusion of anatomical MRI scans to functional PET scans in medical imaging. This very important in applications

such as diagnosis of medical images where shape extraction gives vital information about organ or tumor anatomy.

Depending on prior knowledge about the a priori class of shapes of the organ or tumor, one can assess statistical

reliability of the extracted information.

Shape extraction and segmentation methods can be either non-parametric or model–based. Grey levelthresholding

is the simplest and most wide-spread non-parametric shape extraction technique [29]. While computationally cheap

and fast, thresholding methods are very sensitive to noise. Another of the difficulties with thresholding methods is the

choice of threshold. Usually, the threshold is determined from the histogram [26] or by optimizing certain criterion

such as connectivity of edges. If the object has a varying intensity level, using a single global threshold [19] may

not perform well. In such cases, the image can be partitioned and local thresholds determined for subimages. Other

non-parametric methods for shape extraction useedge detection operatorssuch as Laplacian [1], Sobel [28], Kirsch

[18], Marr–Hildreth [22] and Canny [4] operators. This is usually followed by other processing such as thresholding,

median filtering, boundary tracing orHough transformation[12], [14].

As contrasted to non-parametric shape estimation, parametric approaches to shape extraction are model–based. Ex-

amples of parametric methods include:Fourier descriptors[31], [36], piecewise poynomials such asBezier curves,

B–splinesor Beta–splines[3], [37], and spherical harmonic expansions [23], [5]. These parametric methods require

the object to be star–shaped, i.e. its boundary is uniquely specified by some radial function in polar (2D shapes) or

spherical (3D shapes) coordinates with origin located at a center of description inside the object. It is for such models

that the CR bounding approach in this paper are applicable. Star shaped models have been applied to a very wide

ranging set of applications areas including: three dimensonal brain segmentation [17], estimating shape torsion and

scale relative to a reference shape [10], viral imaging and structure determination [39]. The results of this paper permit
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exploration of fundamental estimation theoretic limitations for these and other applications.

There also exist model–based shape extraction schemes which do not require star–shaped object models, e.g.,snakes

[16], [20], [21], [24], [25], [27], [38] anddeformable templates[2], [6], [15]. However, the specification of CR bounds

for these models requires a different approach than that described in this paper.

The focus of this paper is onparametricshape extraction for star-shaped objects whose boundary function is rep-

resentable as a linear combination ofa priori known set of basis functions. The covariance of any estimator can be

used to quantify uncertainty in any unbiased estimate. It is well–known that the covariance of any estimator can be

bounded from below by the inverse of the Fisher information (the CR bound) as long as the estimator is unbiased. We

obtain expressions for the Fisher information and its inverse for 2D and 3D shape estimation under the assumptions

of homogeneous Gaussian additive noise, constant object intensity, and system resolution characterized by a Gaussian

blur function. Simple asymptotic expressions for Fisher information are obtained which are applicable to the case of

fine spatial resolution of the imaging. The Fisher information depends on factors such as contrast between the interior

and background intensities, noise and blur levels in the observed image, shape of the object to be estimated, and ona

priori constraints (for example, smoothness imposed by a selected finite basis). More significantly, for 2D shapes the

Fisher information depends on the (angular) speed of the curve describing the shape boundary. The particular speed

function arising here is a measure of deviation from circularity of the shape boundary. For 3D shapes the Fisher infor-

mation depends on a speed function which is a generalization to surfaces of the concept of speed of a curve. Finally,

we explore the extremal shapes which maximize and minimize the CR bound. For 2D shapes of fixed perimeter we

establish that disk–shaped objects are the easiest to estimate while flower–shaped objects are the hardest to estimate

among the class of objects representable by the B–spline basis. Similar results are shown for 3D shapes. The sensitivity

of the CR bound to the center of description is also investigated.

An outline of the paper is as follows. First, we specify the model assumptions in Section 2. In Section 3, we

give expressions for Fisher information and the CR bound for 2D shapes supported on a finite basis set. Under some

additional assumptions we also treat the case of an infinite (complete) basis in this section. Then we study extremal

shapes for both the finite and infinite dimensional basis sets. In Section 4, we study the effect of changing the center–

of–description (all the while retaining a star–shaped curve) on the CR bound. An extension of the theory to 3D shapes

is presented in Section 5. Most of the proofs are relegated to appendices in order to improve the flow of the paper.

II. 2D SHAPE MODEL

In this section, we define the model for uncorrupted image, observed image and feature of shape/region of interest.
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A. Model for Uncorrupted Image

An object of uniform intensity on a uniform background in 2D or 3D euclidean space is specified by its shape or

boundary, which is either a closed curve in 2D or a closed surface in 3D. Let��� denote a parameterization that completely

describes the shape and letR��� denote the interior of the object. Define the indicator functionIR��� for the regionR��� as

follows:

IR���(x) =

�
1; if x 2 R���
0; o.w.

(1)

Thus, the exterior (complement) ofR��� can be indicated by1� IR���(x).

Let the object have a uniform intensityCINT > 0 overR��� and let the background intensity over the complement of

R��� beCBG > 0. The uncorrupted image can then be represented as

I���(x) = CINT � IR���(x) + CBG � (1� IR���(x)): (2)

The contrast of the object within the image isjCINT � CBGj.

B. Model for Observed Data

Let the observed dataYM(x) be

YM(x) = (I~��� � �H)(x) + n(x); (3)

where�� denotes convolution,H(�) is the system spatial response andn(�) is system noise. We assume the point

spread functionH(�) to be a spatial invariant symmetric Gaussian with blur parameter�s, and the additive noisen(�) to

be zero mean white Gaussian with power spectral density�2n. This restriction to Gaussian point spread is not a severe

limitation for many imaging modalities and it simplifies the analysis to follow.

C. Model for Boundary

We assume that the object interiorR��� is a star–shaped region and cn therefore be described by a radius function

r(�) as a scalar function of angle� 2 [��; �), with respect to some originO specified insideR���. We refer toO as

thecenter–of–description. We additionally assume that the shape can be described by a linear combination of basis

functionsfBi(�)gKi=1 in the sense that

r���(�) = BT (�) �; (4)

whereB(�) = [B1(�) ; : : : ; BK(�)]T is a vector of linearly independent basis functions on[��; �). Some basis

sets used to represent closed boundaries are periodic planar curve models such as Fourier descriptors, fitting of line
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segments, cubics, Bezier curves, Beta-splines and B-splines [3]. When theBi’s are taken from a complete basis set

fBig1i=1, anyL2 bounded curver��� has the representationr���(�) =
P1

i=1 �iBi(�), � 2 [��; �).

III. 2D SHAPE ESTIMATION

Here we consider the CR bound for two cases of 2D shape estimation, namely,finiteandinfinitedimensional collec-

tions of basis functions.

A. Cramèr–Rao Bound for Finite Dimensional Case

For this case the numberK of basis elements is finite. The finite dimensional CR bound is a lower bound on the

K �K estimator covariance matrix associated with any unbiased estimator�̂�� of ���

cov���(�̂) � F�1��� ; (5)

whereF��� is the Fisher information matrix [7], [13]. The inequality in the CR bound is shorthand notation for: cov���(�̂)�
F�1��� is a non–negative definite matrix.

