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4.3 This figure shows the characterizations of the uncertainty region Cτ
for the SAR computational provisioning example. The red rect-
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5.8 This figure compares the performance of our proposed method with
and without priors on target signature locations. In this scene, tar-
gets are likely to be stopped at an intersection as shown by the region
in (a). A mission image containing targets is shown in (b) and a ref-
erence image without targets is shown in (d). The estimated target
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was done both with/without a target motion model (TMM). It can
be seen that by including the prior information, we are able to detect
stationary targets that cannot be detected from standard SAR mov-
ing target indication algorithms. The estimated target probabilities
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ABSTRACT

Adaptive Sensing Techniques for Dynamic Target Tracking and Detection with
Applications to Synthetic Aperture Radars

by
Gregory Evan Newstadt

Chair: Alfred O. Hero, III

This thesis studies adaptive allocation of a limited set of sensing or computational

resources in order to maximize some criteria, such as detection probability, estima-

tion accuracy, or throughput, with specific application to inference with synthetic

aperture radars (SAR). Sparse scenarios are considered where the interesting element

is embedded in a much larger signal space. For example, in wide area surveillance

using synthetic aperture radars, the goal is to localize and track moving vehicles

over a large scene. In this application, resources may be constrained in two ways:

(a) limited dwell time of the radar in any particular location; and (b) limited com-

putational resources in order to have a real-time detection/tracking system. Policies

are examined that adaptively distribute the constrained resources by using observed

measurements to inform the allocation at subsequent stages. This thesis studies

adaptive allocation policies in three main directions.

First, a framework for adaptive search for sparse targets is proposed to simul-

taneously detect and track moving targets. Previous work is extended to include a

xxi



dynamic target model that incorporates target transitions, birth/death probabilities,

and varying target amplitudes. Policies are proposed that are shown empirically to

have excellent asymptotic performance in estimation error, detection probability, and

robustness to model mismatch. Moreover, policies are provided with low computa-

tional complexity as compared to state-of-the-art dynamic programming solutions.

Second, adaptive sensor management is studied for stable tracking of targets

under different modalities. Using the guaranteed uncertainty management princi-

ple, a sensor scheduling policy is proposed that guarantees that the target spatial

uncertainty remains bounded. When stability conditions are met, fundamental per-

formance limits are derived such as the maximum number of targets that can be

tracked stably, the maximum spatial uncertainty of those targets, and the system

occupancy rates. The theory is extended to the case where the system may be en-

gaged in tasks other than tracking, such as wide area search or target classification.

Also, performance limits such as maximum load margin and multipurpose occupancy

rates are provided.

Lastly, these developed tools are applied to a specific application, namely tracking

targets using SAR imagery. A hierarchical Bayesian model is proposed for efficient es-

timation of the posterior distribution for the target and clutter states given observed

SAR imagery. This model provides a unifying framework that combines working

knowledge of the physical, kinematic, and statistical properties of SAR imagery. It

is shown that this posterior estimation technique generally outperforms common al-

gorithms for change detection. Moreover, the proposed method has the additional

benefits of (a) easily incorporating additional information such as target motion

models and/or correlated measurements, (b) having few tuning parameters, and (c)

providing a characterization of the uncertainty in the state estimation process.
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CHAPTER I

Introduction

Everyday life is full of situations where we choose how to best utilize limited

resources. For example, one may consider choosing what to buy at a grocery store

with a restricted monetary budget or how to plan an education course schedule

within a limited time period. In both cases, the ‘optimal’ choice depends on the

cost that we wish to optimize. In the former case, we may want to either maximize

nutritional value or maximize palate acceptability by all members of the family.

In the latter case, we may choose to maximize course load or job marketability.

Moreover, these cost functions will likely change over time: in the former case,

nutritional requirements or food tastes may change over time; in the latter case,

academic interests may change (e.g., from math to engineering or vice versa).

This dissertation generally considers applications where an ‘agile’ sensor can be

used to scan individual components of a scene. Resources are limited in the sense

that there is an upper bound on the total amount of time, energy, or computation

that can be used over the entire scene. Performance is then measured by our ability

to detect/estimate the components of interest within the scene. Moreover, we focus

on applications where we can adaptively allocate the limited resources in order to

estimate and detect a ‘sparse’ element within a larger signal.

1
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In particular, this thesis pursues three distinct directions: (1) the development

of adaptive policies for searching for a sparse number of targets under resource con-

straints (Chapters II and III); (2) development of fundamental performance limits

for tracking moving targets that guarantee a prescribed level of system performance

as a function of a given system provisioning (Chapter IV); and (3), application of

these adaptive techniques to a specific application, namely tracking moving vehicles

with synthetic aperture radars (Chapter V). This chapter continues with brief in-

troductions of these directions, my contributions to the field, and a comprehensive

literature review of related work. Finally, in Chapter VI, we conclude and point to

future work.

1.1 Adaptive sensing under resource constraints

The first direction of this work concerns itself with the problem of localizing and

estimating targets in noise using energy-constrained measurements. In particular,

the work focuses on problems where targets occupy only a small fraction of the

scanned domain, which is referred to as the ‘region of interest’ (ROI).

This work is primarily motivated by two applications. In early cancer detection,

the goal is to scan the body for tumors on the order of one cubic centimeter placed

somewhere inside the torso. Moreover, the constrained resource is the maximum

amount of ionizing radiation that can be safely endured by the patient. In target

detection/tracking with radars, the analyst is required to scan a large field of view

(FOV), where the number of radar cells containing targets is often much smaller than

the size of the scene. Moreover, to satisfy real-time constraints, the total amount of

radar dwell time is often limited.

In both of these applications, the common search scheme is to scan all possible
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locations with an equal effort allocation, which we term an ‘exhaustive policy’. In

computed tomography (CT) scans, this is equivalent to using the same energy level

for each CT projection. In radar tracking, an exhaustive search scans each radar cell

with equal dwell time. An exhaustive search can be considered a special case of a

static resource allocation policy; i.e., where the allocation efforts are predetermined

before any action is taken. This work considers the development of adaptive policies

(or adaptive sensing), where the allocation scheme is allowed to change over time as

a function of previous observations. Indeed, by using adaptive sensing, it has been

shown that one can perform significantly better compared to static polices. Bashan

et al. has shown benefits including near-optimal gains in estimation error and related

cost functions [11] as well as provable convergence to the true support of of the sparse

signal [11]. Haupt et al. also considers adaptive sensing, demonstrating convergence

rates that are significantly faster than non-adaptive policies [48], and proving that

adaptive policies can reliably detect/estimate targets with significantly smaller min-

imum amplitudes below which signal detection is impossible [50], as compared to

non-adaptive strategies.

My work is heavily influenced by the development of adaptive sensing schemes by

Bashan and Hero [11] where a novel cost function was introduced, and a solution to a

related minimization problem yielded an asymptotically optimal two-stage adaptive

resource allocation policy, namely ARAP. In [9], Bashan proposes a multiple-scale

modification (M-ARAP) that leads to significant savings in the number of measure-

ments. The first contribution of my thesis (a) provides extended performance analysis

in the multiple-scale case, (b) compares the computational complexity of M-ARAP

to other competing methods, and (c) theoretically analyzes the asymptotic behavior

of M-ARAP.
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The second contribution of this work is to extend ARAP in two significant ways:

(1) the allocation policy is broadened to T ≫ 2 stages, and (2) targets are allowed to

exhibit time-varying behavior, such as transitioning between cells, entering/exiting

the scene, and/or being obscured. A novel adaptive resource allocation policy for

simultaneously localizing and estimating dynamic targets, namely D-ARAP, is intro-

duced. D-ARAP has low computational complexity as compared to other approaches

in the literature, yet it can be easily generalized to a multitude of state, target, and

measurement models. Moreover, empirical performance analysis of D-ARAP has

shown excellent properties as either T → ∞ or SNR→ ∞ in comparison to both

exhaustive and greedy alternatives. The performance of D-ARAP is compared to

oracle policies as well as online policies (which have much higher computational

complexities) and the utility of this approach is demonstrated on a target tracking

example using synthetic aperture radar imagery.

1.2 Sensor management and provisioning through the guar-

anteed uncertainty principle

In the next section of this thesis, we look at sensor management from the view-

point of developing fundamental performance limits for stable tracking of targets

with different modalities. In Chapters II and III, we considered resource manage-

ment in the context of applying a limited set of resources to detect, estimate, and/or

localize a sparse number of targets in an efficient manner. In practice, the signal

processing algorithms used for tracking targets with radars are different than those

used for detection or track initialization. Nevertheless, we are still interested in ef-

ficient methods for maintaining tracks on targets, where the constrained resources

may be related to the physical sensor, such as when we have limited dwell times per
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radar cell, or may be abstractions, such as when we have real-time processing con-

straints. The objective, however, differs in the sense that we would like to maximize

the number of targets that can tracked in a stable fashion (i.e., the uncertainty of

the target states remain bounded).

We propose a general framework for maintaining stable track on N targets that

includes (a) a system model which describes the amount of service time required to

reduce target uncertainty to a nominal value, and (b) a target state model which

describes the growth of state uncertainty as a function of time and system parameters.

We propose using the prioritized longest queue (PLQ) policy, a variant of the ‘largest

weighted queue length’ policy [89] proposed by Wasserman et al., to assign free

resources (i.e., time required to reduce uncertainty to a nominal value) to track

all N targets. We provide conditions for stable tracking of targets under the PLQ

policy. Moreover, by solving a system of balance equations, we are able to provide

fundamental performance limits, such as

1. The number of targets that can be tracked stably.

2. The system occupancy rates; i.e., the amount of wasted resources that the

system could use more efficiently for other tasks.

3. The maximum uncertainty error; i.e., how large the entropy/uncertainty on

the targets state can grow.

We provide several example modalities for which we can apply these performance

limits, including tracking targets with both synthetic aperture radars and multistatic

passive radars. It should be noted that these performance limits consider the worst-

case scenario, where all targets are equally difficult to track.
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1.3 Applications to synthetic aperture radar (SAR) imagery

The last direction of this thesis is concerned with developing adaptive sensing

techniques for localizing and tracking vehicles using synthetic aperture radar (SAR)

imagery. The ability to track moving targets with airborne radars is a problem that

has drawn considerable interest from both the academic and government communi-

ties. In many cases, the opportunity now exists for continuous observation of regions

of interest. However, the amount of information available often severely outpaces

our ability to extract the information needed for decision-making. Indeed, Lt. Gen.

David A. Deptula, the U.S. Air Force Deputy Chief of Staff for Intelligence, Surveil-

lance, and Reconnaissance, recently remarked that we will “find ourselves in the not

too distant future swimming in sensors and drowning in data.” [37].

Motivated by the work in Chapters II through IV, it may be possible to efficiently

localize/classify targets or detect anomalous behavior by adaptively managing the

available resources. In practice, we may be interested in deciding how to adaptively

collect radar pulses to optimize our performance criteria. Unfortunately, current

SAR systems do not possess this capability. On the other hand, we consider the

problem of allocating computational resources to efficiently use previously collected

SAR samples. Applications include (a) tracking multiple targets over a sparse state

space and (b) efficiently reconstructing the scene of interest only in the (sparse) loca-

tions where targets exist. Note that the latter problem is related to the simultaneous

detection/estimation problem discussed with regard to adaptive sampling.

Airborne radar systems may operate in a multitude of modes depending on the

application. In moving target indication (MTI), the radar focuses a narrow beam

over small regions in the field of view for small integration times on the order of
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Figure 1.1: Here SAR images constructed through the backprojection method pro-
vided by Gorham and Moore [44] are shown for point targets. In (a)
the point target is stationary at (0, 0) and the majority of the en-
ergy is focused at that point. In (b) the point target has velocity
(vx, vy) = (30, 5) m/s and acceleration (ax, ay) = (3, 1) m/s2. The target
is both displaced in the image (by more than 300 meters) and smeared
(with smear length of about 10 meters).

milliseconds. Since MTI radars illuminate radar cells independently, they face the

tradeoff of long dwell times (that lead to improved detection/track accuracies) versus

the number of targets than can be detected or tracked stably. This may prohibit

efficient analysis of large fields of view (FOV).

Synthetic aperture radar (SAR) mode has traditionally been used to image sta-

tionary or slow-moving targets over a much larger FOV than other airborne radar

operating modes, particularly with respect to MTI. By integrating radar pulses from

spatially diverse points in the radar trajectory, SAR data can be used to form 2- or

3-dimensional images with much finer resolutions than MTI due to the ability to use

long integration times. However, the situation becomes complex when considering

moving targets, which can cause phase errors in the reconstruction of SAR images.

This leads to well known defocusing and displacement of the target’s energy (Jao [54],

Fienup [42], and Newstadt et al. [70]). As an example, Figure 1.1 displays two SAR
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images constructed from ideal phase histories for 1 second collected from point targets

located at the origin. In the left plot, the target is stationary, leading to a focused

image at the origin. In the right plot, the target has velocity (vx, vy) = (30, 5) m/s

and acceleration (ax, ay) = (3, 1) m/s2, with respect to a radar moving with velocity

(vradarx , vradary ) = (100, 0) m/s. This moving target is both displaced in the image (by

more than 300 m) and its energy is smeared over approximately 10 m. We refer to

the target energy within a reconstructed SAR image as the ‘target signature,’ which

is focused for stationary targets and displaced/dispersed for moving targets.

Regardless of the complexities of moving targets, target tracking with SAR im-

agery has been well studied in the literature. This includes methods that directly

estimate the phase errors induced by moving targets such as in the work of Jao [54]

and Fienup [42], as well as a multitude of algorithms for extracting moving tar-

gets from a background embedded in a low-dimensional subspace (Soumekh [81],

Ender [38], Erten [39], and Ranney and Soumekh [79]). Most of these algorithms

work well in some situations and poorly in others. However, they lack the ability to

characterize their uncertainty (e.g., through estimation of the posterior distribution

or belief state) that is required for adaptive sensing or sensor management.

This work combines our understanding of the physical, kinematic, and statistical

properties of SAR imagery into a single unified Bayesian structure that simultane-

ously (a) estimates the nuisance parameters such as clutter distributions and antenna

miscalibrations and (b) extracts a sparse component containing the target signatures

required for detection and estimation of the target state. The proposed algorithm

requires few tuning parameters since most quantities of interest are inferred directly

from the data - this allows the algorithm to be robust to a large collection of oper-

ating conditions. The performance of the proposed approach is analyzed over both
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simulated and measured datasets, demonstrating competing or better performance

than state-of-the-art algorithms.

One key feature of the proposed inference algorithm is its ability to easily in-

corporate additional prior information without greatly increasing the computational

cost. For example, if the target is known to move smoothly through the scene, a

Markov property can be enforced on the spatial locations of the targets within the

scene. Moreover, if the target state is known with uncertainty (i.e., in a tracking

scenario or in cases where the target may exhibit ‘normal’ behavior such as near

an intersection), then this work also provides methods for (a) predicting likely loca-

tions of the target signatures and (b) using this information directly in the inference

process.

The last contribution to this area is the development of performance prediction

methods for detection and estimation in SAR imagery. The following are provided in

this work: (a) a likelihood ratio statistic for detection in the multiple-pass, multiple-

antenna SAR image model that is shown to have a well-known form from which exact

hypothesis tests can be derived; and (b) a Cramer Rao Lower Bound for estimation

error for position and velocity of moving targets.

1.4 Literature review

In this section, we provide a literature review of related work. The chapters

related to resource allocation and sensor management (Chapters II, III and IV) draw

on similar research topics, so they are grouped together in Section 1.4.1. Section

1.4.2 provides both a simple overview of SAR systems as well as related work in

detection/tracking of targets using SAR imagery.
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1.4.1 Adaptive sensing/sensor management under resource constraints

The work laid out in Chapters II, III and IV draws on research from many

related fields, including sensor management, adaptive sampling, sampling in sparse

scenarios, and dynamic programming. In sensor management, one considers how to

best utilize a sensor in order to maximize performance criteria. Adaptive sampling

involves estimating an underlying signal in noise by choosing where to sample the

signal based on previous observations. Sparse approximation and compressed sensing

look at the problem of learning the sparse support of a signal in noise by designing

an intelligent sampling scheme. Dynamic programming considers the problem of

choosing a policy over multiple stages that maximizes utility as a function of the

(partially-observable) belief state. Finally, dynamic scheduling looks at the problem

of optimally assigning multiple servers to process multiple (infinite-length) queues.

Sensor Management

Sensor management is a rich field composed of many well-studied problems and

applications. Those readers interested in a detailed exposition should peruse the

work by Hero in [52]. This work is primarily interested in the problem of deciding

where to point and how to utilize a sensor in order to minimize some associated cost.

Kastella [56] considers the problem of selecting where to a point a sensor among S

radar cells in order to detect a signal target in noise. He shows that using ‘discrim-

ination gain’, a quantity based on the Kullback-Leibler (KL) divergence, to select

the location of the next sample can decrease the overall probability of incorrectly

detecting the location of the target. Kreucher et. al. [59, 60] show that integrating

sensor management with target tracking via the joint multi-target probability den-

sity (JMPD) can dramatically improve sensor efficiency for tracking multiple targets.
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Similar to Kastella’s work [56], they use KL divergence to select the sensing modality

with the highest predicted information gain among a discrete set of choices.

