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ABSTRACT
We consider the problem of sensor selection for a binary hy-
pothesis testing problem when the conditional density of the
sensor readings can be affected by an adversary. A typical
application of the proposed setup is surveillance with spa-
tially distributed sensors, where the adversary is changing
locations to evade detection. We consider a zero-sum game
model where the primary and the adversary are choosing open
loop randomized strategies and the payoffs are specified by
the asymptotic detection probability under a false alarm con-
straint. We prove the existence of the Nash equilibrium of
this surveillance game and characterize the optimal min-max
strategies and the value of the game. A computed example of
decentralized detection with sensors providing binary valued
observations is given to illustrate the results.

Index Terms— Decision Theory, Game Theory, Sensor
Management

1. INTRODUCTION

Distributed sensor systems use a multitude of sensors to
obtain information for making inferences about the scene
under observation. Constraints on power, communication
bandwidth, computational complexity results can limit the
number of sensors that can be activated at any time instance.
Sensor management problems concern selection of active
sensors for optimal detection and estimation. In particular,
various information metrics have been used to guide sensor
selection strategies [1, 2]. In [3, 4] mutual information cri-
teria were proposed to select informative measurements in a
greedy fashion one sensor at a time. In [5] this approach was
extended to the general finite horizon case through an approx-
imate dynamic programming method. Alternative approaches
to sensor management include stochastic optimization for er-
ror covariance [6], geometric sensor selection schemes for
bounded error sensor models [7] and convex optimization
heuristics for error covariance minimization [8]. The use of
open control randomized strategies have been suggested for
sequential hypothesis testing with sensors [9]. Typically, in
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all these previous work the target under the surveillance is
modeled as a random process leading to a decision problem
where the observer takes an expectation of the performance
metric to optimize sensor selection.

In this work, we consider an intelligent adversary that is
aware of the sensor characteristics and can affect the condi-
tional density of the sensor observations. A typical applica-
tion of the proposed setup is surveillance with spatially dis-
tributed sensors, where the adversary is changing locations to
evade detection. We model the sensor selection problem as
a game between two players with opposing objectives. The
observer is choosing an open loop randomized strategy to
choose sensor observations that maximizes probability of de-
tection, whereas the target is using an open loop randomized
control strategy over the available evading actions to mini-
mize the probability of being detected. Figure 1 depicts the
surveillance game between the observer choosing sensors and
the target choosing evading actions.
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Fig. 1. Surveillance game between the observer choosing sen-
sors (k) and the target choosing evading actions (m)

The Nash equilbrium of this zero-sum game provides
optimal strategies for surveillance and evasion and the value
of the game quantifies the guaranteed performance of the
surveillance system. In the next section, we present the
system model and define the zero sum game between the ob-
server and the target. In Section 3, we characterize the Nash
equilibrium of this game and prove its existence. We con-



clude with a computed example of distributed detection using
two sensors with binary observations and a target with two
evading actions. For brevity, we only provide only outlines of
the proofs of each result.

2. SYSTEM MODEL

We assume a binary detection problem with two hypotheses
H0 andH1. We assume there areK sensors with observations
drawn from a finite measurement space X with J elements
X = {x1, x2, . . . , xJ}. The adversarial target has M actions.
If H1 is true, qkmj gives the probability that xj will be the
observation of the k’th sensor under the m’th action of the
target; if H0 is true then pkj gives the probability that xj will
be the observation of the k’th sensor. We assume that two
technical conditions holds true. First, qkmj 6= 0 and pkj 6= 0

for all j, k and m; and second ‖
∑
m θmq

km − pk‖ > 0 for
all k. The first condition guarantees that the sensors have the
same support in X and no sensor observation can decide on
H0 or H1 with certainty. The second condition states that
by randomizing its actions the target cannot identically create
sensor density under H0.

We consider an observer using an open control random-
ized strategy r = {r1, . . . , rK} with

∑
k rk = 1, where

rk is the probability of choosing the k’th sensor. The ob-
server chooses a sensor for each observation independently,
according to the probability law r to obtain N measurements
y = {y1, . . . , yN}. Similarly we assume the target is employ-
ing an open control randomized strategy s = {s1, . . . , sM}
with

∑
m sm = 1, where si gives the probability of choos-

ing the m’th action. The target chooses an action for each
observation independently according to the probability law s.