The Fisher information matrixF��� was derived in [33] for the model (3) and (4):

F��� = CCN

Z �Z
��

exp

�
�k~r���(�)� ~r���(
)k

2

4�2s

�
r���(�) r���(
)B(�)BT(
) d� d
 (6)

where

CCN =
(CINT � CBG)

2

4��2n�
2
s

=
(contrast)2

4��2n�
2
s

is the normalized contrast and~r���(�) represents the radius vector of the boundary at angle�. Thus,k~r���(�)� ~r���(
)k is

the Euclidean distance between boundary points~r���(�) and~r���(
). More details on this expression can be found in [33,

pp. 58–60] and [11]. The CR bound for covariance ofr̂(�), an unbiased estimate ofr���(�) that also lies in the span of

the given basis set, is given byCRBr;���(�; 
) = BT (�)F�1��� B(
) and an asymptotic form was shown in [11] as

CRBr;���(�; 
) =
1

2
p
��sCCN

BT (�)

�Z �

��
h���( )B( )BT( )d 

��1
B(
) + o(�m)

(7)

where

h���( ) :=
r2���( )q

r2���( ) +
�
r0���( )

�2 (8)
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�m := max
�

( p
2�s

~r0

���(�)



)

= max
�

8<
:

p
2�sq

[r���(�)]2 + [r
0

���(�)]
2

9=
; (9)

andr0���(�) := dr���(�)=d�:

The quantity
q

[r���(�)]
2 +

�
r0���(�)

�2
gives the magnitude of rate at which the radius vector changes with angle and is

known as the (angular) “speed” [30] of the curve. Hence we refer to�m in (9) as the maximum resolution–speed ratio.

Note that�m decreases when the shape is magnified. On the other hand, when�m is small, the spatial resolution is

high enough to resolve finer details in the boundary shape.

B. Interpretation ofh���( )

The quantityh���( ) from (8) has some interesting interpretations not discussed in [11]. Refer to Figure 1. It can be

shown that the distance from the center–of–descriptionO to the tangent line atP is

r2���( )r
r2���( ) +

�
dr���( )
d 

�2
. To see this consider the segmentOA in Figure 1:OA = OP sin(� � �) = OP sin � . Therefore,OA = r���( ) tan �p

1+tan2 �
.

It is easily shown thattan � = r���( )
@r���( )=@ 

[32, pp. 473]. Thus,OA = h���( ).

We therefore conclude thath���( ) is the distance between the center–of–description and the tangent line to the

boundary at angle . For fixed perimeter this distance is obviously minimized for a circular boundary. Also note that

h���( ) can be written as a ratio ofr���( ) (same dimensions as perimeter) and the dimensionless quantity

r
1 +

h
r0

���
( )

r���( )

i2
.

This dimensionless quantity is the ratio of speed [30] of the curve at angle to the speed of a circle of radiusr���( )

passing through the same point, i.e.
q
r2���( ) +

�
r0���( )

�2
=
q
r2���( ) + 02.

If we defineP to be the perimeter of the shape andA to be its area, then the dimensionless quantityC = 4�A=P 2

is a measure ofcircularity [8] that varies from 0 to 1. For example, circles achieve a maximum circularity of unity.

Squares have circularity equal to 0.7854 and equilateral triangles have circularity 0.6046. An important feature of

this measure is its scale invariance: scaling of the shape does not change its circularity measure. Recalling thatP =R �
��

q
r2���( ) +

�
r0���( )

�2
d andA = 1

2

R �
�� r

2
���( )d , we can interpret the ratio r���( )q

r2
���
( )+[r0

���
( )]

2
as a dimensionless

measure ofinstantaneous circularityper unit . Note that this measure also takes values in 0 to 1 and is invariant to

scaling of shape.
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C. Cramèr–Rao Bound for Infinite Dimensional Case

Let fBi(�)gi=1 be a complete orthonormal basis set. Define the radial function

rK(�) =
KX
i=1

�iBi(�) (10)

and its estimate

r̂K(�) =
KX
i=1

�̂iBi(�): (11)

We make the following assumptions:

(A1) Let r(�) = limK!1 rK(�) andr̂(�) = limK!1 r̂K(�) (m.s.).

(A2) Assume that̂r(�) is an unbiased estimate ofr(�), with finite mean–square value (i.e.E
�
r̂2(�)

�
<1).

(A3) Assume that the first two derivatives ofrK(�) andr(�) w.r.t. � exist for all� andK.

Since,E
�
r̂2(�)

�
<1 and since the integrand and the limits of integration are finite, the estimator covariance function

satisfies [34, page 180] Z �

��

Z �

��
cov2(r̂(�); r̂(
)) d�d
 < 1: (12)

As the basis functionsB1(�); B2(�); : : : are complete and orthonormal in[��; �), we haveZ �

��
Bi(�)Bj(�) d� = �ij (13)

and
1X
i=1

Z �

��
f(
)Bi(�)Bi(
) d
 = f(�) (14)

wheref(�) is any continuous function that is integrable in[��; �) and�ij is the Kronecker delta function. The former

equation expresses orthonormality of the basis. The latter equation follows from the fact that
R �
�� f(
)Bi(
) d
 = fi,

wherefi is the projection off(�) onto the basis functionBi(�), and using
P1

i=1 fiBi(�) = f(�).

Define

hKF (�; 
) := CCN exp

�
�k~rK(�)� ~rK(
)k2

4�2s

�
rK(�) rK(
) (15)

hF (�; 
) := CCN exp

�
�k~r(�)� ~r(
)k

2

4�2s

�
r(�) r(
) (16)

FKij :=

Z �Z
��

hKF (�; 
)Bi(�)Bj(
) d� d
: (17)

and Fij :=

Z �Z
��

hF (�; 
)Bi(�)Bj(
) d� d
: (18)
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whereFKij is the Fisher information for finite dimensional case withK coefficients.

The Fisher information for this infinite dimensional case is given by the following Lemma, which is proven in

Appendix A.

Lemma 1:Let the assumptions A1, A2 and A3 be satsified. The Fisher information for the infinite dimensional case

is then given byFij , whereFKij uniformly converges toFij asK !1. Furthermore,

1X
i=1

Fii � CCN

�Z
��

r2(�) d�: (19)

❒

Define the following 2 additional conditions

(A4) Suppose there existsGij such that

1X
l=1

GilFlj =
1X
l=1

FilGlj = �ij : (20)

(A5) For any square summable sequencefxig1i=1, assume that the covariance of�̂i satisfies
1X
i=1

1X
j=1

xicov(�̂i; �̂j)xj �
1X
i=1

1X
j=1

xiGijxj : (21)

If both (A4) and (A5) are satisfied, then by definition,Gij is the CR bound on the covariance of�̂i. Note that if either

one of (A4) and (A5) fail to hold, then the determination of the infinite dimensional CR bound is an open problem.

If both (A4) and (A5) are satisfied, then a restricted CR bound for infinite dimensional case can be obtained from the

following Lemma, which is proven in Appendix B.

Lemma 2:Let the assumptions A1, A2, A3, and A5 be satisfied. Suppose there exists an integrable functionhG(�; �)
that satisfies

�Z
��

hF (�;  )hG( ; 
)d = �(�; 
): (22)

i.e. hG(�; �) is the operator inverse ofhF (�; �). Then

Gij :=

Z �Z
��

hG(�; 
)Bi(�)Bj(
) d� d
 (23)

satisfies (20). Hence A4 is satisfied. From assumption (A5), the covariance ofr̂(�) satisfies

cov(r̂(�); r̂(
)) � hG(�; 
) is n.n.d.:

❒
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D. Best–Shape Analysis for Finite Dimensional Case

We need the following Lemma, which is proven in Appendix C.

Lemma 3:Assume that the derivativesr0; r00; r000 exist and are finite. The only star–shaped object that satisfies

r2( )q
r2( ) + [r0( )]2

= c; 8 (24)

wherec is a constant, is a circular disk.