Krishnamurthy [61, 62] studies variants of the multi-armed bandit (MAB) prob-

lem. In [62], he considers the problem of selecting where to point an agile sensor

in order to track P targets among a finite number of cells. When the state is fully

observable, the problem can be posed as Markov decision process (MDP) with well-

known solutions. Krishnamurthy formulates the problem as a hidden Markov model

(HMM) tracking problem in the more practical case, when the state is observed with

noisy measurements. Under certain assumptions of the dynamics of the system, Kr-

ishnamurthy shows that the optimal solution can be decoupled into P independent

optimizations; each of these can be solved by minimizing the ‘Gittins index,’ which

is in turn a function only of each individual target and its associated ‘information

state’ - the conditional density of the state given the observation history. Moreover,

a suboptimal approach to estimating the Gittins index is provided to combat the

prohibitive computational complexity of the optimal solution. [61] considers the re-

lated problem of tracking a single target by choosing among multiple sensors. Once

again, an optimal approach is provided along with a suboptimal (yet computationally

feasible) alternative.

The methods developed in this work adopt a Bayesian framework and optimize

the sensing allocation as a function of posterior probabilities in place of KL diver-

gences or Gittins indices. Moreover, our methods differ in that we choose to select

the sensing modes from a continuous spectrum rather than from a discrete set of

choices.
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Adaptive Sampling

Adaptive sampling has been studied in many different contexts, often appear-

ing in the literature as active learning or active sampling. Castro, Willet, and

Nowak [24, 25, 91] consider the problem of estimating a function using samples that

are either chosen statistically independent of measurements (i.e., ‘passive sampling’)

or as a function of previous sample points and samples (i.e., ‘active sampling’). They

develop fundamental limits based on minimax lower bounds, showing that for cer-

tain classes of signals, one can achieve nearly optimal convergence rates in terms of

estimation mean square error (MSE). Moreover, it is shown that for spatially homo-

geneous signals, active sampling has no advantage over passive sampling. In addition

to performance limits, [25] provides a multiple-stage algorithm that samples the sig-

nal uniformly at the first stage, and subsequently focuses samples to the boundaries

of the function. This algorithm is applied in a variety of ways to reconstruct spa-

tially inhomogeneous signals, including estimating a Holder smooth boundary of a

(d− 1)-size manifold embedded in a d-dimensional space [24] and estimating bound-

aries using wireless sensor networks [91]. The work in this thesis differs from active

learning in multiple ways: (1) the signals that we consider are not restricted to a

class of inhomogeneous signals, (2) we expolit the sparsity of the ROI explicitly in

determining sensor allocations, and (3) active learning assumes identical sampling

procedure for all samples (leading to similar noise variance), while our work considers

separate sampling procedures across stages and locations.

Rangarajan et. al. [76–78] considers adaptive waveform design for estimating a

parameter vector under average energy constraints. They provide an solution to the

N -step problem that is optimal for N = 2 in terms of minimizing MSE. However,

since the parameter vector is not assumed to be sparse, only minimal gains are
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Figure 1.2: This plot shows the unequal distribution of measurements that is ex-
ploited by algorithms such as distilled sensing. The posterior probability
of a target being present (I = 1) given a negative measurement is much
smaller than the posterior probability when the target is missing (I = 0).

possible. In our work, it is shown that the asymptotic gains in MSE over non-

adaptive approaches is inversely proportional to the sparsity of the signal.

Bashan et. al. [9, 11] developed a two-stage policy, namely ARAP, for simulta-

neously localizing and estimating a sparse ROI within a larger signal under fixed

resource constraints. ARAP was shown to be asymptotically optimal in terms of a

cost function that is a surrogate for MSE and probability of error. The framework

and problem formulation for ARAP are provided in Chapter II, as they form a ba-

sis for extensions discussed in this thesis, including multiple-scale modifications in

Chapter II and dynamic targets in Chapter III.

Haupt et. al. [48] provide the ‘distilled sensing’ adaptive sampling procedure that

is formulated as a general sequential multiple hypothesis testing approach that simul-

taneously seeks to localize the target and to test for presence of targets in the scene

under a fixed energy constraint. Like ARAP, distilled sensing performs coordinate-

wise allocations of the sensing resources to each locations. At each stage, distilled

sensing refines its estimate of the ROI by thresholding measurements at each stage.

In particular, the method exploits the inequality between the posterior distributions

of the measurements under the hypotheses that a target exists or doesn’t exist at a

location (see Figure 1.4.1). Taken over sequential measurements, distilled sensing is

able to provide aysmptotic guarantees on perfect recovery of the ROI for arbitrarily
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small values of the false discovery rate. While they have similarities, ARAP and the

methods developed in my thesis differ from distilled sensing in important ways: (1)

ARAP adopts a Bayesian framework that generates a posterior probability of target

presence at each location given the measurements; (2) the optimization procedure

used by ARAP depends on these posterior probabilities; and (3), ARAP optimization

is simply performed on a surrogate convex performance metric.

Sampling Sparse Signals

In recent years, there has been a great deal of work in reconstructing the sparse

support of a signal, β, by intelligently choosing the measurement matrix, X given

noisy measurements of the form:

y = Xβ + n, (1.1)

for a n × p matrix, X, and n ≪ p. Often, the vector β is either exactly k-sparse

(i.e., only k non-zero entries) or approximately k-sparse (i.e., only k high amplitude

elements). In sparse approximation, the goal is to recover a k-sparse vector, β̂, so

that the residual errors have the relationship:

∥∥∥Xβ̂ − y
∥∥∥
2
≈
∥∥∥Xβ̂k − y

∥∥∥
2
, (1.2)

where βk is the best k-sparse approximation to β. Note that in this formulation,

β̂ can be thought of as a linear combination of a sparse number of columns of the

sensing matrix, X. In fact, one might consider solving the optimization problem:

min
β
‖y −Xβ‖2 s.t. ‖β‖0 ≤ k (1.3)

However, this problem is NP-hard to solve due to the l0 constraints on β. Davis and

Mallat [30] present a greedy algorithm called orthogonal matching pursuit (OMP)



15

for selecting the k dictionary elements (i.e., a column of X) that best approximate

βk as a function of the residual error in Equation (1.2). OMP is fast and simple

to implement, but does not necessarily identify the correct sparse solution. On the

other hand, if the dictionary is sufficiently ‘incoherent’ (i.e., the maximum inner

product between columns is small), then Tropp [86] shows OMP can recover k-

sparse with high probability. Moreover, Tropp and Gilbert [88] improve these results

and show the surprising results that one can recover the k-sparse signal β using

only O(k log p) measurements. As an alternative to OMP for solving the NP-hard

problem in Equation (1.3), Chen, Donoho and Saunders [26] propose ‘basis pursuit’

that solves a convex relaxation to Equation (1.3) and replaces the l0 norm with a l1

norm. Tropp [87] also studies this same convex relaxation, while Gorodnitsky and

Rao [45] provide the FOCUSS algorithm, which replaces the l0 norm with an lp norm

for 0 < p < 1. Since the latter relaxation is non-convex, they present an iterative

algorithm for solving the optimization problem. Aharon, Elad, and Bruckstein [4]

provide a general algorithm for adapting the dictionary X to a given training set,

which is adaptable to many of the discussed pursuit algorithms including OMP, basis

pursuit and FOCUSS.

Compressed sensing (CS) looks at a very similar problem to sparse approximation,

although performance of CS is often characterized by constraining the errors of the

approximations themselves:

∥∥∥β̂ − β
∥∥∥
p
≈ ‖β − βk‖q (1.4)

where p, q aren’t necessarily equal to 2 as in Equation (1.2). Donoho [34] provides

conditions on the sensing matrix X and shows that it is possible to reconstruct β̂

reliably using only O(k log p) measurements in the noiseless situation. Moreover, he



16

shows that basis pursuit is a nearly optimal algorithm for reconstructing β in terms of

MSE. Candes and Tao [20] provide additional properties on the sensing matrix, such

as the exact reconstruction property (ERP) and the uniform uncertainty principle

(UUP), that guarantee the ability to reconstruct the k-sparse signal from a small

number of measurements. Baraniuk et. al. [7] prove the existence of these types of

matrices. When measurements are corrupted by noise, Candes and Tao [21] provide

the Dantzig selector that can reliably reconstruct sparse vectors as long as the sensing

matrix is UUP. Moreover, the estimated β̂ is shown to be within a logarithmic factor

of the oracle estimator in terms of MSE. Haupt and Nowak [49] provide a similar

result where their sensing matrix is composed of random projections.

Many applications employ sparse approximation and compressed sensing tech-

niques in order to efficiently recover sparse signals. These include medical imag-

ing [64] by Lustig et. al., privacy [94], source localization [65] by Malioutov et. al.,

and compressive radars [8] by Baraniuk and Steeghs and [74] by Potter et. al.. For

an extensive listing of papers related to CS and sparse approximation, the interested

reader should peruse the papers listed at http://dsp.rice.edu/cs.

There are many connections between compressed sensing, sparse approximation,

and adaptive sampling. Indeed, Castro, Willet, and Nowak [23] show that for certain

classes of signals, (CS) performs almost as well as adaptive sampling. Ji, Xue, and

Carin [55] present compressed sensing in a Bayesian framework that allows them to

create error bars on the uncertainty of measurements. Under this framework, they

select the random projections that maximize expected variance (similar to selection

based on discrimination gain as discussed by Kastella et. al in [56]). Haupt et. al. [50]

extend distilled sensing to highly undersampled regimes (i.e., n ≪ p) by creating a

two-step procedure at each stage composed of (1) compressed sensing measurements
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followed by (2) refinement of the ROI. They show that by focusing measurements

into the estimated ROI, the effective SNR is greatly enhanced, leading to significantly

improved error bounds as compared to the Dantzig selector while still maintaining

O(k log p) measurements per stage.

The notion that one can save measurements when sampling sparse signals is also

studied in the adaptive sampling literature by using a multiple scale search over

sequential stages. Abdel-Samad and Tewfik [1–3] propose an adaptive sampling

solution for allocating N measurements to find a single target hidden in hidden in

Q cells, specifically in the case when N < Q. A hierarchical approach recursively

groups the Q cells into q < Q groups in a tree like structure, under the assumption

that signal to noise ratio (SNR) decreases as the group size increases. Their multiple

hypothesis testing approach is computationally intense and does not scale easily to

large N and Q. The proposed search strategies in this work, on the other hand,

are explicitly designed to detect and localize multiple targets even when Q is high,

and they have lower solution complexity than the multi-hypothesis testing approach

in [1–3].

One of the first multi-scale approaches was the adaptive pooled blood sample

algorithm introduced in the early 1940’s. Dorfman [35] considered the problem of

detecting defective members of a large population in the context of weeding out all

syphilitic men called up for military service. The test was so sensitive and accurate

that Dorfman suggests the following procedure: (1) draw blood from each candidate,

(2) use half of each sample to create a pool containing a mixture of n individual

subjects, (3) test the pool. If a pool tested positive, the other half sample of each pool

member was individually tested to detect the defective member. In the case of low

disease prevalence rates, Dorfman showed that one can save a great amount of time
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by averaging (pooling) measurements at a first coarse scale. Dorfman procedures use

a binary model (B-model) and do not account for false alarms or missed detections,

which in our setting is equivalent to an infinite SNR. Therefore they do not require

the additional degree of freedom of resource allocation and are only concerned with

minimizing the total number of samples required. An optimal group size, n, can

be analytically evaluated for each disease prevalence rate by optimizing the ratio

of the expected number of tests using the Dorfman procedure and prevalence rate.

Dorfman procedures enjoyed great success due to their simplicity and effectiveness.

Pfeifer modifies the binomial model (M-model) and considers test values that were

either zero (for negative) or greater than zero (for the degree of contamination) [72].

This way, when a pool is tested positive, each sample of a subgroup from the pool

reveals information regarding the other pool members; thus even greater savings are

achieved. Nonetheless, the modified model still does not account for false alarms

or missed detections. Dorfman procedures do not account for noise, which arises in

most signal processing applications, and this constitutes a major difference.

Dynamic Programming

In general, sequential resource allocation problems can be solved by dynamic pro-

gramming (DP). Bertsekas [14] discusses dynamic programming in great detail, but

the topics of greatest interest to this research are examined in Chapters 1 (intro-

duction), 5 (imperfect state information) and 6 (approximate methods). The basic

problem in DP is to minimize an additive cost of the form

E

{
gN(xN ) +

N−1∑

k=0

gk(xk, uk, wk)

}
, (1.5)

where xk is the current state at stage k, uk is the input at stage k, wk is random

noise, and gk(·) is some cost function. In general, {uk}k will be dependent on the
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random states xk, so DP tends to minimize the expected cost over policies, µk(xk).

A key principle in DP, referred to as the ‘principle of optimality’ by Bertsekas, states

that these complex optimizations can be solved by using backwards induction.

In practice, the state is usually observed through noisy observations, which greatly

complicates the optimization problem. On the other hand, if the state is replaced

by the so-called ‘belief state’ that characterizes the posterior distribution of the

observed state, then the partially observable problem can be converted back into a

fully observable DP. Nevertheless, optimal solutions to DP problems often require

approximate solutions in order to be computationally tractable, especially as the size

of the state grows. For an in-depth discussion of approximate methods, the interested

reader should see Chapter 6 of [14].

Chong et. al. [28] describe a set of related problems for formulating adaptive

sensing as a partially observable Markov decision problem (POMDP). They pro-

vide an excellent survey of optimal and approximate methods for solving POMDPs.

Morevoer, they show that using non-myopic policies (i.e., policies that trade off

current benefits for long-term performance gains) can lead to significant gains over

standard policies. These strategies rely on approximating the so-called Q- function

of the belief state B(t) and possible actions a ∈ A, where

QT−t(B(t), a) = r(B(t), a) + E[V ∗
T−t−1(B(t+ 1))|B(t), a] (1.6)

and

V ∗
T (B(0)) = max

a

(
r(B(t), a) + E[V ∗

T−1(B(1))|B(0), a]
)

(1.7)

In general, estimating the Q-function is intractable. However, there are many ap-

proximate methods, including

• Q-learning: A reinforcement learning approach based on estimating the Q-



20

function from multiple trajectories of the random process.

• Relaxation of the optimization problem or of the state space.

• Parametric approximations.

• Rollout policies: Assume that at stage τ > t, we use a known base policy,

λ(base). Then choose the action at stage t that optimizes the Q-function where

the remaining T − t stages are chosen according to λ(base).

• Parallel rollout polices: A simple extension of rollout policies, where there are

multiple base policies from which to choose.

• Completely observable rollout policies: An approximation to rollout policies,

that maps states to actions rather than belief states to actions.

The work in this thesis considers problems similar to both POMDPs and DPs.

We provide a computationally simple alternative to the optimal and approximate

solutions, which is additionally shown to be asymptotically optimal through empirical

evidence at a fraction of the search complexity of other algorithms.

Concurrent work

Concurrent with the work provided in this thesis, Wei and Hero [90] provide an

approximation to the DP solution in the static case by using the so-called open-loop

feedback control (OLFC) policy which assumes that at time t, future observations

y(t + 1) to y(T ) are unavailable. Under these conditions, the cost function at time

t becomes

min
λ(t),λ(t+1),...,λ(T )

Q∑

i=1

Pr(Ii = 1|Y (t− 1))

σ2/σ2
i (t) +

∑T
τ=t λi(τ)

s.t.

Q∑

i=1

T∑

τ=t

λi(t) = Λ(t)

(1.8)
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This optimization problem has a closed form solution for the variable λ̄i(t) =
∑T

τ=t λi(τ)

similar to that given in equation (3.76). In order to derive allocations per stage, Wei

and Hero propose that

λ(t) = R(T )(t)λ̄∗(t) (1.9)

where R(T ) ∈ [0, 1] is the fraction of the remaining budget used at time t. Then, they

use the strategy that sets R(T )(t) = R(T−1)(t − 1) for t = 1, 2, . . . , T and optimizes

over R(T )(0). This nested optimization problem can be done offline using Monte

Carlo simulations of the T -stage policy. Furthermore, it is shown that the nested

optimization guarantees that their T -stage policy is at least as good as a T −1-stage

policy. The work in this thesis extends the problem formulation to dynamic targets,

though the optimization techniques in this thesis are similar to those derived in their

work.

Dynamic scheduling/queuing

Dynamic scheduling/queuing has been studied in the framework of scheduling

multiple servers to multiple (infinite-length) queues by Tassiulas and Ephremides

[84], Wasserman et. al [89], Michailidis [67], Armony and Barbos [5], Eryilmaz

and Srikant [40] and Brémaud [18]. Applications of this work include developing

stable policies for time-varying wireless networks and congestion control by Neely et.

al. [68], Eryilmaz and Srikant [40] and Stolyar [83]. The general framework involves

time-varying decisions for choosing which queue will be processed by each server

in order to maximize throughput of the system and to maintain stability; stability

is defined to guarantee that the service load rates remain bounded (i.e., the queue

lengths do not grow unbounded). Generally, solving for an optimal allocation of

the servers is a difficult, if not intractable, problem. However, several suboptimal
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approaches have been proposed. This work does not propose a new approach to

the dynamic scheduling research, but rather uses an existing policy as a basis for

providing performance limits of a system using a reasonable scheduling policy.