The observer uses the measurement vector y collected un-
der the sensor index set I = {i1, . . . , iN} to make a decision
betweenH0 andH1. The decision rule is specified by disjoint
sets U0 and U1. If the tuple (y, I) is an element of Ui then hy-
pothesis Hi is chosen. Type I error PFAN (r, s) and type II
error PMN (r, s) are given by:

PMN (r, s) =
∑

(y,I)∈U0

N∏
n=1

rin
∑
m

smq
inm
yn (1)

PFAN (r, s) =
∑

(y,I)∈U1

N∏
n=1

rinp
in
yn (2)

Now we consider all decision rules that satisfies a false alarm
constraint:

PFAN (r, s) < δ (3)

for some δ ∈ (0, 1). Then we define the payoff function
J (r, s) in the zero-sum game between the observer and the
target as the largest achievable error exponent under hypothe-
sis H1:

J (r, s) = − lim
N→∞

inf
{U :PFA

N (r,s)<δ}

1

N
log(PMN (r, s)) (4)

The observer and the target have opposing objectives. The ob-
servers aims to maximize the exponential decay rate of miss
detection probability, whereas the targets objective is to min-
imize this rate. The Nash-equilibrium of this game is defined
as the saddle point (r∗, s∗) satisfying:

J (r, s∗) ≤ J (r∗, s∗) ≤ J (r∗, s) (5)

If there exists a Nash-equilibrium (r∗, s∗) then minimax
equality is satisfied:

V (J ) = J (r∗, s∗) = max
r

min
s
J (r, s) = min

s
max
r
J (r, s)

where V (J ) defines the value of the game. Using strategy r∗

the observer guarantees that the exponential decay rate of PMN
will be at least as V (J ) no matter what strategy that the target
employs. Similary, using strategy s∗ the target guarantees that
the exponential decay rate of PMN will be no larger than V (J )
irrespective of the strategy of the observer.

3. OPTIMAL STRATEGIES AND THE VALUE OF
THE SURVEILLANCE GAME

To gain insight into the two player surveillance game, we first
consider the simpler one player decision problem of the ob-
server against a target employing known randomized strategy
s. We note that the model in which the target is using a known
stationary randomized strategy s is equivalent to a model with
no adversarial actions, where the probability distribution of
the observations are replaced with mixture densities qkj (s):

qkj (s) =
∑
m

smq
km
j (6)

Result 1. For an observer employing randomized strategy r
against a random opponent of known strategy s, the largest
error exponent under hypothesis H1 subject to false alarm
constraint in (3) is given by:

β(r|s) = − lim
N→∞

inf
{U :PFA

N <δ}

1

N
log(PMN (r|s))

=
∑
k

rkD
(
pk|qk(s)

)
,

whereD(p|q) is the Kullback-Leibler (KL) divergence defined
by

D(p|q) =
∑
j

pj log

(
pj
qj

)
Proof. (Outline) Since the strategy s is known, the observer
only has to consider likelihood ratio tests, as shown by the
Neyman-Pearson theorem. Using weak law of large numbers
the log likelihood of the observed data 1

NΛ(y1, . . . , yN ) on
the randomly chosen sensor index set IN converges in prob-
ability to its mean of

∑
k rkD

(
pk|qk(s)

)
under H0. Then a

straightforward variation on Stein’s Lemma gives the desired
result.



The achievable error exponent β(r|s) is a linear function
of r and therefore the maximum is attained at a corner of the
probability simplex. Result 2 follows immediately

Result 2. The optimal strategy for an observer against a ran-
dom opponent of known strategy s is to use the most informa-
tive sensor repeatedly for all observations, i.e. r∗ = δ(k, k′),
where the optimal sensor k′ is defined by the largest KL di-
vergence to the null hypothesis:

k′ = arg max
k

D
(
pk|qk(s)

)
The resulting optimal error exponent subject to the false
alarm constraint in (3) is given by:

β(r∗|s) = max
k

D
(
pk|qk(s)

)
The asymptotic optimality of single sensor measurements

has been noted previously in noncomposite Hypothesis test-
ing problems by Tsitsiklis [10], with extensions to M-ary Hy-
pothesis detection problems. This result shows that asymp-
totically there is also no benefit in randomizing between sen-
sors when faced with a target with known randomized strat-
egy over its available realizations.

In the following, we show that randomization is an essen-
tial component in the adversarial setting to achieve min-max
optimality in sensor selection. First we characterize the pay-
offs surveillance game as a function of the random strategy
pair (r, s).