❒

This allows us to establish the optimality of the disk shapes

Theorem 3.1:Let K be finite and defineSK the set of shapes having boundary functionr(�) in the linear span

of the basisf�igKi=1. If SK contains the class of disk shapes then, to ordero(�m), the maximum eigenvalue of the

Cramèr–Rao bound is minimized overSK by this class of shapes.

❒
Proof of Theorem 3.1:

The asymptotic form for the Fisher information matrix is given by [11]

F��� =
(contrast)2

2
p
��s�2n

Z �

��
h���( )B( )BT( )d + o(�m): (25)

Let x be anyK-dimensional vector such thatxTx = 1. Then an upper bound on the maximum eigenvalue ofF��� is

obtained as follows

xTF���x =
(contrast)2

2
p
��s�2n

Z �

��
h���( ) (x

TB( ))2d + o(�m)

� max
 

h���( )
(contrast)2

2
p
��s�2n

Z �

��
(xTB( ))2d + o(�m)

with equality if and only if

h���( ) =
r2���( )q

r2���( ) +
�
r0���( )

�2 = c; 8 2 [��; �);

for some positive constantc independent of . From Lemma 3 this is true only for a disk. Thus, as the maximum

eigenvalue ofF��� is identical to the minimum eigenvalue of the CR bound on the covariance matrix, the Theorem

follows.

■
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E. Worst–Shape Analysis for Finite Dimensional Case

Here we explore shapes which minimize the trace of the asymptotic Fisher information matrix (25):

tracefF���g = C

Z �

�=��
h���(�) fB(�)d� (26)

whereC = (contrast)2

2
p
��s�2n

and

fB(�) = BT (�)B(�) =
KX
i=1

B2
i (�):

Since, by Schwarz’s inequality, for anyK–dimensional symmetric positive definite matrixA, tracefA�1g �
K=tracefAg, K=tracefF���g � tracefF�1��� g. Hence minimizing the trace ofF��� maximizes a lower bound on the

trace of the CR bound.

First we used numerical methods (constrained gradient search) to find shapes, specificallyr���(�) in the class of

B–splines withK equally spaced knots, which minimize tracefF���g subject to the fixed perimeter constraint

P =

Z �

�=��

q
[r���(�)]2 + [r

0

���(�)]
2d� = 1: (27)

The worst–case shapes found by numerical optimization are shown in Figure 2. Each of these shapes is a rhodonea

(rose shaped) curve [35] with a number of petals equal to one half the number of knots (K=even).

The global worst–case shapes in Figure 2 represent extreme deviations from circularity which for many applications

may not be frequently encountered in practice. To explore the sensitivity of the Fisher information over a more rep-

resentative set of shapes we investigated worst–case shapes over the class of nearly circular shapes whose boundary

functionsr���(�) satisfy both the perimeter constraint (27) and the circularity constraint:

4�A

P 2
=

4�
R �
�=�� r

2
���(�)d��R �

�=��

q
[r���(�)]2 + [r

0

���(�)]
2d�

�2 � 
 (28)

where
 2 [0; 1] is a specified circularity parameter close to one. As the circle maximizes enclosed area among all

closed curves of fixed permeter, the left hand side of the inequality in (28) takes on its maximum value of unity when

r��� corresponds to a disk shape, i.e.��� = 1 = [1; : : : ; 1]T [9, Thm. 4.5].

Under the assumption that
 close to one, a second order Taylor development about��� = 1 yields the following local

approximation to the left hand side of the perimeter constraint (27)Z �

�=��

q
[r���(�)]2 + [r

0

���(�)]
2d� = aT��� +

1

2
���TD��� + o(k��� � 1k2)



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, JULY 2000 11

and the local approximation to the trace of the Fisher information (26)

tracefF���g = C(aTf ��� �
1

2
���TDf���) + o(k��� � 1k2)

where

a =

Z �

�=��
B(�)d� (29)

af =

Z �

�=��
B(�)fB(�)d� (30)

D =

Z �

�=��
B

0

(�)[B
0

]T (�) (31)

Df =

Z �

�=��
B

0

(�)[B
0

]T (�)fB(�)d�; (32)

andB
0

denotes the vector of first derivatives of the basis elementsBi(�) with respect to�. Furthermore, under the

perimeter constraint, the circularity constraint reduces to4� ���TQ��� � 
 where

Q =

Z �

�=��
B(�)BT (�)d�

Therefore, by forcing
 to be close to one the problem of minimization over��� of the trace of the Fisher information

subject to the perimeter and circularity constraints is approximately quadratic in��� with associated Lagrangian

L(���) = aTf ��� �
1

2
���TDf��� + �1���

TQ��� + �2(a
T��� +

1

2
���TD���)

where�1 and�2 are undetermined multipliers selected so as to satisfy the local perimeter and circularity constraints

jointly expressed as

P = aT��� +
1

2
���TD��� = 1 (33)

A = ���TQ��� = 
=(4�): (34)

Using aK–dimensional subset of the quadratic B–spline basis functionsB(�), the plot offB(�) for various number

K of knots is given in Figure 3. The corresponding worst–shapes local to circle (
 = 0:9) are shown in Figure 4 and

exhibit characteristic flower shaped boundaries.

F. Best–Shape Analysis for Infinite Dimensional Case

We refer to (19) of Lemma 1 for the relation between sum ofFii over alli and the total area of the shape, recalling

that area =
�R
��

r2(�) d�. For a fixed perimeter, the area is maximized for a circle. Hence, circular disks are again
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estimated with most confidence. So, for both finite and infinite dimensional cases, circular disks are estimated with

least error.

G. Worst–Shape Analysis for Infinite Dimensional Case

We refer to Lemma 1. From (19), we see that the uncertainty of�̂i increases for shapes with smaller area. A smaller

area is achieved for a fixed perimeter when there are sharp and narrow spikes on the shape. The area is minimized

whenr(�) is very close to zero for all�. Since there is a constraint on perimeter, we conjecture thatr(�) will have

sharp spikes, uniformly spread along� 2 [��; �) in such a way that the perimeter constraint is met.

IV. OPTIMUM CENTER–OF–DESCRIPTION FOR2D SHAPE ESTIMATION

As mentioned earlier, the choice of center–of–description is an important issue. For example, suppose we are esti-

mating circular shapes, if the center–of–description is the geometric center of the circular shape, then estimation error

will be minimum, as we saw earlier. However, if the center–of–description is on the boundary or very close to the

boundary of the circular shape, then estimation error will be greater. In this section, we show an approach to find

optimum center. The optimum center can be found using the Fisher information for finite or infinite dimensional cases.

For concreteness we focus on the infinite dimensional case.

A. Set up of Problem

We assume that a descriptionr(�) of the boundary is known with respect to a known centerO as in Figure 5. Let~O

be a new center–of–description so that the same object can be described by~r(�), where the angle� is with respect to

the previous originO. Recall from Lemma 1, we have
P1

i=1 Fii � CCN
R �
�� r

2(�) d�. So, we can maximize a bound

on the trace of theF��� over shape by maximizing

f =

Z �

��
r2(�) d�: (35)

Let the new center~O be located at(rc; �c) with respect toO. This is shown in Figure 5. Now, using a trigonometric

equality,

~r2���(�) = r2c + r2(�)� 2rcr(�) cos(�c � �):

Define the function

~f(rc; �c) =

Z �

��
~r2(�) d�
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=

Z �

��

�
r2c + r2(�)� 2rcr(�) cos(�c � �)

�
d�: (36)

In order to locate an optimum center, we should maximize the function~f (rc; �c) with respect torc and�c.