1.4.2 Detection and tracking with SAR imagery

SAR images play a central role in the second direction of this thesis, and this

literature review begins with a basic overview of SAR and its related phenomenol-

ogy, based on the lecture notes by Cornwall [29]. The ultimate goal is to provide

adaptive techniques for detection and tracking of targets using SAR images, and

so related work in change detection, clutter suppression, ground moving target in-

dication (GMTI), and Bayesian filtering techniques are discussed as well. Change

detection and clutter suppression are both based on the assumption that the image

background lies in a low-dimensional subspace that is not of interest to the detec-

tion/tracking goal. GMTI algorithms tend to involve multiple-stage processes that

attempt to localize targets and estimate their dynamic state (velocities, accelerations,

etc.). Bayesian filtering has its roots in common algorithms such as the Kalman fil-

ter, but also incorporates many algorithms that estimate the posterior distribution

of the state given noisy measurements, including particle filters, Gibbs samplers,

and Hierarchical Bayesian models. Finally, the inference procedures proposed in this

work are closely related to the problem of decomposing a signal into low-dimensional

and sparse components, which has been well-studied in the context of the so-called

robust principal component analysis (RPCA) problem.

Basics of SAR (based on notes by Cornwall [29])

Conventional radar systems emit coherent electromagnetic waveforms that hit a

target and reflect back toward the radar. Measuring the time it takes for the wave
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Figure 1.3: This plot shows the flight path and beam steering used in a spotlight
SAR system.

to propagate from the antenna to the target (and back again) provides an estimate

of the range to the target. The angular resolution of the radar is determined by the

antenna beamwidth, which in turn is proportional to wavelength. Since typical radar

wavelengths are orders of magnitude larger than the wavelength of light, conventional

radars are not normally used to create images of the scene.

When the target is moving relative to the radar (which occurs either when the

platform moves, as in airborne radar, or when the target moves), then the Doppler

shift occurs, causing the returned wave to have a different frequency than the emitted

one.

By using a two-dimensional FFT, one can produce an image with axes that cor-

respond to ‘range’ and ‘Doppler’. It should be noted that this method is an approx-

imation to error-free SAR imaging in the xy (spatial) domain , which is discussed in

more detail later in this section.

The range resolution is a function of the bandwidth of the emitted signal1. The

1A technical detail that we will overlook is that SAR signals usually emit a so-called ‘chirp’
signal, which causes rapid frequency changes in the signal, similar to a bird’s chirp. Chirp signals
(also sometimes referred to as pulse compression) allow large bandwidths needed for small range
resolution without requiring excessive peak power.
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second dimension of SAR images (i.e., the ‘azimith resolution’) is roughly determined

by the angular resolution of the radar. To be able to get a azimuth resolution of

a few cm with an X-band SAR, one would need an aperture on the order of 300

km when the radar is 1 km from the scene center. To overcome the intractability

of constructing an aperture of this size, SAR constructs a ‘synthetic aperture’ by

combining pulses from an antenna that moves over a large distance (such as 300

km). Often, we are interested in imaging the scene for an extended time. In this

case, the antenna beam has to be steered in such a way that it illuminates the same

region of interest along its flight path. This mode of operation is called ‘spotlight

SAR’, and we will focus on this mode for this thesis. Figure 1.3 illustrates the flight

path and beam steering used in a spotlight SAR system.

Using SAR for imaging has many practical benefits over using optical imaging.

First, SAR images can be taken at day or night or through adverse weather that

would block optical wavelengths. Second, SAR records phase information about the

scene in addition to intensity. The phase information can be used to form inter-

ferometric images by combining SAR images formed in slightly different ways (for

instance, using different locations, times, or polarizations). These images enable the

measurement of very slow large scale motion (such as glacial movement), the creation

of 3-dimensional images, and detection of moving targets.

The terminology used in SAR signal processing distinguishes between the returns

for an individual radar pulse (fast-time) and a collection of pulses (slow-time). Indeed

SAR signals are often model simply as

s(τ, f) = e−j2πf[ 2R(τ)
c ], (1.10)

where τ denotes slow-time, f is the radar frequency, and R(τ) is the range to the
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Figure 1.4: This plot shows the geometry of an along track SAR system with two
antennas. After a short time lag of ∆τ = d/vs, the second antenna
occupies the same position as the first antenna. Stationary objects (such
as the tree) will yield the same range and thus can be canceled by certain
algorithms. On the other hand, moving targets (such as the car) will have
slightly different ranges and will not be canceled.
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object on the ground. In this work, we will consider along-track radar configurations,

consisting of a multiple antenna phase centers that are offset in the along-track direc-

tion of the radar platform. For simplicity of discussion, suppose that two monostatic

radar channels are mounted on an aircraft traveling with velocity, vs, and separated

by distance d. Let r1(τ) and r2(τ) be the locations of Channel 1 and 2 phase centers,

respectively. By assumption, both channels travel along the same path, but Channe1

1 lags Channel 2 by ∆τ = d/vs, so that r1(τ) = r2(τ + d/vs). Figure 1.4 illustrates

this geometry. Consider a scene composed of a single unit-amplitude scatterer. From

(1.10), the radar signals for both channels can be written as

s1(τ, f) = e−2πf [2R1(τ)/c], (1.11)

s2(τ, f) = e−2πf [2R2(τ)/c], (1.12)

where Ri(τ) is the range from Channel i to the target. Under certain assumptions,

such as using sufficiently small integration times and far-field approximations, Dem-

ing [31] shows that the signal from Channel 2 can be written as

s2(τ +
d

vs
, f) = s1(τ, f)e

−j2π
(

2dvr
λ0vs

)

, (1.13)

where λ0 is the center radar wavelength, and vr is the range velocity of the target. Let

A {·} be a linear SAR imaging operator that maps the s(τ, f) to a complex-valued

image S(x, y). From (1.13), we find that

A

{
s2(τ +

d

vs
, f)

}
= A {s1(τ, f)} e−j2π

(
2dvr
λ0vs

)

. (1.14)

This relationship is integral to two common algorithms for removing stationary back-

ground objects (aka, clutter) from moving targets. In displaced phase center array
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(DPCA) processing, an image is created in the following manner:

SDPCA(x, y) = A {s1(τ, f)} −A {s2(τ + d/vs, f)}

= A {s1(τ, f)}
(
1− e−j2π

(
2dvr
λ0vs

))

= A {s1(τ, f)}α(vr),

(1.15)

where α(vr) = 1−e−j2π
(

2dvr
λ0vs

)

. For stationary targets, |α(vr)|=0, so that |SDPCA(x, y)| =

0. For most other targets, |α(vr)| > 0 (except for some periodicities). Thus,

a detection algorithm can be simply derived by thresholding the intensity image,

|SDPCA(x, y)|.

In along-track interferometry (ATI), an image is created from the product S1S
∗
2 :

SATI(x, y) = A {s1(τ, f)} [A {s2(τ + d/vs, f)}]∗

= |A {s1(τ, f)}|2 ej2π
(

2dvr
λ0vs

)

.

(1.16)

where the phase of SATI(x, y) is used as the test statistic for change detection. It

should be noted that both DPCA and ATI are based on idealized SAR image models

and depend on properly balancing the channels, which can be difficult in practice.

Moreover, modern SAR systems often have more than two channels whereas these

methods are designed only for two-channel systems.

SAR Image Formation

Image formation from SAR phase histories can be done in a multitude of ways.

The simplest algorithm is ‘Doppler processing’, where the data s(τ, f) undergoes a

two-dimensional Fourier transform, yielding a coarse estimate of an image in Doppler

and range dimensions. Unfortunately, Doppler processing creates unfocused images

for larger integration lengths that lead to wider apertures (and better cross-range

resolution). To avoid this tradeoff, focused SAR images usually are created by using
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more intricate error-free techniques, such as the ‘Polar Format’ algorithm or ‘Convo-

lution Backprojection’. Details of these algorithms will not be provided here, but the

interested reader should peruse books on the subject by Jakowatz [53], Carrara [22],

and/or Soumekh [82].

For this work, SAR images are formed using the MATLAB toolbox provided by

Gorham et al. [44], which provides simple implementations of many common SAR

image formation algorithms.

SAR Phenomenology

SAR images often exhibit behavior much more complicated than the ideal point

scatterer model discussed previously. Of particular interest to this work are two noise

sources attributed to stationary targets. Borden shows that angular scintillation (aka

‘glint’ or ‘specular noise’) can cause large phase errors in the image formation process

that may considerably degrade signal quality [16]. Glints, as the name suggests, can

be shown to have a large angular dependence, in the sense that the intensity of the

glint is only large from (few) azimuth angles. Moreover, this noise source tends to

occur on man-made structures, such as edges of buildings or electrical wires. Since

buildings tend to be aligned in common directions, there tends to be strong spatial

correlation and angular dependence for glints.

Speckle noise as described by Raney [75] and Posner [73] is an additional multi-

plicative noise source arising from coherent imaging in SAR. Speckle noise tends to

be spatially correlated (e.g., buildings versus vegetation). Unlike glints, the intensity

of speckle noise tends to be uniform as a function of the azimuth angle.

In general, SAR images are formed by focusing the response of stationary objects

to a single spatial location. Moving targets, however, will cause phase errors in the
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SAR data that cause displacement and defocusing effects in the SAR image. Most

methods designed to detect the moving target depend on either (a) exploiting the

phase errors induced by the SAR image formation process for a single phase center

system or (b) canceling the clutter background using a multiple phase center system.

In this work, we provide a rich model that can combine (and exploit) both sources

of information in order to improve on both methodologies.

Fienup [42] provides an analysis of SAR phase errors induced by translational

motions for single-look SAR imagery. He shows that the major concerns are (a)

azimuth translation errors from range-velocities, (b) azimuth smearing errors due

to accelerations in range, and (c) azimuth smearing due to velocities in azimuth.

Fienup also provides an algorithm for detecting targets by their induced phase errors.

The algorithm is based on estimating the moving target’s phase error, applying a

focusing filter, and evaluating the sharpness ratio as a detection statistic. Jao [54]

shows that given both the radar trajectory and the target trajectory, it is possible to

geometrically determine the location of the target signature in a reconstructed SAR

image. Although the radar trajectory is usually known with some accuracy, the

target trajectory is unknown. On the other hand, if the target is assumed to have

no accelerations, Jao provides an efficient FFT-based method for refocusing a SAR

image over a selection of range velocities. Khwaja and Ma [58] provide an algorithm

to exploit the sparsity of moving targets within SAR imagery; they propose a basis

that is constructed from trajectories formed from all possible combinations of a set

of velocities and positions. To combat the computational complexity of searching

through this dictionary, the authors use compressed sensing techniques. Instead of

searching over a dictionary of velocities, our work proposes to use a prior distribution

on the target trajectory that can be provided a priori through road and traffic models
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or adaptively from previous observations of the scene.

Change Detection, Clutter Suppression, and Ground Moving Target In-
dication Techniques

Earlier in this chapter, DPCA and ATI were algorithms presented to detect mov-

ing targets from SAR images when multiple along-track channels were available. The

process of removing the stationary background in order to detect moving targets is

also known in the literature as ‘clutter suppresion’ or ’clutter cancellation’. ’Change

detection’ is an algorithm that detects changes between multiple observed images

of the scene. Often, clutter cancellation is a step within change detection. More-

over, change detection is sometimes used to detect changes that happen over large

time differences (ex: detecting stationary tank formations). In this work, we refer

to change detection as the process of determining moving objects between multi-

ple images, though this is clearly a subset of all change detection algorithms in the

literature.

Erten [39] provides a statistical analysis for SAR moving target change detec-

tion with multiple channels. The authors provide an algorithm based on mutual

information and complex Gaussian distributed channels that outperforms classical

correlation-based change detection algorithms. Gierull [43] provides a statistical

analysis of the phase and magnitude of complex SAR images for two channels. He

shows that SAR images cannot be modeled as spatially-invariant Gaussian in many

cases of interest, such as in urban environments, where the statistics vary spatially

and may be modulated by random variations. Gierull provides probability density

functions based on the p-distribution, as well as adaptive techniques for estimating

the parameters of this distribution to be used in detecting slow-moving targets.

Ender [38] applies space-time adaptive processing (STAP) to multiple-channel
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SAR imagery. Similar to standard moving target change detection algorithms such

as displaced phase center array (DPCA) and along-track interferometry (ATI), STAP

models the clutter as being embedded in a one-dimensional subspace. However,

STAP extends those algorithms to using N > 2 channels, where a single channel is

used to estimate the stationary background and the remaining (N − 1) channels are

used to estimate the moving component. However, STAP relies on estimating the

complex-valued covariance matrix of the N -channel system, which in turn depends

on the availability of homogeneous target-free secondary data.

There are a multitude of algorithms for change detection that are based on multi-

temporal SAR images rather than multi-channel data. Bazi and Bruzzone [13] de-

velop methods for multi-temporal change detection that choose adaptive thresholds

for declaring changes based on a theoretical analysis of a generalized Gaussian model.

Bovolo and Bruzonne [17] provide another algorithm for change detection that em-

ploys a wavelet-based multiple scale decomposition of multitemporal SAR images,

with an adaptive scale driven fusion algorithm.

Ranney and Soumekh [79, 81] develop methods for change detection from SAR

images collected at two distinct times that are robust to errors in the SAR imag-

ing process that may be due to inaccurate position information, varying antenna

gains, and autofocus errors. They propose that the stationary components of multi-

temporal SAR images can be related by a spatially-varying 2-dimensional filter (for

2D images):

S2(x, y) =

∫ ∫
h(u, v; x, y)S1(x, y)dudv (1.17)

To make the change detection algorithm numerically practical, the authors propose

that the filter h(u, v; x, y) can be well-approximated to be spatially invariant within

small subregions about any pixel (xi, yj). In a discrete model, the model in the (k)-th
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subregion can be represented as

S
(k)
2 (xi, yj) =

nx∑

m=−nx

ny∑

n=−ny

h(k)mnS
(k)
1 (xi −m∆x, yj − n∆y). (1.18)

It should be pointed out that the primary error sources in an along-track system (i.e.,

a single transmit antenna followed by multiple receive antennas placed along the flight

path) contribute to phase incoherence rather than amplitude or registration errors.

In the simple case where we discard displacement errors (i.e., when nx = ny = 0), the

filter coefficients h
(k)
0,0 can be computed easily through simple least squares. In other

cases, Ranney and Soumekh provide a numerically efficient method for estimating

the change detection statistic without requiring the actual estimation of the filter

coefficients by use of the ‘signal subspace projection’ method that is once again

based on the principle of a low-dimensional embedding of the stationary component.

Ground Moving Target Indication (GMTI) methods involve the processing of

SAR imagery to detect and estimate moving targets. Often clutter cancellation and

change detection play a preprocessing role in these algorithms [46, 47, 71, 95]. Perry

et al. [71] provides an algorithm that introduces the keystone formatting to mitigate

linear range migration, followed by phase error compensation and change detection.

Zhu et al. [95] extends keystone formatting to improve focusing SAR images without

a priori knowledge of the target motion parameters. Guo et al. [46, 47] provides

multiple algorithms that incorporate channel calibration, clutter estimation, and

refinement of target velocity estimates using iterative algorithms.

Robust Principal Component Analysis

Recently, there has been great interest by Wright et al. [93], Lin et al. [63], Candes

et al. [19] and Ding et al. [33] in the so-called robust principal component analysis
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(RPCA) problem that decomposes high-dimensional signals as

I = L + S +E, (1.19)

where I ∈ RN×M is an observed high dimensional signal, L ∈ RN×M is a low-rank

matrix with rank r ≪ NM , S ∈ RN×M is a sparse component, and E ∈ RN×M

is dense low-amplitude noise. In [19, 63, 93], inference in this model is done by

optimizing a cost function of the form

argmin
L,S
‖L‖∗ + γ ‖S‖1 + (2µ)−1 ‖I −L− S‖F (1.20)

where the last term is sometimes replaced by the constraint I = L+ S. One major

drawback of these methods involves finding the algorithm parameters (e.g., tolerance

levels or choices of γ, µ), which may depend on the given signal. Moreover, it has

been demonstrated that the performance of these algorithms can depend strongly on

these parameters.

Ding et al. [33] provide a Bayesian formulation (as discussed below) that simul-

taneously learns the noise statistics and infers the low-rank and sparse components.

Bayesian models can often be generalized to richer models, e.g. Markov depen-

dencies on the target locations. Additionally, these Bayesian inferences provide a

characterization of the uncertainty of the outputs through a Markov Chain Monte

Carlo (MCMC) estimate of the posterior distribution.

Bayesian Filtering

It should be noted that many of the previously discussed algorithms work well

in certain situations, but do not provide estimates of estimation uncertainty. Such

estimates are often necessary for adaptive sensing, sensor management, or sensor

fusion. The research described in this thesis aims to bridge this gap by providing
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a Bayesian formulation that provides uncertainty distributions for the presence of

the moving targets and their positions. Under this Bayesian formulation, we can

generate the posterior distribution of the target state(s) given the observations (i.e.,

the SAR images).

Bayesian filtering has been studied in depth for many years with roots in Kalman

filtering. Both Arulampalam [6] and Doucet [36] give excellent tutorials on filters

for Bayesian tracking in a multitude of scenarios, including the Kalman filter (KF),

which is optimal for linear, Gaussian systems, as well as suboptimal approaches

when the physical system dynamics have nonlinearity or non-Gaussianity. This in-

cludes discussion of extended Kalman filters (local linearization of KF equations),

approximate grid-based methods (discretization of a continuous state space), particle

filters for general systems, also known as sequential importance sampling (SIS), and

bootstrap filtering.