Result 3. When the observer and target employ open-loop
strategies (r,s) in the game defined in (4) the payoffs are given
by:

J (r, s) =
∑
k

rkD
(
pk|qk(s)

)
(7)

Proof. (Outline) This result does not follow immediately
from Result 1, since here we cannot assume that the observer
has the knowledge of the strategy s of the target. Conse-
quently, the observer cannot form the composite likelihood to
perform the hypothesis test. Instead we consider the Hoeffd-
ing test [11] given by UH0 = {y : D(p̂(y)|pk) < λ}, where
the empirical probability mass function p̂(y) is calculated
from y using p̂j(yN ) = 1

N

∑
i δ(yi, j).

A variation of the Sanov theorem reveals that the er-
ror exponent for the test under hypothesis H0 is given by
− limN→∞

1
N logPFAN = λ and the error exponent for the

test under hypothesisH1 is given by− limN→∞
1
N logPMN =∑

k rkD
(
pk|qk(s)

)
− ε(λ) and limλ→0 ε(λ) = 0. The

constant (non-decaying) false alarm constraint (3) will be
satisfied by any nonzero λ. Therefore ε(λ) can be made ar-
bitrarily small by decreasing λ. Essentially, Hoeffding test
with vanishingly small threshold λ achieves the optimal error-
exponent β(r|s) of the likelihood ratio test, without knowing
the target strategy s or equivalently the mixture densities
qk(s) under H1. Taking the supremum over the family of
Hoeffding tests gives the desired result.

Next, we prove the existence of the Nash Equilibrium
strategies for the surveillance game. We use the standard tool
in game theory for proving existence, Kakutani’s fixed point
theorem.

Result 4. For the game defined by the payoff function given
in (4) there exists a Nash equilibrium strategy pair (r∗, s∗)
that satisfies the saddle point property (5).

Proof. (Outline) First we construct best response correspon-
dences. The maximum theorem shows the continuity of the
best responses and Kakutani’s fixed point theorem (KFPT) is
used to prove that they intersect. One set of sufficient con-
ditions for the maximum theorem and KFPT are : Strategy
space for each player must be a nonempty, compact, convex
subset of the Euclidean space and the payoff (utility) func-
tions for each player must be continuous and quasi-convex in
its own strategy. Here the strategy spaces are K and M di-
mensional probability simplexes and therefore compact and
convex. The function J (r, s) is continuous over (r, s). The
observer’s payoff function J (r, s) is linear in r. The tar-
get’s payoff −J (r, s) is concave in s. All the conditions of
KFPT and the maximum theorem are thus satisfied, so the
Nash equilibrium exists.

The Nash equilibrium solution typically lies in the interior
of the probability simplex when one sensor does not domi-
nate others. In this case, observer alternates between sensors
to avoid being exploited by the target and the target is alter-
nates between evading actions to avoid being exploited by the
observer.

4. EXAMPLE

In this section we consider a simple example to illustrate the
ideas presented in the previous section. Consider detection of
a target withK = 2 sensors that provides binary observations.
Assume the target has also M = 2 evading actions. Both
sensors have probability of false alarm of 0.1. The probability
of detection for each sensor-action pair by.

Action 1 Action 2
Sensor 1 0.8 0.6
Sensor 2 0.6 0.7

Best response functions are given by:

r∗(s) = arg max
r
J (r, s) s∗(r) = arg min

s
J (r, s) (8)

Using these response functions Nash equilibrium strate-
gies can be obtained as a solution to max-min optimality

r∗ = arg max
r
J (r, s∗(r)) (9)

s∗ = arg min
s
J (r∗(s), s) (10)



Figure 2 shows the max-min payoffs for the observer and
the target. The optimal strategy for the observer is r1 = (1−
r2) = 1/3 and the optimal strategy for the target is s1 =
(1− s2) = 1/3.

Both players alternate between sensors and evading ac-
tions to achieve a guaranteed performance level. For exam-
ple the observer is alternating between Sensor 1 and Sensor
2 with probability 1/3 and 2/3 to guarantee an error exponent
of 1.016. In equilibrium, the reason for its alternation is not
to maximize the information rate (in fact given the strategy
s1 = (1 − s2) = 1/3 the observer has the same payoff from
each sensor) but instead to avoid being exploited. For exam-
ple, if Sensor 1 is solely employed, it has a worst case payoff
of 0.794 since it is open to exploitation by a target employing
the strategy s1 = 0.
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Fig. 2. Max-min payoffs for the observer (top) and the target
(bottom).
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