B. Determining Optimum Center–of–Description

To minimize ~f(rc; �c) with respect torc and�c, the necessary condtions are given by

@ ~f

@rc
= 0 =) rc =

1

2�

Z �

��
r(�) cos(�c � �) d� (37)

and
@ ~f

@�c
= 0 =)

Z �

��
r(�) sin(�c � �) d� = 0: (38)

Observe from (37) and (38) that the optimum center is not necessarily the centroid. An analogous procedure can be

used for the finite dimensional case to determine optimum center–of–description.

C. Sensitivity of CR bound to Center–of–Description

To see how the center–of–description affects the trace of asymptotic CR bound, we performed two experiments: one

with a circle and the other with a test shape. We shifted the center–of–description for these two shapes and evaluated

the trace of asymptotic CR bound in (7). Because of the symmetry of the circle, for the former case we shifted the

center–of–description along a fixed angle radial segment. The plot of the trace of the asymptotic CR bound against

radial shift of center–of–description for a circle of radius 5 units is shown in Figure 6. Obeserve that the optimum

position of the center–of–description is at the centroid, i.e. geometric center of the disc. Note that the trace of CR

bound is not monotonic, it starts to decrease when the center–of–description approaches the boundary. This is due to

the trade–off between the value ofh���( ) for boundary points close to the center–of–description and boundary points

away from the center–of–description. This trade–off depends on the shape in general. Thus, for the circle of radius 5

units, the peak of trace bound occurs for a shift less than 5 units.

Figure 7 shows a test object for the second experiment. The area marked by dotted lines is the region of center–

of–description locations for which the shape can be described as a star–shape. The figure shows the shape centroid,

optimum center and worst center. The optimum center and worst center were found using exhaustive search. This is

an example where the centroid is not the optimum center–of–description. The best center appears to be the center–of–

description that maximizes the minimum distance to boundary. Also note that the worst center for this test shape lies

on the boundary of the region marked by dotted lines, i.e. at the limit of the center–of–description for which the object

can be described as star–shaped.
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V. 3D SHAPE ESTIMATION

In this section, we extend the finite dimensional results for 2D shape estimation. The infinite dimensional extension

is not treated here. We follow a similar procedure to derive the Fisher information and its asymptotic expression. The

model for uncorrupted 3D image is

I~���(x; y; z) = CINT � IR~���
(x; y; z) + CBG � (1� IR~���

(x; y; z)): (39)

The model for observed data is

YM(x; y; z) = (I~��� � � �H)(x; y; z)+ n(x; y; z) (40)

where� � � denotes three–dimensional convolution. As in the 2D case we assume that the point spread function

H(�; �; �) is spatial invariant symmetric Gaussian with blur parameter�s, and noisen(�; �; �) is zero mean white Gaus-

sian with power spectral density�2n. Again, we focus on star–shapes. The radiusr���(�; �) is described as a func-

tion of angle of elevation� and angle of azimuth� as defined in Figure 8, where� is a vector of basis coeffi-

cients. Similarly to the 2D case, the basis functions can be represented in vector form asBi(�; �) andB(�; �) =

[B1(�; �); B2(�; �); : : : ; BK(�; �)]T . As an explicit example, tensor spline model represents the radius function as a

tensor product

r���(�; �) =

KelX
i=1

KazX
j=1

�ijB
el
i (�)B

az
j (�) (41)

whereBeli (�) andBazi (�) are basis functions along axes for elevation and azimuth angles, respectively. Alternatively,

this representation can be rearranged lexigraphically to obtain a more general form:

r���(�; �) =
KX
i=1

�iBi(�; �): (42)

A. Fisher Information for 3D Shape

An expression for Fisher information is given in the following Lemma, whose proof is in Appendix D.

Lemma 4:The Fisher informationF��� for parametric estimation of 3 Dimensional shapes is given by

F��� = CCN �
Z �

2

�1=��
2

Z �

�1=��

Z �
2

�2=��
2

Z �

�2=��
exp

�k~r���(�1; �1)� ~r���(�2; �2)k2
�4�2s

�
r2���(�1; �1) r

2
���(�1; �2) � B(�1; �1);B

T (�2; �2) cos�1 cos�2 d�1 d�1 d�2 d�2 (43)

where

CCN :=
(CINT � CBG)2

8�3=2�3s�
2
n

=
contrast2

8�3=2�3s�
2
n

:
❒
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This expression is similar to the Fisher information for 2D case in (6). In the following Lemma, we give an asymp-

totic expression forF���. This Lemma is proven in Appendix E.

Lemma 5:Assumer���(�; �) > 0 andr���(�; �); r10��� (�; �); r01��� (�; �); r11��� (�; �); r20��� (�; �) andr02��� (�; �) are bounded

for all � 2 [��=2; �=2) and� 2 [��; �). The superscripts10; 01; 11; 20and02 are short–hand notation for the partial

derivatives @@� ;
@
@� ;

@2

@�@� ;
@2

@2�
and @2

@2�
respectively. Then

F��� = 4�CCN�
2
s

Z �
2

�=��
2

Z �

�=��
h���(�; �)B(�; �)BT(�; �) cos2 �d� d� + o(�m) (44)

where

h���(�; �) :=
r4���(�; �)q

~r 10��� (�; �)



2 

~r 01
��� (�; �)



2 � 
~r 10��� (�; �); ~r 01��� (�; �)
�2 (45)

����(�; �) :=



~r 10��� (�; �); ~r 01��� (�; �)

�

~r 10��� (�; �)




~r 01��� (�; �)



 (46)

�1(�; �) :=

p
2�s

~r 10��� (�; �)



q1� �2���(�; �)
(47)

�2(�; �) :=

p
2�s

~r 01��� (�; �)



q1� �2���(�; �)
(48)

and �m := max
�;�

�1(�; �) + �2(�; �)

2
: (49)

❒

Again, this expression is similar to the asymptotic expression for 2D case in (25). We define


~r 10��� (�; �)



 to be

the speed of the differential surface element shown in Figure 8 along the axis of elevation. Similarly,


~r 01��� (�; �)



 is

the speed of differential surface element along the axis of azimuth.���� is the linear correlation coefficient between the

elevation and azimuth components of the radial gradient field and�m is the maximum of average resolution–speed

ratio along elevation and azimuth axes. Note the similarity between�m for the 2D case as in (9).

B. Interpretation ofh���(�; �)

The reader is referred to Figure 8. LetO be the center–of–description for the shape represented byr���(�; �). Let

P be a point on the surface. Let~OP = x î + y ĵ + z k̂, whereî; ĵ and k̂ are unit vectors alongX; Y andZ axes

respectively. Hence,

~r���(�; �) = ~OP = r���(�; �)
h
cos� cos � î+ cos� sin � ĵ + sin� k̂

i
(50)

~r 10��� (�; �) =
r 10��� (�; �)~r���(�; �)

r���(�; �)
+ r���(�; �)

h
� sin� cos� î� sin � sin � ĵ + cos� k̂

i
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and (51)

~r 01��� (�; �) =
r 01��� (�; �)~r���(�; �)

r���(�; �)
+ r���(�; �)

h
� cos� sin � î� cos� cos� ĵ + cos� k̂

i
(52)

Define

~t1 := � sin� cos� î� sin � sin � ĵ + cos� k̂ (53)

~t2 := � cos� sin � î� cos� cos� ĵ + cos� k̂ (54)

and ~n := cos� cos� î+ cos� sin � ĵ + sin� k̂: (55)

Then

~r 10��� (�; �) = r 10��� (�; �)~n+ r���(�; �)~t1 (56)

~r 01��� (�; �) = r 01��� (�; �)~n+ r���(�; �)~t2: (57)