The work by Ding et. al [33] is based on a general Bayesian framework [85] by

Tipping et al. for obtaining sparse solutions to regression and classification problems.

Their framework uses simple distributions (e.g., those belonging to the exponential

class) that can be described by few parameters, known as hyperparameters. More-

over, they consider a hierarchy where the hyperparameters themselves are assumed to

have a known ‘hyperprior’ distribution. Often the prior and hyperprior distributions

are chosen to be conjugate, so that inference is simplified. Tipping et al. provide

insight into choosing the hyperparameter distributions so as to be non-informative

with respect to the prior. Non-informative priors make it possible to implement in-

ference algorithms with few tuning parameters. Tipping relates their method to the

‘relevance vector machine’ (RVM), which is a Bayesian version of the support vector

machine. Wipf et al. [92] provide an interpretation of the RVM as the application
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of a variational approximation to estimating the true posterior distribution. Wipf

et al. explain the sparsity properties of the sparse Bayesian learning algorithms in a

rigorous manner. Additionally, they provide connections with other popular work in

sparse problems, such as the FOCUSS and basis pursuit algorithms.



CHAPTER II

Development of Resource Allocation Framework

2.1 Introduction

This chapter considers the problem of localizing and estimating targets in noise.

We are specifically interested in cases where targets occupy only a small fraction of

the scanned domain, which we refer to as the region of interest (ROI). Related prob-

lems include detection of tumors in early cancer detection and surveillance systems

using agile radars. A framework is provided that leads to descriptions of efficient

algorithms for search of sparse targets under resource constraints. The problem for-

mulation is based on the work by Bashan, Raich, and Hero [11] that proposed a

two-stage policy for research allocation under total energy constraints. Moreover,

this framework acts as a basis for extensions, such as (a) a multiple-scale modifica-

tion that leads to fewer measurements, and (b) the additional capability to handle

moving targets.

To illustrate the situation, consider the problem of estimating the location of

a (static) target with a scanning radar (Figure 2.1). The standard policy (Figure

2.1(b)) is to scan all radar cells with an equal effort allocation, which is referred to as

an exhaustive search in this work. On the other hand, if the locations of the targets

were known a priori, then an optimal policy (Figure 2.1(c)) would allocate resources

36
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only to the radar cells where targets exist. The optimal policy is impossible to imple-

ment, unfortunately, since finding the target locations is precisely the problem being

considered. Instead, this chapter focuses on adaptive policies that determine the

ROI from measurements collected at multiple stages. At the initial stage, the scene

is exhaustively searched with a fraction of the total resource budget. Subsequently,

measurements from the first stage are used to estimate the ROI and focus the next

stage measurements to areas likely to contain targets. Figure 2.2 illustrates an adap-

tive allocation effort over multiple stages. In this work, a cost function is introduced

and the solution of a related minimization problem yields an asymptotically optimal

allocation policy. In order to be computationally tractable, the allocation policy is

limited to two stages, though this constraint is relaxed in Chapter III.

In the original formulation, the search at the first stage included measuring each

cell individually. When the size of the search space is very large, this may be pro-

hibitive to the implementation of a practical system. Moreover, if the number of

targets is much smaller than the size of the scene, then many of these measurements

may be unnecessary. This chapter also provides a coarse-to-fine scale modification

of the original policy. Measurements are pooled at the first stage and subsequently,

the scanned domain is re-sampled on a fine grid. This modification is depicted in

Figure 2.3.

The rest of the chapter is organized as follows. Notation is introduced in Section

2.2. In Section 2.3, the search problem is introduced and the cost function is defined.

Section 2.4 provides the adaptive research allocation policy (ARAP) and discusses

its basic properties. Section 2.5 extends ARAP with a multi-scale modification (M-

ARAP) and analyzes its asymptotic performance. The performanc of M-ARAP and

ARAP are compared to exhaustive search in Section 2.6. In Section 2.7, M-ARAP
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(a) Scene (b) Exhaustive Search

(c) Optimal Search

Figure 2.1: In (a), a scene that we wish to scan is shown with two static targets.
The standard policy, shown in (b) is to allocate equal effort to each cell
individually. The optimal policy, shown in (c), is to allocate effort only
to cells containing targets.



39

(a) First stage (b) Second (adaptive) stage

Figure 2.2: This figure depicts an adaptive policy for estimating the ROI over mul-
tiple stages. In the first stage, shown in (a), a fraction of the resource
budget is applied to all of the cells equally. In the second stage, allo-
cations are refined to reflect the estimated ROI. Note that the second
stage allocation is a noisy version of the optimal allocation given in Fig-
ure 2.1(c).

is applied to an MTI radar simulation. Finally, a discussion and concluding remarks

are provided in Section 2.8.

2.2 Notation

• Q - Number of cells in search space.

• X = {1, 2, . . . , Q} - Discrete space of Q cells.

• Ψ ⊆ X - Subset of X referred to as the ROI.

• Ii - indicator function of the ROI such that

Ii =





1, i ∈ Ψ

0, Otherwise

for i ∈ {1, 2, . . . , Q}. (2.1)

• Ψ̂ ⊆ X - Estimated ROI, learned from measurements.
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(a) First stage (with pooling) (b) Second (adaptive) stage

Figure 2.3: This figure depicts a multi-scale adaptive policy for estimating the ROI
over multiple stages. In the first stage, shown in (a), a fraction of the
resource budget is applied to pooled measurements . In the second stage,
allocations are re-sampled to a fine grid refined to reflect the estimated
ROI. Note that although significantly fewer measurements were made at
the first step, a significant amount of wasted resources is wasted searching
cells within a support region where targets exist. This tradeoff between
measurement savings and wasted resources is analyzed later in this chap-
ter.
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• λi(t) ∈ [0, λT ] - Search effort allocated to cell i at stage t.

• λT =
2∑

t=1

Q∑
i=1

λi(t) - Total search effort.

• Y = {y(1),y(2)} ∈ RN - Set of measurements.

• pIj |y(1) - Posterior probability for target existence in the j-th cell.

• ν - A selectable parameter (see Bashan et al. [11] for details).

• wj - A quantity that is a function of the posterior probabilities, pIj |y(1), and ν,

used in the allocation of resources to cells at stage 2.

• τ(·) - A sorting operator for wj’s, so that

wτ(1) ≤ wτ(2) ≤ · · ·wτ(Q).

• u(·) - The discrete unit step function.

2.2.1 For extensions to multiple-scales

• L - Scale factor between stages, with L a factor of Q.

• Nt - # of measurements at stage t.

• N - # of total measurements, with N =
∑2

t=1Nt.

• Hj - Indicator function of the j-th support region.

• ỹj(1) - Measurement of the j-th support region for t = 1.

• p̃Hj |y(1) - Posterior probability for target existence in j-th support region.

• ·̃ - Tilde notation, used to denote the energy allocation or measurement applied

to the support region (as opposed to an individual cell.)
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2.3 Problem formulation

Consider a space X containing Q cells equipped with a probability measure P ,

and a region of interest (ROI), Ψ ⊆ X . In the sequel, Ψ will be a randomly selected

small subset of X . Exact definition of the ROI is application dependent. In radar

target localization, the ROI is the collection of all cells containing targets and target

related phenomena, e.g., target shadows. In a medical imaging application, such as

early detection of breast cancer where tumor boundaries are poorly defined, the ROI

may be defined as the collection of all cells containing targets (a tumor) plus some

neighboring cells.

Let Ii be an indicator function defined in (2.1) and {pi = Pr(Ii = 1)}Qi=1 be

an associated set of prior probabilities. In this chapter, we consider the case of

non-informative priors, so that the Ii’s are i.i.d. and

pi = p = E

[ |Ψ|
Q

]
(2.2)

for all i. Let IΨ = [I1, . . . , IQ]
T be a vector corresponding to the set of all indicators

and (·)T denote the transpose operator. We say that the presence of a target affects

cell i if i ∈ Ψ. Targets are assumed to be static, so that Ii is constant over time.

We define the random vector of N observations, Y : X → R
N and consider the

conditional probability p(Y |IΨ).

Consider a sequential experiment where at the first stage we observe y(1) : X →

R
Q and at the second stage we observe a selected subset of y(2) : X → R

Q, i.e., we

observe yi(2) for i ∈ Ψ̂, defined in (2.4). This formulation allows us to limit the total

number of observations to N = Q + |Ψ̂|, where |Ψ̂| is the number of elements of Ψ̂.

Let λi(t) ≥ 0 denote the search effort allocated to cell i at time t, under total energy
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constraint λT , so that

λT =
2∑

t=1

Q∑

i=1

λi(t) (2.3)

Let {λi(2)}Qi=1 be a mapping from past observations y(1) to the probability simplex

that we call an effort allocation policy. The set Ψ̂ is formally defined as

Ψ̂ = {i ∈ X : λi(2) > 0}. (2.4)

Without prior knowledge of Ψ, it is logical to let λi(1) = λ1 for all i. Then, the

combination of λ1, {λi(2)}i and Ψ̂ is termed a search policy. We focus here on

deterministic mappings λ, although a more general random mapping could also be

incorporated into our framework. We assume that a sample’s ‘quality’ is an increasing

function of the allocated effort to the associated cell, e.g. measured in terms of

information or inverse variance, called a precision parameter by Haupt et al. [48].

In general, effort might be computing power, complexity, cost, or energy that is

allocated to acquiring a particular cell location.

Let Θ = [Θ1, . . . ,ΘQ]
T be a random vector where Θi ∼ N (µθ, σ

2
θ) are i.i.d.

random variables (r.v.) corresponding to the target amplitudes. Let IΨ be a vector

of indicators marking whether or not cell i contains a target. Consider the following

measurement model:

y(t) = diag
{√

λ(t)
}
diag {Θ} IΨ + ε(t), (2.5)

where λ(t) is a vector describing resource allocation at time t, [
√
x]i denotes

√
xi,

diag {x} is a square matrix with [diag {x}]ii = xi and [diag {x}]ij = 0 for i 6= j,

and ε(t) ∼ N (0, σ2IQ×Q) where IQ×Q is an (Q × Q) identity matrix. Hence, an

element-wise version of the first stage measurement model (2.5) is given by

yi(1) =
√
λ1θiIi + εi(1), i = 1, 2, . . . , Q, (2.6)
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where yi(1) is the i-th element of y(1). Thus, we know that

yi(1)|(Ii = 0) ∼ N (0, σ2), (2.7)

yi(1)|(Ii = 1) ∼ N
(√

λ1µθ, σ
2 + λ1σ

2
θ

)

The knowledge of these two distributions will be used to focus measurements at the

second stage based on the received measurements at the first stage, using posterior

probabilities derived from the first stage measurements. Second stage measurements

are defined with the element-wise version

yi(2) =
√
λi(2)θiIi + εi(2), i = 1, 2, . . . , Q. (2.8)

2.4 Search policy under total effort constraints

Bashan et al. [11] introduced the following cost function

J(λ) =

Q∑

i=1

νIi + (1− ν)(1 − Ii)
λi(1) + λi(2)

, (2.9)

with ν ∈ [1
2
, 1]. Minimizing the expected value of equation (2.9) will allocate ν of the

total effort to the ROI and the rest to its complement. Thus, the ν parameter can

be thought of as a tuning nob for exploitation of the ROI (ν = 1) versus exploration

(ν = 0.5, which leads to an exhaustive search). This cost function has some appealing

properties, including the important distinction that it can actually be optimized in

our framework. This is in stark contrast to other common functions, such as the

mean square error (MSE) or probability of error. Moreover, Bashan et al. [11] shows

that in some contexts, minimizing equation (2.9) is equivalent to (a) minimizing

the Cramer-Rao lower bound on E[
∑

i Ii(θ̂i− θi)2] and (b) uniformly minimizing the

Chernoff bound on the probability of error over the ROI. For a total allocation budget

of λT = 1, the cost function in equation (2.9) is also shown to be lower bounded by

J(λ) ≥ [
√
ν|Ψ|+

√
1− ν(Q− |Ψ|)]2, (2.10)
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where the lower bound is achievable by a policy given by

λoptimal
i =





√
ν√

ν|Ψ|+
√
1− ν(Q− |Ψ|) , i ∈ Ψ

√
1− ν√

ν|Ψ|+
√
1− ν(Q− |Ψ|) , i ∈ Ψc

(2.11)

for i = 1, 2, . . . , Q. Note that when ν = 1, this policy is the optimal policy defined

in the introduction (i.e., all resources shared equally among cells containing targets).

In contrast, consider the exhaustive search where

λexhaustivei = 1/Q, (2.12)

for all i = 1, 2, . . . , Q. Then the cost associated with this policy is

J(λexhaustive) = Q[ν|Ψ|+ (1− ν)(Q− |Ψ|)] =





Q2

2
, ν = 0.5

Q|Ψ|, ν = 1

(2.13)

Since this policy is both non-informative and non-adaptive, one would expect better

performance from any adaptive policy. Thus, we consider the performance gain (in

dB) as

G(λ) = −10 log J(λ)

J(λexhaustive)
. (2.14)

When ν = 1, the optimal gain can be expressed as

G(λoptimal) = −10 log |Ψ|
Q
, (2.15)

which shows that gains are proportional to the sparsity of the ROI, p∗ = |Ψ|/Q.

Since λoptimal requires oracle knowledge of the ROI, it is unfeasible. Thus, our goal is

to find policies that come close to achieving the performance of this optimal policy.

Moreover, since the Ii’s are random variables, we consider replacing equation (2.9)

with its expected value:

J(λ) =

Q∑

i=1

E

[
νIi + (1− ν)(1 − Ii)

λi(1) + λi(2)

]
. (2.16)
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2.4.1 The Adaptive Resource Allocation Policy (ARAP)

Indeed, Bashan et al. [11] shows that minimizing (2.16) subject to a total energy

constraint λT yielded ARAP, which is summarized in Algorithm 1.

Algorithm 1. Two stage Adaptive Resource Allocation Policy (ARAP) λARAP

Step 1: Allocate λARAP
i (1) = λ∗1 to each cell and measure y(1).

Step 2: Given y(1) compute probabilities,

pIi|y(1)
△
= Pr(Ii = 1|y(1)), (2.17)

wi
△
= νpIj |y(1) + (1− ν)(1− pIj |y(1)). (2.18)

Step 3: Order the wi’s by rank so that wτ(1) ≤ wτ(2) ≤ · · · ≤ wτ(Q).

Step 4: Use λ∗1 and the ordered statistics wτ(i) to find an optimal threshold k0,

where k0 ∈ {1, 2, . . . , Q− 1} is the integer satisfying

∑Q
i=k0+1

√
wτ(i)√

wτ(k0+1)

<
λT
λ1
− k0 ≤

∑Q
i=k0+1

√
wτ(i)√

wτ(k0)

(2.19)

if

λT
λ1
≤
∑Q

i=1

√
wτ(i)√

wτ(1)

, (2.20)

and k0 = 0 otherwise.

Step 5: Given k0, apply λ
ARAP
i (2), the energy allocation, to cell i as

λARAP
τ(i) (2) = λτ(i)(2) =

(
λT − k0λ∗1∑Q
j=k0+1

√
wτ(j)

√
wτ(i) − λ∗1

)
u(τ(i)− k0),

(2.21)

and measure y(2).
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To complete the description of ARAP, the quantity λ1 ∈ (0, λT/Q] can be selected

by line search. A proof of existence and uniqueness of k0 is given in the work by

Bashan et al. [11].

2.4.2 Properties of ARAP

ARAP has many interesting properties that will be reproduced here without

proof. The interested reader should peruse the work of Bashan et al. [9, 11] for

details. For simplicity of notation, we will assume that ν = 1. These properties

include

1. (Performance compared to exhaustive search:)

J(λARAP ) ≤ J(λexhaustive), (2.22)

with equality achieved if pIi|y(1) = c, ∀i. This property can be restated as

ARAP is an optimal policy among all 2-stage policies that allocate resources

uniformly at the first stage.

2. (Asymptotic properties [for large λT ]):

(a) (Convergence to ROI:)

E [k0]→ (1− p)Q (2.23)

(b) (Optimal first stage allocations:)

λ∗1 → 0 (2.24)

(c) (Convergence to optimal gains:)

G(λARAP )→ −10 log |Ψ|
Q

= G(λoptimal) (2.25)
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The asymptotic properties depend on the consistency of the measurements, de-

fined as

pIi|y(1) → Ii (2.26)

in probability. The authors prove the validity of this condition in the Gaussian case

and speculate that the condition holds for many other cases as well.

2.4.3 Suboptimal two-stage search policy

Since ARAP requires O(logQ) operations to sort the wi’s, Bashan et al. [11] also

provides a simple alternative to ARAP with λi(1) = λ1 and

λi(2) =
λT −Qλ1∑Q

j=1

√
wj

√
wi. (2.27)

Although not stated in their work, this policy is equivalent to optimizing the cost

function:

Jsuboptimal(λ) = E

[
Q∑

j=1

Ii
λi(2)

∣∣y(1)
]
, (2.28)

given λ1 and y(1) with total energy budget λT . Note that if pIi|y(1) → Ii, this sub-

optimal policy becomes equivalent to ARAP (and thus has asymptotically optimal

behavior). However, since this policy does not threshold at the second stage, it will

in general waste resources as compared to ARAP when SNR is not in the asymptotic

regime.