Note that~t1;~t2 and~n are unit vectors and are mutually orthogonal. Thus, we have decomposed~r 10��� (�; �)and~r 01
��� (�; �)

into weighted sum of mutually orthogonal unit vectors. Consider a spherical surface passing throughP with O as its

center, as shown in Figure 8. Then the unit vectors~t1 and~t2 span the tangent space atP for the sphere, and~n is a

normal vector to the sphere atP . Thus



~r 10��� (�; �)


2 =

�
r 10
��� (�; �)

�2
+ r2���(�; �) (58)

~r 01��� (�; �)



2 =
�
r 01
��� (�; �)

�2
+ r2���(�; �) (59)

and



~r 10��� (�; �); ~r 01��� (�; �)

�
= r 10��� (�; �)r 01��� (�; �) (60)

~r 10��� (�; �)� ~r 01��� (�; �) = r 10��� (�; �)r���(�; �)~t1+ r 01��� (�; �)r���(�; �)~t2 + r2���(�; �)~n:

(61)

Recall that if~a and~b are the adjacent sides of a parallelogram, thenk~a � ~bk is its area. Also,k~a � ~bk2 =

k~ak2k~bk2� h~a;~bi2. The denominator (45) ofh���(�; �) is thus the area of the parallelogram determined by~r 10��� (�2; �2)

and~r 01��� (�2; �2).

Note that~r 10��� (�; �) and~r 01��� (�; �) lie in the tangent plane of the surfacer���(�; �) atP and~r 10��� (�; �)� ~r 01
��� (�; �)

gives the direction of the normal atP . Thus the distance between the tangent plane from the centerO is given by the
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projection of ~OP on the unit normal vector. Using (61), this is given byD
~OP ; ~r 10��� (�; �)� ~r 01��� (�; �)

E


~r 10��� (�; �)� ~r 01��� (�; �)




=



r���(�; �)~n; r

10
��� (�; �)r���(�; �)~t1 + r 01��� (�; �)r���(�; �)~t2+ r2���(�; �)~n

�

~r 10��� (�; �)� ~r 01��� (�; �)




=
r3���(�; �)

~r 10

��� (�; �)� ~r 01
��� (�; �)



 :
since~t1;~t2 and~n are mutually orthogonal unit vectors.

Thus,h���(�; �) is the product of distance of pointP on surface located at angle(�; �) from the centerO and the

distance of tangent plane atP fromO. Using (61),

h���(�; �) =
r3���(�; �)q�

r 10��� (�; �)
�2

+
�
r 01��� (�; �)

�2
+ r2���(�; �)

: (62)

Similarly, we get

����(�; �) =
r 10��� (�; �)r 01��� (�; �)q�

r 10
��� (�; �)

�2
+ r2���(�; �)

q�
r 01��� (�; �)

�2
+ r2���(�; �)

(63)

�1(�; �) =

p
2�s

q�
r 01��� (�; �)

�2
+ r2���(�; �)

r���(�; �)
q�

r 10
��� (�; �)

�2
+
�
r 01��� (�; �)

�2
+ r2���(�; �)

(64)

�2(�; �) =

p
2�s

q�
r 10��� (�; �)

�2
+ r2���(�; �)

r���(�; �)
q�

r 10
��� (�; �)

�2
+
�
r 01��� (�; �)

�2
+ r2���(�; �)

(65)

We can writeh���(�; �) as a ratio ofr2���(�; �) (same dimensions as area) and the dimensionless quantitys
1 +

�
r 10��� (�; �)

r���(�; �)

�2
+

�
r 01��� (�; �)

r���(�; �)

�2
:

The dimensionless quantity is also the ratio of speed of the surface at(�; �) to the speed of spherical surface of radius

r���(�; �) passing through the same point. This quantity will be called the instantaneous sphericity of the 3D object and

is analogous to the measure of circularity which characterized the CR bound for the case of 2D objects.

C. Extremal Shape Analysis

Since the form of the asymptotic 2D and 3D Fisher information matrices are very similar an analog to Theorem 3.1

is easily shown: the sphere is the optimum 3D shape.
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Similarly to the 2D case studied previously, we can explore worst–shapes by employing numerical minimization of

the trace of the Fisher matrix subject to the surface area constraint

S =

Z �=2

�=��=2

Z �

�=��

q
[r���(�; �)]2+ [r10��� (�; �)]2+ [r01��� (�; �)]2 r���(�; �) cos(�)d�d� = 1: (66)

For the numerical studies we used a tensor quadratic B–spline basis with equal number of equally spaced knots for

both the azimuth and elevation basis sets. In Figs. 9-10 we show 4 different views of the worst–shapes for3 � 3 and

4� 4 knots in the tensor bases, respectively. The knot positions are indicated by light colored boxes. These worse case

shapes are not necessarily unique but indicate that highly non-convex star-shaped objects are hardest to estimate. Note,

as in the 2D case, for each of these shapes the set of valid choices of center–of–description reduces to a single point at

one of the knot positions.

Using a completely analogous analysis as presented for the 2D case a worst case analysis of shapes local to the

sphere can be performed under the additional sphericity constraint36�V 2=S3 � 
 whereS andV are the surface area

and volume of the shape, respectively, and
 2 [0; 1] is close to unity. The sphericity measure on the left hand side of

this constraint inequality takes on its maximum value of unity for a sphere [9, p. 289]. The local Lagrangian for this

case reduces to the quadratic objective:

L(���) = ���T [Qf � 1

2
Df ]��� + �1(���

TQ��� � aT���) + �2(
1

2
���T [D+Q]��� + aT���)

where, now

a =

Z �=2

�=��=2

Z �

�=��
B(�; �) cos(�)d�d�

Q =

Z �=2

�=��=2

Z �

�=��
B(�; �)BT(�; �) cos(�)d�d�

Qf =

Z �=2

�=��=2

Z �

�=��
B(�; �)BT(�; �)fB(�; �) cos

2(�)d�d�

D =

Z �=2

�=��=2

Z �

�=��
[B10(�; �)B

T
10(�; �) +B01(�; �)B

T
01(�; �)] cos(�)d�d�

Df =

Z �=2

�=��=2

Z �

�=��
[B10(�; �)B

T
10(�; �) +B01(�; �)B

T
01(�; �)]fB(�; �) cos

2(�)d�d�

and�1 and�2 are selected to ensure the constraints

S =
1

2
���TD��� +

1

2
(���TQ��� � 1) + aT��� = 1

V = ���TQ��� � aT��� + 4=3 � =
p

=36�;

andB10(�; �) andB01(�; �) denote vectors of partial derivatives ofB(�; �) with respect to� and�, respectively.
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The local worst–shapes for tensor quadratic B–splines are shown in Figure 11 for3 � 3, 4 � 4, 8 � 8 and12 � 12

knots. Similarly to the 2D case these worse case shapes have oscillating surfaces where the period of oscillation is

determined by the number and placement of the knots.

VI. CONCLUSIONS

We have analyzed the performance of parametric estimators of boundaries of 2D and 3D star–shaped objects using

the CR bound and Fisher information. Asymptotic expressions for Fisher information for both 2D and 3D shapes were

presented and similarities between them were observed. Our results predict that estimationaccuracy depends on the

circularity (2D) or sphericity (3D) of the boundary of the underlying shape as measured by the speed of the curve (2D)

or surface (3D). We showed that circles and spheres are the shapes which are easiest to accurately estimate in that

they minimize the maximum eigenvalue of the CR bound. We also showed that for quadratic B–splines flower–shaped

objects are the hardest to estimate in that they minimize the trace of the Fisher information matrix.