2.4.4 Limitations of ARAP

The ARAP policy has many appealing properties compared to an exhaustive

search. However, it is limited in a couple of important ways. First, ARAP requires

sampling each individual cell of the ROI at the first stage. In some applications where

Q is very large, this may result in a prohibitive cost. The next section discusses

a relaxation to this problem. Second, the optimization method used to minimize
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equation (2.16) cannot easily be extended to T > 2 stages, because the optimization

problem grows in a combinatorial fashion as a function of T . Bashan [9] provides a

myopic policy for choosing λi(t) in this case, but this policy may perform poorly in

many situations. Chapter III extends ARAP to T > 2 and also allows for dynamic

targets (i.e., where Ii = Ii(t)). A related problem involves the case where informative

priors exists, so that Pr(Ii = 1) 6= p, ∀i. A performance analysis in the case where

Pr(Ii = 1) can take one of two levels is given in the work by Newstadt et al. [69].

2.5 Search policy under total effort constraints and multi-

scale sampling constraints

In order to constrain the total number of measurements used to search the ROI,

we propose a two-stage policy that uses a coarse-scale search at the first stage,

followed by fine-scale search over locations in our estimated ROI at the second stage.

In particular, consider the following measurement model:

ỹ(t) = H(t)diag

{√
λ̃(t)

}
diag {Θ} IΨ + ε(t), (2.29)

where H(t) is an (Nt × Q) matrix describing the “beamforming” measurement op-

erator, λ̃(t) is a vector describing resource allocation at time t, [
√
x]i denotes

√
xi,

diag {x} is a square matrix with [diag {x}]ii = xi and [diag {x}]ij = 0 for i 6= j,

and ε(t) ∼ N (0, σ2INt×Nt) where INt×Nt is an (Nt ×Nt) identity matrix. The beam-

forming operator H(t) simply forms linear combinations of neighboring pixels and

is what distinguishes M-ARAP from ARAP. In our model (2.29), both H(t) and

λ̃(t) are design parameters that satisfy the user-defined constraints. We propose the

following simple design. Define L to be a factor of Q, and define the column vectors
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gL, 0L ∈ R
L:

gL = L times








1
L

...

1
L



, 0L = L times








0

...

0




(2.30)

Then, we consider the beamforming matrix for the first stage measurements (defined

through the transpose)

H(1) =




gL 0L 0L · · · 0L

0L gL 0L · · · 0L

0L 0L gL · · · 0L

...
...

...
. . .

...

0L 0L 0L · · · gL




︸ ︷︷ ︸
Q
L

times

T

∈ R(Q/L)×Q (2.31)

Hence, an element-wise version of the first stage measurement model (2.29) is given

by

ỹj(1) =

√
λ̃1
L

jL∑

i=(j−1)L+1

θiIi + εj(1), j = 1, 2, . . . , N1, (2.32)

where ỹj(1) is the j-th element of ỹ(1). Let Xj = {(j − 1)L + 1, . . . , jL − 1, jL}

denote the support of the j-th row of H(t), and note that |Xj| = L for all j. With

small p, large Q, and L≪ Q the probability that Xj contains more than one target

is negligible. Let Hj denote the indicator function of the event, “Ii = 1 for some

i ∈ Xj .” Then we know that

ỹj(1)|(Hj = 0) ∼ N (0, σ2), (2.33)

ỹj(1)|(Hj = 1) ∼ N
(√

λ̃1
L

µθ, σ
2 +

λ̃1
L2
σ2
θ

)

As in the work by Bashan et al. [11], the knowledge of these two distributions will be

used to focus measurements at the second stage based on the received measurements
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at the first stage, using posterior probabilities derived from the first stage measure-

ments. Second stage measurements are defined with H(2) = IQ×Q, which gives the

element-wise version

yj(2) =
√
λj(2)θjIj + εj(2), j = 1, 2, . . . , Q. (2.34)

We define the following resource allocation policy based on ARAP:

Algorithm 2. Two stage Multi-scale Adaptive Resource Allocation Policy (M-ARAP)

λM−ARAP

Step 1: Allocate λ̃M−ARAP
j (1) = λ̃∗1 to each support Xj and measure ỹ(1) in (2.29).

Step 2: Compute probabilities p̃Hj |ỹ(1)
△
= Pr(Hj = 1|y(1)) and w̃j

△
= νp̃Hj |y(1) +

(1− ν)(1− p̃Hj |y(1)) over each support region.

Step 3: Rank order the w̃j’s using (2.37), then use λ̃∗1 and the ordered statistic

w̃τ(j) to find a threshold k̃0 via (2.38) and (2.39).

Step 4: Given k̃0, define the energy allocation to support region j as

λ̃τ(j)(2) =

(
λT − k̃0λ̃∗1∑Q

l=k̃0+1

√
w̃τ(l)

√
w̃τ(j) − λ̃∗1

)
u(τ(j)− k̃0), (2.35)

Step 5: Define the energy allocation to cell i in support region j as

λM−ARAP
i (2) =

λ̃j(2)

L
, j = 1, 2, . . . , N1 (2.36)

and measure y(2) using H(2) = IQ×Q and [λ(2)]i = λM−ARAP
i (2).

To complete the definition of M-ARAP, define the permutation operator τ corre-

sponding to the rank ordering of the w̃j’s as

τ(j) = arg min
i=1,...,N1

{w̃i : w̃i ≥ w̃τ(j−1)}, j ∈ {1, 2, . . . , N1}, (2.37)
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with w̃τ(0)
△
= 0. Whenever the r.h.s. of (2.37) is not unique, we select an arbitrary

i satisfying w̃τ(1) ≤ w̃τ(2) ≤ · · · ≤ w̃τ(N1). Then, assuming w̃τ(1) > 0, define k̃0, the

threshold parameter, as k̃0 = 0 if

λT

λ̃∗1
>

∑N1

j=1

√
w̃τ(j)√

w̃τ(1)

, (2.38)

otherwise k̃0 ∈ {1, . . . , N1 − 1} is the integer satisfying
∑N1

j=k̃0+1

√
w̃τ(j)√

w̃τ(k̃0+1)

<
λT

λ̃∗1
− k̃0 ≤

∑N1

j=k̃0+1

√
w̃τ(j)√

w̃τ(k̃0)

(2.39)

A proof of the existence and uniqueness of k̃0 in (2.39), as well as a discussion of its

properties, is given in the work by Bashan et al. [11]. Note that the definition of k̃0

is identical to ARAP for a search space of size N1 = Q/L. For N1 = Q, M-ARAP is

completely equivalent to ARAP, provided that λ̃∗1 is correctly defined. To define λ̃∗1,

let

λ̃∗1 = arg min

λ̃1∈



0,
λT
N1





E





Q∑

i=1

νIi + (1− ν)(1− Ii)
λ̃1
L

+ λi(2)




, (2.40)

where λi(2) is defined in (2.36) substituting λ̃1 for λ̃∗1. Note that λi(2) depends on

p̃Hj |ỹ(1), which, in turns depends on the distribution of target amplitudes, Θ. To

analyze the performance of M-ARAP, we first establish properties of p̃Hj |ỹ(1).

2.5.1 Detectability index and asymptotic properties of p̃Hj |ỹ(1) when ν = 1

Let |Xj | = L denote an observed support size for the first stage in M-ARAP. Let

the true mean sparsity of the observed signal be p = E{|Ψ|}
Q

. Define the detectability

index as

d =
|E{ỹj(1)|Hj = 1} − E{ỹj(1)|Hj = 0}|√

var(ỹj(1)|Hj = 0)
. (2.41)

Substituting (2.7) into (2.41) yields

d =
µθ

L

√
λ̃1
σ2
, (2.42)
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which is proportional to µθ and to the square root of effective SNR λ̃1

Lσ2 . Therefore,

for a specified false alarm rate, we expect the power of the likelihood ratio test

(LRT) performed on y(1) to increase as either the inherent contrast µθ or effective

SNR increase. In this section, we analyze asymptotic properties of M-ARAP, where

by asymptotic we mean high SNR and large Q. We further assume that Xj contains

at most one target, and that the target amplitude variance, σ2
θ = 0. Under these

assumptions, we can establish Claim 1, Claim 2, and Claim 3 given below.

Claim 1. p̃Hj |ỹ(1) → Hj in probability as SNR →∞.

Derivation of Claim 1: Under the assumptions that Xj contains at most one

target and σ2
θ = 0, the first stage measurement reduces to

ỹj(1) =

√
λ̃1Hjµθ

L
+ εj(1) =

√
γ1Hjµθ + εj(1) (2.43)

where γ1 = λ̃1/L
2. Bashan et al. [11] proved that p̃Hj | ˜Y (1) → Hj in probability as

γ1 → ∞. Thus, Claim 1 follows directly from this result, noting that SNR → ∞

implies γ1 →∞.

In the work by Bashan et al. [11], the asymptotic consistency property of p̃Hj | ˜Y (1)

was used to show that the threshold parameter k̃0 converges to the true number of

empty search cells (1 − p)Q of the scanned domain (recall that |Ψ̂| = Q − k̃0). For

λM−ARAP we can provide an asymptotic bound on k̃0 that holds in probability. The

logic behind the bound is that if p can be used to bound K, the number of support

regions Xj that contain targets, then k̃0 ≥ Q−KL. Therefore, we have the following:

Claim 2. The normalized number of samples N∗ used by M-ARAP, defined as

N∗ =
N1 + |Ψ̂|

Q
, (2.44)
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is bounded between 1
L
and 1

L
+ p∗L, where p∗ is the true sparsity of the underlying

domain, in the sense that

lim
SNR→∞

Pr

(
1

L
≤ N∗ ≤ 1

L
+ p∗L

)
= 1, (2.45)

for sufficiently large Q.

Derivation of Claim 2: To prove (2.45) note first that

N∗ =
N1 + |Ψ̂|

Q
=

1

L
+
|Ψ̂|
Q
≥ 1

L
. (2.46)

It suffices to show

lim
SNR→∞

Pr

(
|Ψ̂|
Q
≤ pL

)
= 1. (2.47)

Bashan et al. [11] showed that if pIi|y(1) → Ii in probability as SNR →∞, then

k̃0 → Z ∼ Bin (S, 1− r) (2.48)

in probability as SNR → ∞ for a search space of size S and sparsity r. Recalling

that k̃0 is calculated using ARAP for S = Q/L and r = pL, it follows that k̃0 →

Z ∼ Bin (Q/L, 1− pL) as SNR →∞. Using the definition of Ψ̂ from (2.4), we have

|Ψ̂| = |{i ∈ X : λi(2) > 0}|

=

∣∣∣∣∣∣

Q/L⋃

j=1

{i ∈ Xj : Hj = 1}

∣∣∣∣∣∣
(as SNR→∞)

=

Q/L∑

j=1

|{i ∈ Xj : Hj = 1}| (for disjoint Xj)

=

Q/L∑

j=1

LHj = L

Q/L∑

j=1

Hj = L
(
Q/L− k̃0

)

(2.49)

Since, k̃0 ∼ Bin (Q/L, 1− pL) as SNR→∞, we have E
[
|Ψ̂|
Q

]
→ pL and var

(
|Ψ̂|
Q

)
→

pL(1−pL)
Q

as SNR→∞. Moreover, var
(

|Ψ̂|
Q

)
→ 0 as Q→∞. Thus, |Ψ̂|

Q
→ pL in the

mean square sense. This establishes Claim 2.
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Claim 3. The expected proportion of the scanned area that is empty of targets at the

second stage is bounded with probability, in the sense that

Pr

(
|Ψ △ Ψ̂|

Q
≤ p(L− 1)

)
= 1. (2.50)

Derivation of Claim 3: This result is established similarly to Claim 2. In partic-

ular, note that when SNR →∞

|Ψ △ Ψ̂| =

∣∣∣∣∣∣

Q/L⋃

j=1

{i ∈ Xj , i /∈ Ψ : Hj = 1}

∣∣∣∣∣∣

=

Q/L∑

j=1

|{i ∈ Xj : Hj = 1} △ {i ∈ Xj , i ∈ Ψ : Hj = 1}|

=

Q/L∑

j=1

|{i ∈ Xj : Hj = 1}| − |{i ∈ Xj, i ∈ Ψ : Hj = 1}|

=

Q/L∑

j=1

(L− 1)Hj = (L− 1)
(
Q/L− k̃0

)

(2.51)

This leads to E
[
|Ψ△Ψ̂|

Q

]
= p(L − 1) and var

(
|Ψ△Ψ̂|

Q

)
= (L−1)2

LQ
p(1 − pL) → 0 as

SNR, Q → ∞. Thus, |Ψ△Ψ̂|
Q
→ p(L − 1) in the mean square sense (which implies

convergence in probability as required). This establishes Claim 3.

Claim 3 provides a bound that can be used to evaluate the tradeoff between

reducing the number of measurements and increasing the expected estimation gains.

Specifically, use the cost function (2.9) and assume that asymptotically we learn Ψ̂

at almost no cost. Recall that an optimal policy λoptimal, given in (2.11), allocates

resources only to cells containing targets, and has gain:

G(λoptimal) = 10 log
Q

|Ψ̂|
= 10 log

Q

|Ψ|+ |Ψ △ Ψ̂|
. (2.52)

Using Claim 3 we obtain

G(λNo
) ≥ 10 log

Q

pQ(1 + L− 1)
= 10 log

1

p
− 10 logL, (2.53)

where 10 logL is the gain penalty that we pay due to multi-scale search.
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2.5.2 Discussion of performance for clustered targets

The assumption that only a single target may appear in a support region may

not hold when apparent targets clump together. This scenario arises in radar target

detection where large scattering objects may occupy consecutive pixels on the radar

screen and appear as a cluster of targets. Nevertheless, the overall area occupied by

targets is small compared to the area a scanning radar system covers. As another

example, in early detection of cancer tumors such as in breast cancer, the diameter of

a typical tumor is a few millimeters to 1.5 centimeters. Hence, on a fine grid a tumor

may appear as a cluster of targets, yet, its overall volume is very small compared to

the volume of the entire breast.

In these cases we speculate that the performance of M-ARAP with clustered tar-

gets is lower bounded by the performance in the case of single-pixel targets. Indeed,

if we let Ξj be the total number of targets in support j, with E|Ξj| = E|Ξ| ≥ 1, and

Claim 1 still holds, then it can be shown that

G(λNo
) ≥ 10 log

1

p
− 10 log(1 + L−E|Ξ|), (2.54)

where 10 log(1 + L−E|Ξ|) ≤ 10 logL is the gain penalty that we pay due to multi-

scaling. In other words, having clustered targets within a support region tends to

reduce the gain penalty due to multi-scale processing.

Despite the limitations of the single deterministic target-per-region assumption

in Section 2.5.1 to obtain asymptotic limits, we believe that M-ARAP’s predicted

performance gains will hold under broader conditions. This belief is supported by

our numerical results shown in the next section. Note that the gains established in

Section 2.5.1 require only that the posterior probabilities, p̃Hj | ˜Y (1) converge to the

indicator function Hj, which may not require the assumption of a single target per
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multi-resolution cell.

2.6 Performance comparisons

2.6.1 Estimation

Assume that cell l belongs to the ROI, i.e., Il = 1. Here we introduce an estimate

of target amplitude θl using the measurement pair (ỹ(1),y(2)). Assuming these

amplitudes are independent and obey a Gaussian prior distribution, θl ∼ N (µθ, σ
2
θ),

we can derive the conditional mean estimator (CME) θ̂l = E[θl|ỹ(1),y(2)], which is

the minimum mean squared error (MSE) estimator. As a baseline, we will compare

this estimator to the CME E{θl|y(0)} under an exhaustive search policy, where

yi(0) =
√
λ0θiIi + εi(0), εi(0) ∼ N (0, σ2) (2.55)

and λ0 =
λT

Q
. The MSE of the CME for an exhaustive search policy is given by

var{θl|yl(0)} = σ2
θ −

λ0σ
4
θ

σ2 + λ0σ2
θ

=
σ2
θ

1 + λ0
σ2
θ

σ2

. (2.56)

Recall from equation (2.7) that ỹj(1)|Hj = r is Gaussian for r = 0, 1. Thus, we know

for Il = 1 and l ∈ Xj that

ỹj(1)|Il = 1 ∼ N
(√

λ̃1
L

µθ, σ
2 +

λ̃1
L2
σ2
θ

)
. (2.57)

In general, we can formulate an estimate of θl from the past tmeasurements by taking

advantage of the conditional Gaussian distributions given those measurements. In
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particular, we know from the Kalman filter equations that

δi(t) = mi(t)− hi(t)θ̂i(t|t− 1) (2.58)

si(t) = hi(t)
2σ̂2

i (t|t− 1) + σ2 (2.59)

Γi(t) =
σ̂2
i (t|t− 1)hi(t)

si(t)
(2.60)

θ̂i(t|t) = θ̂i(t|t− 1) + Γi(t)δl(t), (2.61)

σ̂2
i (t|t) = [1− Γi(t)hi(t)]σ̂

2
i (t|t− 1), (2.62)

where hi(t) is the measurement gain, mi(t) is the measurement of the i-th target,

δi(t) is the residual measurement error, si(t) is the update measurement error, Γi(t)

is the Kalman gain, and (θ̂i(t|t), σ̂2
i (t|t)) are the updated state estimates. Moreover,

since we assume that the θi’s are static, we have

θ̂i(t|t− 1) = θ̂i(t− 1|t− 1), (2.63)

σ̂2
i (t|t− 1) = σ̂2

i (t− 1|t− 1). (2.64)

These equations can be simplified as:

θ̂i(t|t) =
[hi(t)mi(t)] σ̂

2
i (t− 1|t− 1) + θ̂i(t− 1|t− 1)σ2

σ2 + [hi(t)]2σ̂2
i (t− 1|t− 1)

, (2.65)

σ̂2
i (t|t) =

σ̂2
i (t− 1|t− 1)σ2

σ2 + [hi(t)]2σ̂2
i (t− 1|t− 1)

. (2.66)

For our model, we have:

mi(t) =





ỹl(1), t = 1

yi(2), t = 2

(2.67)

and

hi(t) =





√
λ1
L

, t = 1

√
λi(2), t = 2

(2.68)
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Finally, the estimator for θi is given by applying equations (2.65) and (2.66) after

each measurement, yielding an estimate, θ̂i(2|2). Simulation results are shown in

Figs. 2.4-2.5. In both figures we plot the MSE performance gain g(λ), defined as

g(λ) = 10 log
var(θl|yl(0))
MSE(θ̂l)

(2.69)

as a function of SNR (Fig. 2.4) and the detectability index given in (2.42) (Fig. 2.5).

Monte-Carlo simulations were used to estimate the MSE of the estimator given in the

previous section (2.65). We chose Q = 12, 000, p = 1
1000

, and each point on the figure

represents the mean MSE based on 500 realizations. We let signal to noise ratio,

defined as 10 log λT /Q
σ2 , vary from 0 to 40 [dB], used contrast level µθ ∈ {2, 4, 8}, and

set σ2
θ = 1

16
. Different lengths L were simulated for the first stage, but we present

here the cases of L = 8 and L = 32 since it is enough to understand the general

trends. Curves with different markers and colors represent different contrast levels

µθ.

Note that, in contrast to ARAP, we do not claim optimality of the proposed

estimator that uses the M-ARAP policy. Indeed the optimal gain of 30 [dB] is not

attained. Moreover, asymptotic gains decrease as L increases. This is natural since

the posterior probabilities p̃Hj |ỹ(1) are identical within each support. Hence, if the

resource allocation scheme λM−ARAP suspects that a target exists in Xj, all cells

within this support receive the same effort allocation for the second stage. As L

increases, this translates to wasted resources according to Claim 3. Fig. 2.4 shows

asymptotic gain of 21 [dB] for L = 8 and 15 [dB] for L = 32, both agreeing with

(2.53).

In Fig. 2.5 we plot estimation gains vs. the detectability index since it incorpo-

rates both the contrast level and the scale in a single parameter. We see that the
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detectability index is a reasonable predictor of the performance of M-ARAP across

contrast levels and scales. We note that when L is large and µθ is small, the mean

MSE gains may be negatively affected by a very small number of missed detections

when θi is small compared to µθ. This is a drawback of using the detectability in-

dex to predict performance, as it does not consider the variance of the amplitudes,

σ2
θ . Consider Figure 2.6, which plots gains in median MSE instead of mean MSE.

In the cases where detection is hard due to variations in θi (i.e., large L and small

µθ), the median MSE is more robust to a few outliers than mean MSE. This leads to

fewer discrepancies as a function of the performance index. On the other hand, when

L = 8, we see that in the transition region between no gain (i.e., index values less

than 2.5) and asymptotic gain (index values greater than 10), there is a discrepancy

across contrast levels.

Both of these plots indicate that the detectability index may be useful for per-

formance prediction, though a better statistic may exist that factors in the variance

of the amplitudes through σ2
θ .

2.6.2 Normalized number of samples, N∗

The normalized number of samples N∗ is lower bounded by 1
L
, and hence there

is a tradeoff between estimation gain and reduction in number of measurements. We

show here that if the detectability index is sufficiently high (d > 5 in our case) we

can both save measurements (according to Claim 2) and enjoy significant estimation

gain within the ROI. Fig. 2.7 shows the expected saving in measurements or N∗

for the scenario depicted in Fig. 2.5. Black curves represent L = 8, blue curves

represent L = 16, and purple curves represent L = 32. Combining the information

on both figures shows measurement saving relative to estimation gain. For example,
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Figure 2.4: We plot estimation gains as a function of SNR for different contrast levels.
The upper plot show gains for L = 8 while the lower plot show gains for
L = 32. In the upper plot, significant gains of 10 [dB] are achieved for
all contrasts at SNR values less than 13 [dB]. In the lower plot, 10 [dB]
gains occur at high contrasts at SNR less than 20 [dB]. Note that the
asymptotic lower bound on the gain (2.53) yields 21.0 [dB] and 15.0 [dB]
for L = 8 and L = 32 respectively, which agree well with the gains in
these plots.

for d = 5, M-ARAP with L = 8 yields about 10 [dB] performance gain in estimation

while using only 18% of the number of samples used by an exhaustive search. Similar

performance gain is achieved by M-ARAP for L = 32 with d = 5 and about 8% of

the samples. Note that in all three cases, N∗ converges to the upper bound in Claim

2 (0.133, 0.0785, and 0.06325 for L = 8, 16, 32 respectively).

Previous experience with ARAP and M-ARAP in the context of detection tasks

suggests that optimizing the energy allocation between the two stages is difficult and

very much application dependent. This will negatively affect performance if noise

variance σ2 is unknown and must be estimated from the data. Since M-ARAP is a

coarser version of ARAP, we present detection performance only in the context of
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Figure 2.5: Estimation gains (in mean MSE) are plotted against detectability index
for L = 8 and L = 32. Note that the detectability index can be used
as a reasonable predictor of MSE gain, regardless of the actual contrast,
SNR, or scale.
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Figure 2.6: Estimation gains (in median MSE) are plotted against detectability index
for L = 8 and L = 32. Note that when the median MSE is used as
compared to mean MSE in Figure 2.5, we see many fewer discrepancies
as a function of the detectability index for large L or small µθ. On the
other hand, for small L, the median MSE is overly optimistic for small
µθ causing a discrepancy across contrast levels in the transition region.
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Figure 2.7: We plot the normalized number of samples N∗ as a function of detectabil-
ity index for L = 8, 16, 32, and different contrast levels µθ ∈ {2, 4, 8}.
These N∗ values are associated with estimation gains seen in Fig. 2.5.
For example for a relatively low detectability index of d = 5 and L = 8,
estimation performance gain of 10 [dB] is achieved with less than 18% of
the sampling used by exhaustive search. Similar gains are achieved for
d = 5, L = 32, and less than 8% of the samples.
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the moving target indicator example given in Section 2.7.1, where we compute false

discovery rate test for target detections using M-ARAP as compared to exhaustive

search (see Fig. 2.12).

2.6.3 Computational complexity comparison

The computation of the search policy in M-ARAP requires computing N1 =

Q(1/L) posterior probabilities (O(N1)), sorting the probabilities (O(logN1) opera-

tion), and computation of the second stage allocations (O(|Ψ̂|)). Thus, the complex-

ity of M-ARAP is

CM−ARAP = O(N1) +O(logN1) +O(|Ψ̂|) = O(N) (2.70)

where N is the number of total measurements used by M-ARAP. Assuming that

the asymptotic properties of the previous section hold, N → Q(1/L + pL) so that

the complexity of M-ARAP is O (Q(1/L+ pL)). Note that ARAP is just a special

case of M-ARAP for L=1. Moreover, the computational complexity of the Abdel-

Samad and Tewfik algorithm (henceforth referred to as AS-T) is given by the authors

as O(tN2), where t = log2(Q) is the number of stages in their hierarchical binary

search [3]. Thus, the ratio of computational complexity between M-ARAP and AS-T

is O(N log2Q). Table 2.1 shows the dB gain in number of measurements between

the AS-T algorithm and M-ARAP for p = 0.01 and various values of Q, and L. This

comparison highlights the computational burden of AS-T, which requires significantly

more computations than M-ARAP in all cases studied.

Distilled sensing only requires calculation of an allocation once for each stage in

its implementation. Haupt et al. states that the number of stages should be chosen

to be K = 1 +
⌈
log2 log2 Q
log2(2−∆)

⌉
[48], where we choose ∆ = 0.9 for our comparison. Then

the ratio of computational complexity to M-ARAP can be calculated as O(K/N).
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Table 2.1: Computational complexity comparison between M-ARAP and AS-T for
m=2 in dB

Q
ARAP M-ARAP M-ARAP

(M-ARAP, L=1) L=8 L=32

128 30.0 23.1 20.8
1024 40.5 33.6 31.3
8192 50.7 43.8 41.5

However, it should be noted that although DS has lower computational complexity,

the number of measurements is generally larger than M-ARAP. Under the assumption

that exactly one half of the cells with Ii = 0 are removed at each stage of DS, the

expected number of measurements can be derived as

E[NDS] = pQK + 2(1− p)Q(1− 2−K) (2.71)

We set Q = 12000, p = 0.001 and compare DS to M-ARAP for L = 1, 8, 32 over

a range of SNR. Figure 2.8(a) plots the loss in computational complexity between

M-ARAP and DS. In the studied case, DS requires 26 dB, 17 dB, and 14 dB fewer

computations asymptotically than M-ARAP for L = 1, 8, 32, respectively. Figure

2.8(b) plots the gain in the cost function over exhaustive search as a function of

SNR for all four algorithms. It is seen that DS outperforms M-ARAP for low SNR

values, but its asymptotic performance is significantly lower (which is to be expected,

considering that ARAP optimizes this cost function). Figure 2.8(c) plots the gain as

a function of the detectability index, and shows that for d > 5, M-ARAP outperforms

DS at all given scales. Finally, Figure 2.8(d) plots the percentage of measurements

used by M-ARAP compared to DS as a function of detectability index. In (a) and

(d), yellow markers indicate the points on the curve where the performance of DS is

approximately equal to that of M-ARAP. It is seen that M-ARAP saves considerably

on measurements at all observed scales.
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Figure 2.8: In (a), we plot the loss in computational complexity of M-ARAP (L =
8, 32) and ARAP (L = 1) vs distilled sensing (DS). We see that DS
requires significantly fewer computations than M-ARAP and ARAP. In
(b), we plot the gain in cost function over an exhaustive search given
by (2.14) for M-ARAP (L = 8, 32), ARAP (L=1), and DS. For lower
values of SNR, DS outperforms all versions of M-ARAP. However, the
asymptotic performance of DS is lower than M-ARAP. In (c), the same
gains are plotted as a function of the detectability index. In (d), the
percentage of total measurements between M-ARAP and DS is plotted.
In (a) and (d), yellow markers indicate the points on the curve where the
performance of DS equals M-ARAP. It is seen that in all cases, M-ARAP
uses significantly fewer measurements to get similar performance to DS.

2.7 Application: Moving target indication/detection

Moving target indication (MTI) radars provide the capability to detect targets

reflections having differential radial motion with respect to an interfering background

(called clutter) that might typically consist of reflections from terrain, sea, weather,

or chaff. A typical application of such radar is surveillance, e.g., to detect low-flying

aircraft moving over terrain through possible weather disturbances. Schleher shows

that the function of the MTI radar is to reject returns from terrain and weather so

to maintain adequate target detection [80]. In many cases MTI radar suppresses

clutter by more than 20 [dB].

In the following section we use a simplified MTI simulation to illustrates potential

benefits yielded by M-ARAP. A full and realistic emulation of MTI is outside the
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scope of this thesis. We simulate a field of view (FOV) about 66 [km2] with pixel

dimensions of 20 × 20 [m2] and radar resolution cell of 100 × 100 × 150 [m3]. A

sparsity level of p = 0.0007 was selected and Q = 4082. We chose identical targets

with target reflection coefficient (per pixel) representing an aircraft similar to an

Airbus A-320. An operating point of 0.1 was selected for the Radar Cross Section

(RCS) and this parameter was varied in simulation from 0.01 to 1. Target velocities

were normally distributed with vt ∼ N (200, 49) centered at 200 [m/s]. Rain intensity

was random between 0-6 [mm/hr] and spatial correlation on the order of 1 [km2].

Maximal clutter velocity was 30 [m/s] and targets were randomly placed within the

clutter regions. A simple second order FIR line canceler was implemented (frequency

response of sin2 ωT
2
) with the pass band centered at 200 [m/s]. The Swerling II noise

model (Exponential) was used as a measurement noise model and the total energy

budget was λT = NQ pulses, i.e., N pulses transmitted at each grid stop.

Note that this model violates the assumption of single-pixel targets that we have

used for the performance prediction analysis. However, as hypothesized earlier, we

believe that the performance with clustered targets will not be negatively impacted

as compared to the single-target scenario. Indeed, for the case where target returns

add constructively to the measurement, clustered targets will actually increase the

detectability index.

Based on M-ARAP we suggest the following measurement scheme: (1) define a

coarse grid pattern; (2) use N1 < N pulses to measure each point on the coarse

grid; (3) use M-ARAP to decide where and how to rescan the domain in a restricted

fine grid; and (4) rescan the searched domain according to the pulse allocation of

M-ARAP. An example of a single realization is given in Fig. 2.9.



68

Targets

in Clutter

0

200

400
0 400

0.16

0.08

0

(a)

Target in

Clutter after MTI

160

175

190

250 290

0.07

0.035

0

(b)

Searched

at 2nd stage

0

200

400
0 400

1

0.5

0

(c)

Adap: Target in

Clutter after MTI

160

175

190
250 290

0.07

0.035

0

(d)

Figure 2.9: Moving target indication example. We set targets RCS to 0.1 and chose
N = 8 and N1 = 5. (a) A single realization of targets in clutter. Figures
(b) and (d) zoom in on to the yellow rectangular to allow easier visual-
ization of the improved estimation due to M-ARAP. (b) Portion of the
estimated image when data was acquired using exhaustive search and
MTI filtration. Figures (c) and (d) are due to M-ARAP search scheme
where multi-scale was set to a coarse grid search of 3 × 3 pixels at the
first stage. (c) Estimated ROI Ψ̂ that is searched on a fine resolution
level on stage two. (d) Portion of the estimated image when data was
acquired using M-ARAP.
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2.7.1 MTI performance analysis

The first question addressed in implementing M-ARAP is how to choose N1.

One approach is to use the data shown in Fig. 5 in the work by Bashan et al. [11],

where the optimal energy allocation at the first step is calculated for ARAP. In the

simulations below we sweep over the range {4, 8, 16} of N values. Performance was

evaluated in terms of estimation MSE gain and area under the curve (AUC) of the

false discovery rate (FDR) Q-ROC curve. The results are shown in Figure 2.10.

Note that the fewer pulses used (e.g., N = 4) the more crucial it is to select N1

appropriately.

We evaluate potential gains in both estimation MSE as well as performance of a

false discovery rate type of target detection and localization. We used the estimator

suggested in Section 2.6.1 and compared it to the CME implemented with exhaustive

search, as given in (2.56). Results are seen in Fig. 2.11. Note that M-ARAP has

nearly the same performance as measured by estimation gain as compared to ARAP

(blue and green dotted lines), yet the number of measurements is significantly reduced

(red solid line). For example, with an RCS of 1, the estimation gain differs by less

than 1 dB, but M-ARAP uses only about 14% of the measurements.

We also compare false discovery rate and compare Q-ROC curves. Fig. 2.12 dis-

plays the two curves for both exhaustive and M-ARAP search. RCS value of 0.1 was

selected and it is clearly seen that M-ARAP provides better detection performance

for equivalent false discovery rates.

Finally, we note that although the assumption of single-pixel targets may not

be validated in this application, the performance in terms of estimation gain and

probability detection is still significantly better than an exhaustive search with many

fewer measurements than with ARAP.
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Figure 2.10: Simulated gain in estimation and detection performances as a function
of N1 the number of pulses used in the uniform search stage. The
operating point of RCS=0.1 was selected. The upper plot displays gains
in estimation MSE. Note that with N = 16 and N1 equals 7 or 8 yields
almost 8 [dB] gains in MSE. The lower plot shows difference in the area
under the curve of an FDR test as a function of N1. For N = 8, 16, the
exhaustive search yield an almost optimal curve and there is less room
for improvement
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Figure 2.11: Simulated gain in estimation and the normalized number of measure-
ment used by M-ARAP vs. targets radar cross section (RCS) coeffi-
cient. RCS is alias to signal to noise ratio or contrast since background
scatter level was kept fixed. The solid curve with square markers and
dashed curve with triangular markers represent estimation gains of M-
ARAP and ARAP compared to an exhaustive search, respectively. The
dash-dotted curve with diamond markers represent N∗ the number of
measurements used by M-ARAP divided by Q with the corresponding
Y-axis values on the right hand side of the figure. For both M-ARAP
and ARAP a total of four pulses per cell (N = 4) was selected as the
energy budget of which three were used at the first stage (N1 = 3) for
all RCS values. Recall that for ARAP we have N∗ > 1. Our results
clearly illustrate that significant estimation gains can be obtained using
M-ARAP with a fraction of the number of measurement required by
ARAP.
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Figure 2.12: The two curves on the above figure represent an FDR detection test.
One hundred runs in a Monte-Carlo simulation were used to generate
each point on the curves. Radar cross section coefficient of 0.1 was
selected, N = 4 (four pulses) was the overall energy budget, and N1 = 3
was used in the first scan for M-ARAP. It is clearly evident that M-
ARAP yield significantly better detection performance for equivalent
false discovery rate levels.
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2.8 Discussion and conclusions

In this chapter, we introduced the framework and problem formulation for adap-

tive resource allocation policies under total resource constraints. ARAP was shown

to be an asymptotically optimal policy (in SNR) and optimal when compared to

all two-stage policies that allocate uniformly at the first stage. However, ARAP is

limited in several ways, including potentially prohibitive measurement requirements.