APPENDIX

I. PROOF OFLEMMA 1 (UNCONSTRAINED FISHER INFORMATION FOR 2D SHAPE)

The Fisher informationFKij for finite dimensional case can be obtained from (6). So, we get (17) directly. By

assumption A3,rK(�) anddrK(�)=d� exist for all � andK. Note thathKF (�; 
) is integrable sincehKF (�; 
) �
CCNrK(�)rK(
) and

RR �
�� rK(�)rK(
)d�d
 < 1 (finite area). By assumption A1, it follows thatrK(�) converges

uniformly tor(�), for all �. Hence, using bounded area, it can then be shown thathKF (�; �) as defined in (15) converges

uniformly tohF (�; �)as defined in (16). Also, the basis functions are square integrable. So, it follows thatFKij converges

uniformly toFij asK !1.

Hence, using Fubini’s theorem

lim
K!1

KX
i=1

FKii =
1X
i=1

Fii

=
1X
i=1

Z �Z
��

hF (�; 
)Bi(�)Bj(
) d� d
 (67)

= CCN

�Z
��

hF (�; �) d�; using (14)
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� CCN

�Z
��

r2(�) d� (68)

■

II. PROOF OFLEMMA 2 (UNCONSTRAINED CR BOUND FOR 2D SHAPE)

Suppose there exists an integrable functionhG(�; �) that satisfies

�Z
��

hF (�;  )hG( ; 
)d = �(�; 
): (69)

i.e. hG(�; �) is the inverse ofhF (�; �) in the sense of operators. Recall that this exists only ifhF (�; �) is positive definite.

If such a functionhG(�; �) exists, then we will show that

Gij :=

Z �Z
��

hG(�; 
)Bi(�)Bj(
) d� d
 (70)

satisfies (20). Note thathG(�; �) is symmetric, sinceFij is symmetric. Now, again by Fubini’s theorem,

1X
l=1

FilGij

=
1X
l=1

ZZZ �Z
��

hF (�1; 
1)hG(�2; 
2)Bi(�1)Bl(
1)Bl(�2)Bj(
2) d�1d
1d�2d
2

=

ZZ �Z
��

hG(�2; 
2)Bi(�1)Bj(
2)

2
4 1X
l=1

�Z
��

hF (�1; 
1)Bl(
1)Bl(�2)d
1

3
5 d�1d�2d
2

=

Z �Z
��

2
4 �Z
��

hF (�1; �2)hG(�2; 
2) d�2

3
5Bi(�1)Bj(
2) d�1d
2; from (14)

=

�Z
��

Bi(�1)Bj(�1) d�1; using (69)

= �ij ; from (13):

By symmetry,
P1

l=1 GilFij = �ij . Hence,Gij satisfies (20).

Using assumption A1, the covariance ofr̂(�) is given by

cov(r̂(�); r̂(
)) = lim
K!1

KX
i=1

KX
j=1

cov(�̂i; �̂j)Bi(�)Bj(
):
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By completeness of the given basis set,r̂(�) lies in the linear span of the basis set. Therefore, using the CR bound for

covariance of̂�i, we get

cov(r̂(�); r̂(
)) � lim
K!1

KX
i=1

KX
j=1

GijBi(�)Bj(
) is n.n.d: (71)

Note that, whenGij satisfies (70), by Fubini

lim
K!1

KX
i=1

KX
j=1

GKijBi(�)Bj(
)

= lim
K!1

KX
i=1

KX
j=1

Z �Z
��

hG(~�; ~
)Bi(~�)Bj(~
)Bi(�)Bj(
) d~�d~


=
1X
i=1

�Z
��

2
4 1X
j=1

�Z
��

hKG (~�; ~
)Bj(~
)Bj(
) d~


3
5Bi(~�)Bi(�) d~�

=
1X
i=1

�Z
��

hKG (~�; 
)Bi(~�)Bi(�) d~�; from (14)

= hG(�; 
); from (14):

So, cov(r̂(�); r̂(
)) � hG(�; 
) is n.n.d.

■

III. PROOF OFLEMMA 3 (UNIQUE 2D SHAPE SATISFYING AN ODE)

We would like to prove that the only star–shaped object that satisfies

r2( )q
r2( ) + [r0( )]2

= c; 8 (72)

wherec is a constant, is a circular disk.

Clearly, a circle (which has constant radius) satisfies (72). Here, we should recall that by “circle”, we mean a circle

defined around the center–of–description.

We observe thatc > 0, for otherwise the shape is actually a point, which is a trivial solution. Also, we see that

r( ) > 0 wheneverr0( ) 6= 0. This tells us that shapes with boundary passing through its center–of–description are

excluded, unlessr( ) andr0( ) are both zero only at finitely many points.
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Squaring both sides of (72), we get

r4( ) = c2r2( ) + c2
�
r0( )

�2
�
r0( )

�2
= r2( )

�
r2( )

c2
� 1

�
(73)

Therefore, forr0( ) to be real, we require,

r2( ) � c2 (74)

=) r( ) � c > 0; 8 > 0 (since,r( ) � 0) (75)

Differentiating both sides of (73), we get

2r0( )r00( ) = 2r( )

�
2r2( )

c2
� 1

�
r0( ) (76)

Wheneverr0( ) 6= 0, it is then true that

r00( ) = r( )

�
2r2( )

c2
� 1

�
(77)

Recall from (74) that
h
r2( )
c2

� 1
i
� 0 and from (75) thatr( ) > 0. So we have�

2r2( )

c2
� 1

�
> 0:

Note the strict inequality in the previous equation. So, it is true that wheneverr0( ) 6= 0

r00( ) > 0: (78)

Also note that whenr( ) increases,r00( ) also increases and that whenr( ) decreases,r00( ) also decreases.

Wheneverr0( ) = 0, by differentiating (76), we get

2
�
r00( )

�2
+ 2r0( )r000( ) =

4

c2
r3( )r00( ) +

12

c2
r2( )

�
r0( )

�2 � 2r( )r00( )� 2
�
r0( )

�2
:

Sincer0( ) = 0 andr000( ) is finite we get

�
r00( )

�2
=

2r3( )

c2
r00( )� r( )r00( ):

Therefore, whenr0( ) = 0 andr00( ) 6= 0, we get

r00( ) =
2r3( )

c2
� r( )

= r( )

�
2r2( )

c2
� 1

�
> 0 (from equations (74) and (75)):
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So, it is true that wheneverr0( ) = 0

r00( ) � 0: (79)

So, from equations (78) and (79), it is true that

r00( ) � 0 (with strict inequality wheneverr0( ) 6= 0). (80)

Let � and! be angles such that! � � � � � ! + �. ThenZ �

 =!��
r00( ) d = r0(�)� r0(! � �):

Again, Z !+�

�=!��

Z �

 =!��
r00( ) d d� =

Z !+�

�=!��
r0(�) d� �

Z !+�

�=!��
r0(! � �) d�

= r(! + �)� r(! � �)| {z } � 2�r0(! � �)

= 0 (since the boundary is a closed curve)

Thus,

8! 2 IR :

Z !+�

�=!��

Z �

 =!��
r00( ) d d� = � 2�r0(! � �): (81)

Note that from (80), we get

8! 2 IR :

Z !+�

�=!��

Z �

 =!��
r00( ) d d� � 0: (82)

However, since! is arbitrary and since we ignore the “point object”, which is a trivial solution, and eliminate the

circle for which8! : r0(! � �) = 0, there exists atleast one! for whichr0(! � �) > 0. So, we get from (81) that

9! 2 IR :

Z !+�

�=!��

Z �

 =!��
r00( ) d d� < 0:

This contradicts (82). Thus, we have proven that the only smooth star–shaped object that satisfies (72) is the circle.

■

IV. PROOF OFLEMMA 4 (FISHER INFORMATION FOR 3D SHAPE)

We will follow a procedure similar to the 2D case as in [33, pp. 139–142]. DefineIs���(x; y; z) = (I��� ? ? ?H)(x; y; z).

Then the log–likelihood is given by

ln f(YM; �) = C +

� �1
2�2n

�
�
ZZZ

Rf

[YM(x; y; z)� Is���(x; y; z)]
2 dx dy dz (83)
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whereC is independent of� andRf is the field of view. Thus,

r��������� ln f(YM; �) =

��1
�2n

�
�
ZZZ

Rf

[YM(x; y; z)� Is���(x; y; z)]r��������� Is���dx dy dz

r2
��������� ln f(YM; �) =�

1

�2n

�
�
ZZZ

Rf

�
(YM(x; y; z)� Is���(x; y; z))| {z }r2

���������I
s
��� � r���������Is��� � rT

��������� I
s
���

�
dx dy dz

= n(x; y; z):

Taking expectation of negative Hessian,

E
��r2

��������� ln f(YM; �)
�

=

�
1

�2n

�
�
ZZZ

Rf

r���������Is��� � rT
��������� I

s
��� dx dy dz (84)

Recall

I���(x; y; z) = CROI � IR���(x; y; z) + CBG �
�
IRf (x; y; z)� IR���(x; y; z)

�
= (CROI � CBG) � IR���(x; y; z) + CBG � IRf (x; y; z)

) r���������Is���(x; y; z) = (CROI � CBG) � r��������� (IR��� � � �H) (x; y; z): (85)

LetCs :=
CROI�CBG
(2�)3=2�3s

. Writing Is���(x; y; z) explicitly, we get

Is���(x; y; z) = Cs �
ZZZ

R���

exp

�
(x� �1)2 + (y � �2)2 + (z � �3)2

�2�2s

�
d�1 d�2 d�3 (86)

Consider the cartesian coordinate (x; y; z) to spherical coordinate (r; �; �) transformation defined by (see Figure 8):

x = r cos� cos �

y = r cos� sin �

z = r sin�

where�; � are the parameters for elevation and azimuth angles respectively.

The Jacobian for this tranformation is given byr2 cos�.

Therefore,

Is���(x; y; z) = Cs �
Z �

2

�=��
2

Z �

�=��

Z r���(�;�)


=0

exp

"
(x� 
 cos� cos�)2 + (y � 
 cos� sin �)2 + (z � 
 sin�)2

�2�2s

#

2 cos� d
 d� d�:

(87)
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By applying Leibnitz’s rule for differentiation of integral, we obtain

r���������Is���(x; y; z) = Cs �
Z �

2

�=��
2

Z �

�=��

exp

"
(x� r���(�; �) cos� cos�)2 + (y � r���(�; �) cos� sin �)2 + (z � r���(�; �) sin�)

2

�2�2s

#

�r2���(�; �) cos� (r���������r���(�; �)) d�d�:

Let f(�; x; y; z; �; �) :=

exp

"
(x� r���(�; �) cos� cos �)2 + (y � r���(�; �) cos� sin �)2 + (z � r���(�; �) sin�)

2

�2�2s

#

andg(�; �1; �2; �1; �2) :=

r2���(�1; �1) r
2
���(�1; �2) (r���������r���(�1; �1)) (rT

��������� r���(�2; �2)) cos�1 cos�2:

Then the Fisher information is given by

F��� =
C2
s

�2n
�
ZZZ

Rf

Z �
2

�1=��
2

Z �

�1=��

Z �
2

�2=��
2

Z �

�2=��

f(�; x; y; z; �1; �1)f(�; x; y; z; �2; �2)g(�; �1; �2; �1; �2) d�1 d�1 d�2 d�2 dx dy dz:

(88)Note that

(x� r���(�; �) cos� cos �)2 + (y � r���(�; �) cos� sin �)2+ (z � r���(�; �) sin�)
2

= x2 � 2xr���(�; �) cos� cos � + r2���(�; �) cos
2 � cos2 �

+y2 � 2yr���(�; �) cos� sin � + r2���(�; �) cos
2 � sin2 �

+z2 � 2zr���(�; �) sin� + r2���(�; �) sin
2 �

= x2 + y2 + z2 + r2���(�; �)� 2r���(�; �) (x cos� cos� + y cos� sin � + z sin �) :

Let us denote the numerator of the negative exponent in the productf(�; x; y; z; �1; �1)� f(�; x; y; z; �2; �2) byN .

ThenN can be written as

N = 2
�
x2 � x (r���(�1; �1) cos�1 cos�1 + r���(�2; �2) cos�2 cos�2)

�
+ 2

�
y2 � y (r���(�1; �1) cos�1 sin �1 + r���(�2; �2) cos�2 sin �2)

�
+ 2

�
z2 � z (r���(�1; �1) sin�1 + r���(�2; �2) sin�2)

�
+ r2���(�1; �1) + r2���(�2; �2):
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Let us now define

a = r���(�1; �1) cos�1 cos�1 + r���(�2; �2) cos�2 cos �2

b = r���(�1; �1) cos�1 sin �1 + r���(�2; �2) cos�2 sin �2

c = r���(�1; �1) sin�1 + r���(�2; �2) sin�2:

Using this, we can writeN as

N = 2(x2 � ax) + 2(y2 � by) + 2(z2 � cz) + r2���(�1; �1) + r2���(�2; �2): (89)

Completing the squares,

N = 2

"�
x� a

2

�2
+

�
y � b

2

�2
+
�
z � c

2

�2# � 1

2

�
a2 + b2 + c2

�
+ r2���(�1; �1) + r2���(�2; �2)) (90)

Define

D := r2���(�1; �1) + r2���(�2; �2)�
1

2
(a2 + b2 + c2)

andAg :=

"�
x� a

2

�2
+

�
y � b

2

�2
+
�
z � c

2

�2#
:

Then,N = 2Ag +D. We make the following approximation:

ZZZ
Rf

exp

�
Ag
��2s

�
dx dy dz � (2�)3=2 �

�
�2s
2

�3=2
=
�
��2s

�3=2
:

From the definitions ofD andAg, we can write the Fisher information of (88) as

F��� =
C2
s

�2n
�
Z �

2

�1=��
2

Z �

�1=��

Z �
2

�2=��
2

Z �

�2=��
g(�; �1; �2; �1; �2) � exp

�
D

�2�2s

�
ZZZ

Rf

exp

�
Ag
��2s

�
dx dy dz d�1 d�1 d�2 d�2 (91)

� C2
s

�
��2s

�3=2
�2n

�
Z �

2

�1=��
2

Z �

�1=��

Z �
2

�2=��
2

Z �

�2=��
g(�; �1; �2; �1; �2)

� exp
�

D

�2�2s

�
d�1 d�1 d�2 d�2:

(92)
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Now,

a2 = r2���(�1; �1) cos
2 �1 cos

2 �1 + r2���(�2; �2) cos
2 �2 cos

2 �2

+ 2r���(�1; �1)r���(�2; �2) cos�1 cos�1 cos�2 cos�2

b2 = r2���(�1; �1) cos
2 �1 sin

2 �1 + r2���(�2; �2) cos
2 �2 sin

2 �2

+ 2r���(�1; �1)r���(�2; �2) cos�1 sin �1 cos�2 sin �2

c2 = r2���(�1; �1) sin
2 �1 + r2���(�2; �2) sin

2 �2 + 2r���(�1; �1)r���(�2; �2) sin�1 sin�2:

Therefore,

a2 + b2 + c2 = r2���(�1; �1) + r2���(�2; �2)

+ 2r���(�1; �1)r���(�2; �2) [sin �1 sin�2 + cos�1 cos�2 cos(�1 � �2)] :