In this chapter, we also proposed a multi-scale modification, called M-ARAP, that

incorporating a coarse-to-fine scale search. We have established that M-ARAP re-

duces the number of required measurements for nearly equal gain in target search

performance. Specific examples showed 9-15 [dB] gain in estimation performance,

for detectability index d = 5, using less than 18% of the samples needed to perform

an exhaustive search.

However, there are still many related directions of research that have yet to be

explored. In Chapter III, we discuss the extension of ARAP to T ≫ 2 stages and the

potentially moving (dynamic) targets. In Chapter V, we introduce an application to

target detection/tracking with SAR images where ARAP-like policies can be used

to efficiently use computational resources.



CHAPTER III

Adaptive search for Sparse and Dynamic Targets

under Resource Constraints

3.1 Introduction

Chapter II provided a framework for adaptive search for sparse targets. However,

the model was restricted to the static case where targets remained stationary. In

many interesting cases, targets might exhibit dynamic behavior, such as transitioning

to neighboring cells, entering/leaving the scene, or being temporarily obscured. This

chapter extends adaptive search to this domain by introducing

1. A time-varying target state and state dynamical model.

2. Oracle allocation policies that provide upper bounds on performance.

3. Allocation policies that can be computed efficiently and asymptotically approx-

imate the oracle policies as either SNR or T gets large.

Consider measurements of the form

y = diag
{√

λ
}
diag {Θ} IΨ + ε, (3.1)

where λ is a vector describing the resource allocation policy, [
√
x]i denotes

√
xi,

diag {x} is a square matrix with [diag {x}]ii = xi and [diag {x}]ij = 0 for i 6= j,

74
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Θ is a vector of target amplitudes, IΨ is a sparse vector of indicator variables, and

ε ∼ N (0, σ2IQ×Q) where IQ×Q is an (Q × Q) identity matrix. In Chapter II, we

introduced several policies for choosing {λi}Qi=1 in order to estimate Θ and IΨ under

the total resource constraint

2∑

t=1

Q∑

i=1

λi(t) ≤ λtotal (3.2)

The baseline policy is to scan each location with an equal effort location, termed

an ‘exhaustive’ or ‘uniform’ search. In order to avoid confusion from the dynamic

programming literature, we will use the latter term (uniform search) to denote the

baseline policy. If the locations of the targets were known a priori, then the oracle

policy would allocate resources only to the locations containing targets. To illustrate

the situation, in Figure 3.1 we have reproduced the figure from Chapter II that shows

both of these policies in the context of an agile scanning radar. In Chapter II, we

introduced the policies ARAP and M-ARAP in order to adaptively estimate the

region of interest (ROI) using measurements taken across T = 2 stages of the form

y(t) = diag
{√

λ(t)
}
diag {Θ} IΨ + ε(t), t = 1, 2. (3.3)

It was shown that by using an adaptive policy, one can perform significantly better as

compared to the uniform search. Benefits include near-optimal gains in estimation

error and provable convergence to the true support of the ROI. Moreover, it was

shown that by using a multi-scale policy, one could reduce the number of measure-

ments with only minimal performance losses.

However, the algorithms presented in Chapter II are limited in several key ways.

First, the optimization problem that used to derive these methods grows in a com-

binatorial fashion as a function of T and is not tractable for T > 2. Second, the
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(a) Scene (b) Uniform Search

(c) Oracle Search

Figure 3.1: In (a), a scene that we wish to scan is shown with two static targets.
The standard policy, shown in (b) is to allocate equal effort to each cell
individually. The oracle policy, shown in (c), is to allocate effort only to
cells containing targets.
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provable gains of ARAP and M-ARAP were restricted to the asymptotic regime,

where the signal-to-noise ratio (SNR) was very large.

The work in this chapter alleviates both of these issues in the following manner.

First, we consider applications that only have low to medium SNR levels, but we allow

the number of stages to grow indefinitely. For example, consider two applications that

repeatedly probe the scene: (a) an air traffic control (ATC) system that employs an

adaptive radar system to continuously monitor a scene, and (b) a real-time tracking

system that is limited by a finite amount of computational resources per iteration.

Both of these applications share the property that as T gets large, the targets of

interest are likely to transition to neighboring cells, enter the scene, or leave the

scene. Figure 3.2 illustrates the time-varying problem. In order to compensate for

these effects, we propose a simple dynamic state model and let the indicator functions

of the ROI change over time. In particular, we now consider the problem:

y(t) = diag
{√

λ(t)
}
diag {Θ(t)} IΨ(t) + ε(t), (3.4)

for t = 1, 2, . . . , T . Resource constraints per stage are given by

Q∑

i=1

λi(t) ≤ λtotal(t), t = 1, 2, . . . , T. (3.5)

In general the constraints {λtotal(t)}Tt=1 and the number of stages T may be a design

parameter. However, in this chapter, we consider the simpler situation where these

constraints are known beforehand. 1 In general, sequential resource allocation prob-

lems can be solved by dynamic programming (DP.) The basic problem in DP is to

minimize an additive cost of the form

E

{
gN(xN ) +

N−1∑

k=0

gk(xk, uk, wk)

}
, (3.6)

1It is also possible that T might be a random variable such that the number of stages of mea-
surements may be stopped once ‘sufficient’ signal has been gathered. This thesis does not consider
these issues, though they may be studied in future work.
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(a) Scene Ψ(t− 1) at time, t− 1 (b) Prior probabilities at time, t

Figure 3.2: In (a), a scene that we wish to scan is shown with two dynamic targets
at time, t − 1. In (b), we show the prior probabilities for the targets.
The target in the bottom-left corner is obscured at time, t. The target
in the middle can transition to neighboring cells with some probability,
modeled as a Markov random walk. Finally, targets may enter the scene
along the top border with some small probability.

where xk is the current state at stage k, uk is the input at stage k, wk is random

noise, and gk(·) is some cost function. In general, {uk}k will be dependent on the

random states xk, so DP tends to minimize the expected cost over policies, µk(xk).

Bertsekas provides a key principle in DP, referred to as the ‘principle of optimality,’

which states that these complex optimizations can be solved by using backwards

induction [14]. In practice, the state is usually observed through noisy observations,

which greatly complicates the optimization problem. On the other hand, if the state

is replaced by the so-called ‘belief state’ that characterizes the posterior distribution

of the observed state, then the partially observable problem can be converted back

into a fully observable DP. Nevertheless, optimal solutions to DP problems often

require approximate solutions in order to be computationally tractable, especially as

the size of the state grows. An in-depth discussion of approximate methods is outside

the scope of this chapter, but the interested reader should see Chapter 6 in [14].
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Chong et. al. [28] describe a set of related problems for formulating adaptive

sensing as a partially observable Markov decision problem (POMDP.) They pro-

vide an excellent survey of optimal and approximate methods for solving POMDPs.

Morevoer, they show that using non-myopic policies (i.e., policies that trade off

current benefits for long-term performance gains) can lead to significant gains over

standard policies. These strategies rely on approximating the so-called Q- function

of the belief state B(t) and possible actions a ∈ A, where

QT−t(B(t), a) = r(B(t), a) + E[V ∗
T−t−1(B(t))|B(t), a] (3.7)

and

V ∗
T (B(0)) = max

a

(
r(B(t), a) + E[V ∗

T−1(B(0))|B(0), a]
)
= max

a
QT−t(B(t), a) (3.8)

In general, estimating the Q-function is intractable. However, there are many ap-

proximate methods, including

• Q-learning: A reinforcement learning approach based on estimating the Q-

function from multiple trajectories of the random process.

• Relaxation of the optimization problem or of the state space.

• Parametric approximations.

• Rollout policies: Assume that at stage τ > t, we use a known base policy,

λ(base). Then choose the action at stage t that optimizes the Q-function where

the remaining T − t stages are chosen according to λ(base).

The work in this chapter considers problems similar to both POMDPs and DPs.

A computationally simple alternative to the optimal and approximate solutions is
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provided, which is additionally shown to be asymptotically optimal through empir-

ical evidence at a fraction of the search complexity of other algorithms. In Section

3.5, we also provide a comparison of the proposed policy to an approximate POMDP

solution, and show that performance is similar although at much reduced computa-

tional cost.

This chapter introduces the Dynamic Adaptive Resource Allocation Policy (D-

ARAP) that

• Optimizes an appropriate time-varying cost function subject to a per-stage

budget. For example, in an ATC system, the allocation budget is the total

time it takes for the radar to complete one complete cycle.

• Accounts for dynamic targets through a dynamic state model.

• Provides significant gains over a uniform policy that allocates the budget evenly

over all potential target locations.

• Outperforms a greedy policy in terms of robustness and convergence.

• Is near-optimal as T →∞.

• Accomplishes these goals with low computational cost.

The rest of this chapter is organized as follows. We provide notation in Section

3.2. We formalize the problem in Section 3.3 and provide the adaptive sensing

policy in Section 3.4. Performance analysis is given in Section 3.5. In Section 3.6, we

conclude and point to future work. Moreover, Sections 3.7 and 3.8 provide appendices

with extended details of the policies and approximations given in this chapter.
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3.2 Notation

• Q - Number of cells in search space.

• T - Number of stages (time).

• t - Current time, t ∈ 1, 2, . . . , T .

• X = {1, 2, . . . , Q} - Discrete space of Q cells.

• Ψ(t) ⊆ X - Subset of X referred to as the ROI at time t.

• Ii(t) - indicator function of the ROI such that

Ii(t) =





1, i ∈ Ψ(t)

0, Otherwise

for i ∈ {1, 2, . . . , Q}. (3.9)

• Ψ̂(t) ⊆ X - Estimated ROI, learned from measurements up until time t.

• λi(t) ∈ [0, λtotal(t)] - Search effort allocated to cell i at stage t.

• λtotal(t) =
Q∑
i=1

λi(t) - Total search effort allocated at time t.

• Y (t) = {y(1),y(2), . . . ,y(t)} ∈ RN - Set of measurements.

• κ(t) ∈ [0, 1] - Percentage of resource budget to be used for exploration of X

rather than exploitation of Ψ̂(t).

3.2.1 For dynamic target state model

• α - Target birth probability.

• β - Target death probability.

• π0 - Probability that target remains in cell (π0 = 1 yields static targets).
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• G(i) ⊆ X - Set of neighbors to cell i (i.e., locations where target may transition

to from cell i).

• Ñ(t) - Number of targets in scene at time t.

• θ̂i(t) - Estimate of θi(t) at time t given Y (t− 1).

• σ2
i (t) - Estimated variance of θi(t) at time t given Y (t− 1).

• pi(t) = Pr(Ii(t) = 1|Y (t− 1)) - Posterior probability of target existence.

• B(t) =
{
pi(t), θ̂i(t), σ

2
i (t)
}Q

i=1
- Belief state at stage t.

• Oi(t) - indicator function of the observability at time t such that

Oi(t) =





1, Location i is observable

0, Otherwise

for i ∈ {1, 2, . . . , Q}. (3.10)

3.3 Problem formulation

Consider a space X = {1, 2, . . . , Q} containing Q cells equipped with a probability

measure P , and a region of interest (ROI), Ψ ⊂ X . We assume that Ψ will be a

randomly selected small subset of X , though its definition is application specific.

In radar target localization, the ROI is the collection of all cells containing targets

and target related phenomena, e.g., target shadows. As described in Chapter II, in

early detection of breast cancer, where tumor boundaries are poorly defined, the ROI

may be defined as the collection of all cells containing targets (a tumor) plus some

neighboring cells. In this chapter, we generalize the formulation from Chapter II to

account for a time-varying ROI by making Ψ = Ψ(t) a function of time.
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3.3.1 Dynamic state model

At time t ∈ {1, 2, . . . , T}, consider tracking N(t) targets. For each target, n ∈

N(t), define

s(n)(t) ∈ X = {1, 2, . . . , Q}, (3.11)

and

x(n)(t) ∈ R, (3.12)

to be the n-th target’s position and amplitude, respectively, at time t. Let

S(t) = {s(1)(t), s(2)(t), . . . , s(n)(t)}, (3.13)

and

X(t) = {x(1)(t), x(2)(t), . . . , x(n)(t)}. (3.14)

Then the state at time t is defined as

ξ(t) = {S(t),X(t), N(t)} (3.15)

At time t = 1, the prior distribution for ξ(t) is given by

N(1) ∼ Binomial(Q, p), (3.16)

s(n)(1) ∼ Uniform{1, 2, . . . , Q}, for n = 1, 2, . . . , N(1), (3.17)

x(n)(1) ∼ N (µθ, σ
2
θ), for n = 1, 2, . . . , N(1). (3.18)

We propose a simple dynamic model for ξ(t + 1) given the current state ξ(t) that

includes transition, birth, and death probabilities. This can easily be generalized to

other situations, such as those given in Section 3.8.5. In words, this model assumes

• A target leaves the scene with probability α.

• A single target enters the scene with probability β.
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• A target that is already in the scene at location i

– remains in the same location with probability π0.

– moves to a neighboring cell with probability (1 − π0)/|G(i)|, where G(i)

is the set of neighboring cells.

– has amplitude that changes with zero-mean Gaussian noise.

This model can be defined mathematically in the following manner. Define the sets

G(i) = {j ∈ X : j is a neighbor of location i}, (3.19)

H(i) = G(i) ∪ {i}. (3.20)

For n = 1, 2, . . . , N(t)

Pr
(
s(n)(t+ 1) = i|s(n)(t) = j

)
=





α, i = 0, j 6= 0

(1− α)π0, i = j, j 6= 0

(1− α)(1− π0)
|G(j)| , i ∈ G(j), j 6= 0

0, else

(3.21)

where α is the probability that a target is removed from the scene and π0 is the

probability that a target remains in the same location. Let a single target be added

to the scene with probability β so that

Pr(N(t + 1) = n|N(t)) =





β, n = N(t) + 1

1− β, n = N(t)

(3.22)

Given N(t + 1) = N(t) + 1, define the distribution of the added target as

s(N(t)+1)(t+ 1) ∼ Uniform{1, 2, . . . , Q} (3.23)

x(N(t)+1)(t+ 1) ∼ N (µθ, σ
2
θ) (3.24)
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Let the target amplitudes for targets in the current scene2 evolve according to

x(n)(t+ 1) = x(n)(t) +N (0,∆2
θ) (3.26)

for all n = 1, 2, . . . , N(t) and s(n)(t) 6= 0. Section 3.7 provides analysis of the choice

of α and β to ensure that the sparsity of the state remains the same, in the sense

that the expected number of targets in the scene remains constant.

3.3.2 Observation model

For i = 1, 2, . . . , Q and t = 1, 2, . . . , T , we assume a measurement model of the

form

yi(t) =
√
λi(t)

∑

n:s(n)(t)=i

x(n)(t) + εi(t) (3.27)

where εi(t) ∼ N (0, σ2) and λi(t) is a design parameter. Define the indicator variables

Ii(t) =





1, ∃n : s(n)(t) = i

0, else

(3.28)

for i = 1, 2, . . . , Q. Since this chapter considers sparse scenarios, the expected number

of targets E[N(t)] = pQ is much smaller than the size of the scene, so that pQ≪ Q.

When targets are equally likely to be located in any of the Q locations, the prior

2Note that N(t) is the number of targets that have been tracked up until time t. However, it is
NOT necessarily the number of targets in the scene at time t. This quantity, Ñ(t) is defined as

Ñ(t) =

N(t)∑

n=1

1{s(n)(t) 6=0} (3.25)

where 1{A} is the indicator variable of event A.
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probability a cell is occupied by at most one target is given by

Pr(|{n : s(n)(t) = i}| ≤ 1) = Pr(|{n : s(n)(t) = i}| = 0) + Pr(|{n : s(n)(t) = i}| = 1)

=

(
Q− 1

Q

)pQ

+
1

Q

(
Q− 1

Q

)pQ−1

=

(
Q− 1

Q

)pQ−1(
Q− 1

Q
+

1

Q

)
=

(
Q− 1

Q

)pQ−1

(3.29)

where it is assumed that E[N(t)] = pQ is an integer. For large Q and small p, this

probability is very close to one. For example, when Q = 1, 000 and p = 0.01, we

have Pr(|{n : s(n)(t) = i}| ≤ 1) = 0.991. Thus, for policy planning, we make the

simplifying assumption that

|{n : s(n)(t) = i}| ≤ 1, (3.30)

for i = 1, 2, . . . , Q. Then we define the cell-by-cell target amplitudes as

θi(t) =





x(n)(t), if s(n)(t) = i

0, else

(3.31)

Combining equations (3.27), (3.28) and (3.31), we have the familiar equation

yi(t) =
√
λi(t)Ii(t)θi(t) + εi(t). (3.32)

In many cases, targets in certain locations may not be observable at certain times.

For example, locations within the null of a radar beam cannot be observed until the

radar platform moves. Define the modified measurement model as

yi(t) =
√
λi(t)Ii(t)Oi(t)θi(t) + εi(t), (3.33)

where

Oi(t) =





1, Location i is observable

0, else

i = 1, 2, . . . , Q. (3.34)
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In this chapter, it is assumed that the indicators of observability, {Oi(t)}i,t, are

known a priori and do not have to be estimated.