Therefore,

D =
1

2

�
r2���(�1; �1) + r2���(�2; �2)

� 2r���(�1; �1)r���(�2; �2) [sin�1 sin�2 + cos�1 cos�2 cos(�1 � �2)]g :

Consider two points(r1; �1; �1) and(r2; �2; �2) in a three dimensional space. The square of the Euclidean distance

between them is given by

k~r(�1; �1)� ~r(�2; �2)k2 = (r1 cos�1 cos �1 � r2 cos�2 cos �2)
2

+ (r1 cos�1 sin �1 � r2 cos�2 sin �2)
2 + (r1 sin�1 � r2 sin �2)

2

= r21 cos
2 �1 cos

2 �1 + r22 cos
2 �2 cos

2 �2 � 2r1r2 cos�1 cos�1 cos�2 cos �2

+ r21 cos
2 �1 sin

2 �1 + r22 cos
2 �2 sin

2 �2 � 2r1r2 cos�1 sin �1 cos�2 sin �2

+ r21 sin
2 �1 + r22 sin

2 �2 � 2r1r2 sin�1 sin �2

= r21 + r22 � 2r1r2 (cos�1 cos�2 cos(�1 � �2) + sin �1 sin�2) :

Using this formula for Euclidean distance, we observe that

D = kr���(�1; �1)� r���(�2; �2)k2=2:
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So, we can write the Fisher information in (92) as2

[F���]i;j = CCN �
Z �

2

�1=��
2

Z �

�1=��

Z �
2

�2=��
2

Z �

�2=��
exp

�kr���(�1; �1)� r���(�2; �2)k2
�4�2s

�
r2���(�1; �1) r

2
���(�1; �2) � Bi(�1; �1);Bj(�2; �2) cos�1 cos�2 d�1 d�1 d�2 d�2 (93)

whereCCN :=
C2
s(��2s)

3=2

�2n
andr���������r���(�; �) = Bi(�; �). Here,Bi(�; �) is value of thei–th basis at elevation and

azimuth angles(�; �).

■

V. PROOF OFLEMMA 5 (ASYMPTOTIC FISHER INFORMATION FOR 3D SHAPE)

We will reduce the complexity of theF��� in (43) by reducing the number of integrals to 2. In order to achieve this,

we will collect all terms that involve�1 and�1. Define the vector

A(�2; �2) :=

Z �
2

�1=��
2

Z �

�1=��
exp

�k~r���(�1; �1)� ~r���(�2; �2)k2
�4�2s

�
�r2���(�1; �1)B(�1; �1) cos�1 d�1 d�1

so that

F��� = CCN �
Z �

2

�2=��
2

Z �

�2=��
A(�2; �2) r

2
���(�2; �2)B

T (�2; �2) cos�2 d�2 d�2 (94)

Using Taylor’s series expansion with remainder for the vector~r���(�1; �1),

~r���(�1; �1) = ~r���(�2; �2) + ~r 10��� (�2; �2)(�1 � �2) + ~r 01��� (�2; �2)(�1 � �2)

+
1

2

�
~r 20��� (��1; �

�
1)(�1 � �2)

2 + 2~r 11��� (��2; �
�
2)(�1 � �2)(�1 � �2) + ~r 02��� (��2; �

�
2)(�1 � �2)

2
	

(95)

where��2 is a point between�1 and�2 on the line segment connecting them; similarly,��2 is a point between�1 and

�2 on the line segment connecting them. Thus,

k~r���(�1; �1)� ~r���(�2; �2)k2 =


~r 10��� (�2; �2)



2 (�1 � �2)
2 +



~r 01��� (�2; �2)


2 (�1 � �2)

2

+2


~r 10
��� (�2; �2); ~r

01
��� (�2; �2)

�
(�1 � �2)(�1 � �2) +Q���(�1; �1; �2; �2)

(96)

whereQ���(�1; �1; �2; �2) consists of higher order terms of order less than(�1 � �2)
2 + (�1 � �2)

2.

2For clarity, we ignore the approximation symbol and use equality.
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Recall definitions of�1(�2; �2); �2(�2; �2) and����(�2; �2) from equations (46), (47) and (48). Consider the Gaus-

sian kernelG���;�2;�2(�1; �1) with mean�2; �2 and spread factors�1(�2; �2); �2(�2; �2) respectively and coefficient

����(�2; �2):

G���;�2;�2(�1; �1) :=
1

2��1(�2; �2); �2(�2; �2)
q

1� �2���(�2; �2)
�

exp

8<
: �1

2
q

1� �2���(�2; �2)

"�
�1 � �2
�1(�2; �2)

�2

+2����(�2; �2)
(�1 � �2)(�1 � �2)

�1(�2; �2)�2(�2; �2)
+

�
�1 � �2
�2(�2; �2)

�2
#)

(97)

Substituting for�1(�2; �2); �2(�2; �2) and����(�2; �2),

G���;�2;�2(�1; �1) :=

q

~r 10��� (�2; �2)


2 

~r 01��� (�2; �2)



2 � 

~r 10��� (�2; �2); ~r 01��� (�2; �2)

�2
4��2s

� exp

� �1
4�2s

h

~r 10��� (�2; �2)


2 (�1 � �2)

2

+2


~r 10��� (�2; �2); ~r

01
��� (�2; �2)

�
(�1 � �2)(�1 � �2)

+


~r 01��� (�2; �2)



2 (�1 � �2)
2
io

(98)

Define the vector

g(�1; �1) := exp fQ���(�1; �1; �2; �2)gr2���(�1; �1)B(�1; �1) cos�1: (99)

Therefore

A(�2; �2) =
4��2sq

~r 10

��� (�2; �2)


2 

~r 01

��� (�2; �2)


2 � 
~r 10��� (�2; �2); ~r

01
��� (�2; �2)

�2
�
Z �

2

�1=��
2

Z �

�1=��
g(�1; �1)G���;�2;�2(�1; �1) d�1 d�1

(100)

Finally we show that to ordero(�m), where�m = max�;�
�1(�;�)+�2(�;�)

2 , the double integral evaluates tog(�2; �2).

This occurs since for small�m and fixed�1; �1 the width of the Gaussian kernel in�2; �2 is considerably narrower

than the width ofg(�2; �2).

A(�2; �2) =
4��2sr

2
���(�2; �2)B(�2; �2) cos�2q

~r 10��� (�2; �2)



2 

~r 01��� (�2; �2)


2 � 


~r 10��� (�2; �2); ~r 01��� (�2; �2)
�2 + o(�m):: (101)

Here we used the fact thatlim�!0 � exp(�c�) = 0 for c > 0. Defining

h���(�2; �2) :=
r4���(�2; �2)q

~r 10��� (�2; �2)



2 

~r 01��� (�2; �2)


2 � 


~r 10��� (�2; �2); ~r 01��� (�2; �2)
�2 (102)
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we obtain

F��� = 4�CCN�
2
s

Z �
2

�2=��
2

Z �

�2=��
h���(�2; �2)B(�2; �2)B

T (�2; �2) cos
2 �2 d�2 d�2 + o(�m): (103)

■
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(a) View from an angle (b) View from X-axis

(c) View from Y-axis (d) View from Z-axis

Fig. 9. Different views of worst–shape for3� 3 knots. Knot positions are marked as light colored boxes.
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(a) View from an angle (b) View from X-axis

(c) View from Y-axis (d) View from Z-axis

Fig. 10. Different views of worst–shape for4� 4 knots.
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(a)3� 3 Knots (b) 4� 4 Knots

(c) 8� 8 Knots (d) 12� 12 Knots

Fig. 11. Worst–shapes local to a sphere.