In general, it is a difficult, if not intractable, problem to exactly estimate the

extremely high-dimensional posterior distribution f(ξ(t)|Y (t − 1)) that is needed

to calculate Pr(Ii(t) = 1|Y (t − 1)). On the other hand, Section 3.8 provides an

appendix for efficiently approximating the posterior distribution. Moreover, other

signal processing algorithms, such as the particle filter, extended Kalman filter, or

the Unscented Kalman filter, could be used to approximate the distributions with

varying tradeoffs between accuracy and computational burden.

3.3.3 Resource constraints in sequential experiments

Consider a sequential experiment where we observe measurements y(t) : X → RQ

for t = 1, 2, . . . , T . Let λi(t) ≥ 0 denote the search effort allocated to cell i at time t,

under total budget constraints given by (3.5) where the constraints {λtotal(t)}Tt=1 are

assumed to be known. We consider mappings of {λi(t)}Qi=1 from past observations

Y(t − 1) , {y(1),y(2), . . . ,y(t− 1)} . The choice of {λi(t)}i,t is called a search

policy. We focus here on deterministic mappings of λ, although a more general

random mapping could also be incorporated into our framework. We assume that a

sample’s ‘quality’ is an increasing function of the allocated effort to the associated

cell, e.g. measured in terms of Fisher information or inverse variance. In general,

effort might be computing power, complexity, cost, or energy that is allocated to

probing a particular cell location.
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3.4 Search policy for dynamic targets under resource con-
straints

3.4.1 Related work

In Chapter II and the work by Bashan et al. [11] we introduced the following cost

function

JARAP (λ) = E

[
Q∑

i=1

νIi + (1− ν)(1− Ii)
λi(1) + λi(2)

]
. (3.35)

Minimizing (3.35) over λi(t) under the total energy constraint

Q∑

i=1

T∑

t=1

λi(t) = λT (3.36)

yielded the search policy ARAP, in the case where T = 2 and targets were static, i.e.,

Ii(t) = Ii. Chapter II discusses properties of ARAP and its multi-scale modification,

M-ARAP.

This chapter wishes to generalize search policies in two major directions: (1)

policies with T ≫ 2 stages; and (2) dynamic targets where the target indicators and

amplitudes change with time, so that Ii(t) 6= Ii with positive probability. The most

straightforward extension of the cost function in equation (3.35) to T > 2 is

JARAP (λ;T ) = E




Q∑

i=1

νIi + (1− ν)(1− Ii)
T∑
t=1

λi(t)


 . (3.37)

where {λi(t)}i,t is optimized under the total energy constraint

T∑

t=1

Q∑

i=1

λi(t) =

T∑

t=1

λtotal(t) = λT . (3.38)

In contrast to the 2-stage problem, this cost function cannot be simply optimized for

T > 2. Wei and Hero [90] provide an alternative way to extend ARAP-like policies

to T > 2. Although they consider the static case where Ii(t) = Ii and θi(t) = θi,
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their methodology provides useful insights for the work in this chapter. In particular,

they show that minimizing the mean squared error (MSE) over Ψ:

E

[
Q∑

i=1

Ii(θ̂i − θi)2
]
, (3.39)

where the expectation is taken over Ii, θi, and Y (T ), is done by letting

θ̂i(T ) = E[θi|Ii = 1,Y (T )]. (3.40)

Using this estimator, the cost in equation (3.39) can be shown to be proportional to

E




Q∑

i=1

Pr(Ii = 1|Y (T ))

σ2/σ2
θ +

T∑
t=1

λi(t)


 . (3.41)

Moreover, they show that the covariance of the CME estimator can be computed

recursively as

σ2
i (t) =

(
1

σ2
i (t− 1)

+
λi(t)

σ2

)−1

(3.42)

= σ2

(
σ2

σ2
i (t− 1)

+ λi(t)

)−1

(3.43)

so that

σ2

σ2
i (t)

=
σ2

σ2
i (t− 1)

+ λi(t) (3.44)

Thus, equation (3.41) reduces to

E

[
Q∑

i=1

Pr(Ii = 1|Y (T ))

σ2/σ2
i (T ) + λi(T )

]
. (3.45)

Note that both Pr(Ii = 1|Y (T )) and σ2
i (T ) depend on the previous allocations

{λi(t)}t<T . Furthermore, if the belief state is defined as

B(t) =
{
Pr(Ii = 1|Y (T )), θ̂i(T ), σ

2
i (T )

}Q

i=1
, (3.46)

then an optimal sequential effort allocation policy can be determined by formulating

the problem as a dynamic program (DP).
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Table 3.1: Parameters for cost function for various target amplitude models for
Ii(t) = Ii and cost given by equation (3.48)

Model
Variance of CME,

ci(T )
Recursive form

σ2
i (T |T ) for ci(T )

θi(t) = µi
σ2

(
σ2

σ2
θ

+
T∑
t=1

λi(t)

)−1
σ2

σ2
θ

+
T−1∑
t=1

λi(t) ci(T − 1) + λi(t)
µi ∼ N (µθ, σ

2
θ)

θi(t) ∼ N (µθ, σ
2
θ) σ2

(
σ2

σ2
θ

+ λi(t)
)−1

σ2

σ2
θ

ci(T − 1)

θi(t) = θi(t− 1) + δi(t) σ2
(

σ2

σ2
i (T |T−1)

+ λi(t)
)−1

σ2

σ2
i (T |T )

(
∆2

σ2 + 1
ci(T−1)

)−1

δi(t) ∼ N (0,∆2) where σ2
i (t+ 1|t)

θi(0) ∼ N (µθ, σ
2
θ) = σ2

i (t|t) + ∆2

3.4.2 Proposed cost function

The cost function in equation (3.45) can be generalized to cases where θi(t) 6= θi

for all t. For example, consider the cost function

J(λ;T ) = E

[
Q∑

i=1

Ii(t)

ci(t) + λi(t)

]
, (3.47)

where ci(t) are non-negative constants that may depend on Y (T −1) and {λi(t)}t<T .

When θ̂i(t) is given by the conditional mean estimator for θi(t), this cost function

corresponds to the MSE within the ROI for many models of θi(t). Table 3.1 provides

several of these models and their corresponding expressions for ci(t). It should be

noted that in all of these cases, ci(t) is a function of the belief state B(t) given by

equation (3.46).

Although the cost function given by equation (3.47) does not correspond exactly

to the MSE within the ROI when Ii(t) 6= Ii with some positive probability, it is

hypothesized that the cost function will be useful in many cases. Indeed, conditioned

on the ROI Ψ(t), this cost function is exactly the MSE within Ψ(t) in the cases
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described in Table 3.1. In other cases where Ψ(t) is known with high confidence (i.e.,

as t→∞ or for high SNR), this cost function is assumeted to be close to the MSE

within the ROI.

In dynamic cases, the user might be interested in estimation error for all stages

(rather than just at stage T ). Thus, we modify the cost function as

J(λ;T ) = E

[
T∑

t=1

γ(t)

Q∑

i=1

Ii(t)

ci(t) + λi(t)

]
, (3.48)

where {γ(t)}Tt=1 is a set of coefficients describing the relative weights of cost as a

function of stage. Note that equation (3.47) is a special case of equation (3.48) with

γ(T ) = 1 and γ(t) = 0 for t < T . In this chapter, we generally consider exponential

weights on the cost so that for a T -stage problem, we have

γ(t;T ) = (γ0)
T−t, 0 < γ0 < 1. (3.49)

Future work will look at the sensitivity of the performance of our policies to the

choice of ci(t) and γ(t).

3.4.3 Oracle policies

Next, we provide an achievable lower bound on the cost function given by equation

(3.48) in the case where γ(T ) = 1 and γ(t) = 0 for t < T . This lower bound will

specify the performance of an oracle that has access to the target state, called the

omniscient policy.

Lemma III.1. The cost function given by equation (3.48) is lower bounded by

J(λ; t) ≥ |Ψ(t)|2
λtotal(t) +

∑
i∈Ψ(t)

ci(t)
. (3.50)
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This lower bound is achievable by an omniscient policy defined as

λomn
i (t) =





λtotal(t) +
∑

j∈Ψ(t)

cj(t)

|Ψ(t)| − ci(t), i ∈ Ψ(t)

0, i /∈ Ψ(t).

(3.51)

Proof. For a non-negative series, {Ii(t)}, the Cauchy-Schwartz inequality provides

(
Q∑

i=1

Ii(t)

ci(t) + λi(t)

)(
Q∑

i=1

ci(t)Ii(t) + λi(t)

)

≥
(

Q∑

i=1

√
Ii(t)

ci(t) + λi(t)

√
ci(t)Ii(t) + λi(t)

)2

=


∑

i∈Ψ(t)

√
1

ci(t) + λi(t)

√
ci(t) + λi(t)




2

= |Ψ(t)|2.

(3.52)

Moreover, we note that

Q∑

i=1

ci(t)Ii(t) + λi(t) = λtotal(t) +
∑

i∈Ψ(t)

ci(t) (3.53)

Combining the definition of the cost function in equation (3.48) with equations (3.52)

and (3.53), we get

J(λ; t) ≥ |Ψ(t)|2
λtotal(t) +

∑
i∈Ψ(t)

ci(t)
. (3.54)

To prove the second part of the lemma, note that

J(λomn; t) =

Q∑

j=1

Ij(t)

cj(t) + λomn
j (t)

=
∑

j∈Ψ(t)

1

cj(t) +
λtotal(t)+

∑

i∈Ψ(t)

ci(t)

|Ψ(t)| − cj(t)

=
∑

j∈Ψ(t)

|Ψ(t)|
λtotal(t) +

∑
i∈Ψ(t)

ci(t)

=
|Ψ(t)|2

λtotal(t) +
∑

i∈Ψ(t)

ci(t)
.

(3.55)
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In comparison to the omniscient policy, we may consider the uniform search as a

baseline policy, defined as

λunii (t) =
λtotal(t)

Q
, (3.56)

which achieves a cost

J(λuni; t) =

Q∑

i=1

Ii(t)

ci(t) + λtotal(t)/Q
=
∑

i∈Ψ(t)

Q

Qci(t) + λtotal(t)
(3.57)

Assuming symmetry within the ROI, it may be illustrative to assume that ci(t) = c0

for i ∈ Ψ(t). Then we have

J(λuni; t) =
Q|Ψ(t)|

Qc0 + λtotal(t)
(3.58)

We then define the gain of a policy with respect to the uniform search as

Γ(λ; t) = −10 log J(λ; t)

J(λuni; t)
(3.59)

In particular, the gain of the omniscient policy when ci(t) = c0 in the ROI is given

by

Γ(λomn; t) = −10 log
( |Ψ(t)|2
|Ψ|c0 + λtotal(t)

· Qc0 + λtotal(t)

Q|Ψ|

)

= −10 log |Ψ(t)|
Q
− 10 log

Qc0 + λtotal(t)

|Ψ|c0 + λtotal(t)

≤ −10 log |Ψ(t)|
Q

(3.60)

The last inequality illustrates that when c0 6= 0, we actually incur a penalty in the

gain of the omniscient policy since |Ψ(t)| ≪ Q by assumption. For ci(t) chosen

according to Table 3.1, this penalty can be interpreted as the loss incurred by noisy

measurements. In asymptotic regimes where SNR → ∞, one would expect that

ci(t) ≪ λi(t) so that the loss is negligible. We’d also like to point out that when

ci(t) = 0 for all i and t, the cost function still minimizes the probability of error for
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a deterministic θi(t) = µθ as shown in the work by Bashan [9]. Thus the choice of

ci(t) also influences the tradeoff between detection and estimation of targets within

the ROI.

The omniscient policy is not actually attainable, even asymptotically, as long as

there is a non-zero probability that targets may enter, leave, or transition from time

t − 1 to t. On the other hand, we may consider the policy that optimizes equation

(3.48) given the previous state

ξ(t− 1) = {Ii(t− 1), θi(t− 1)}Qi=1 . (3.61)

Assuming that ci(t) = c0 ≪ λtotal(t) for all i ∈ X , it can be shown that solution of

this optimization problem, which we term the ‘semi-omniscient policy,’ is given by

λsemi
i (t) =

λtotal(t)
√

Pr(Ii(t) = 1|Ψ(t− 1))
Q∑

j=1

√
Pr(Ij(t) = 1|Ψ(t− 1))

(3.62)

Under the assumptions given in Section 3.8, it is shown in equation (3.150) that the

cost of the semi-omniscient policy is

J(λsemi; t) =

[√
Qβ + |Ψ(t)|

√
(1− α)

(√
π0 +

√
G(1− π0)

)]2

λtotal(t)
, (3.63)

where α is the death probability, β is the birth probability, π0 is the probability of a

target remaining in the same location, and G is the number of neighboring location

that a target may transition to from time t to time t+ 1. It can be seen that in the

static case when π0 = 1, α = β = 0, we get the same cost as the omniscient policy:

J(λsemi; t)|π0=1,α=β=0 =
|Ψ(t)|2
λtotal(t)

(3.64)

Moreover, in cases where α, β ≈ 0, we have

J(λsemi; t)|α,β≈0 =
|Ψ(t)|2
λtotal(t)

(√
π0 +

√
G(1− π0)

)2
, (3.65)
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yielding a gain

Γ(λsemi; t)|α,β≈0 = −10 log
|Ψ(t)|
Q
− 10 log

(√
π0 +

√
G(1− π0)

)2
, (3.66)

where the second term is the penalty incurred due to the probability that a target

transitions to a neighboring cell, which we define as

Ltransition(π0, G) = −10 log
(√

π0 +
√
G(1− π0)

)2
. (3.67)

Note that if there is an equal probability that a target remains in the same location

as compared to moving to one of G neighbors, then π0 = (1 +G)−1 and

Ltransition(π0, G)|π0=(1+G)−1 = −10 log(G+ 1). (3.68)

3.4.4 Optimal sequential policies

The oracle policies in the previous section provide upper bounds on the perfor-

mance of any policy. In this chapter, we wish to provide adaptive algorithms that

have performance that approach that of the optimal policy. In principle, it is pos-

sible to use dynamic programming (DP) to exactly obtain an optimal sequential

policy that minimizes equation (3.48) using a sequence of recursive optimizations

that proceed as follows:

J∗(λ;T ) = min
{λi(T )}Qi=1

J(λ;T ) s.t

Q∑

i=1

λi(T ) = λtotal(T ) (3.69)

and define recursively

J∗(λ; t) = min
{λi(t)}

Q
i=1

E
[
Jt+1(λ)

∣∣∣ξ(t), {λi(t)}Qi=1

]
s.t

Q∑

i=1

λi(t) = λtotal(t)

(3.70)

for t = T −1, T−2, . . . , 1. Wei and Hero [90] show that this solution is only tractable

for T ≤ 2. For T > 2, we have to consider approximations to the optimal sequential
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policy. In the next sections, we provide a greedy solution that optimizes J∗(λ; t)

for t = 1, 2, . . . , T without recursion (i.e., assuming that t is the last stage) and an

alternative policy that improves upon the greedy solution with very low additional

computational cost.

3.4.5 Greedy sequential policy

The greedy optimization problem at time t can be stated as

min
{λi(t)}

Q
i=1

J(λ; t) s.t

Q∑

i=1

λi(t) = λtotal(t) (3.71)

given the belief stateB(t−1) =
{
Pr(Ii = 1|Y (t− 1)), θ̂i(t− 1), σ2

i (t− 1)
}Q

i=1
. Recall

that ci(t) is a function of the B(t− 1). Then, define

wi(t) =
√
Pr(Ii(t)|Y(t− 1)) (3.72)

zi(t) =
wi(t)

ci(t)
(3.73)

and order the zi’s so that

zτ(1)(t) ≤ zτ(2)(t) ≤ · · · ≤ zτ(Q)(t). (3.74)

Define the cutoff

k0 =





0, cτ(1)(t)
Q∑
i=1

wτ(i)(t)

wτ(1)(t)
< λtotal(t) +

Q∑
i=1

ci(t)

k, zτ(k)(t) ≤

Q∑
i=k+1

wτ(i)(t)

λtotal(t) +
∑Q

i=k+1 cτ(i)(t)
< zτ(k+1)(t)

(3.75)

where k0 is proved to exist and be unique in the work by Bashan et al. [12]. Then

the solution to (3.71) is given by

λgreedyi (t) =





λtotal(t) +
Q∑

k=k0+1

cτ(k)(t)

Q∑
k=k0+1

wτ(k)(t)

wi(t)− ci(t), τ(i) > k0

0, τ(i) ≤ k0.

(3.76)
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Note that when ci(t) = 0 for all i, then

λgreedyi (t) =
λtotal(t)

√
Pr(Ii(t)|Y(t− 1))

∑Q
j=1

√
Pr(Ij(t)|Y(t− 1))

. (3.77)

It should be noted that this solution is of identical form to the sub-optimal policy

provided by Bashan et al. [11], which provided nearly the same performance as

ARAP, although without requiring sorting of the posterior probabilities.

Either solution given by equation (3.77) or (3.76) is simple to implement, though

the former does not require sorting of the posteriors. However, they are both greedy

and have several drawbacks. First, these approaches will perform well when the

posteriors Pr(Ii(t) = 1|Y (t − 1)) ≈ Ii(t) and poorly otherwise. This property

causes the greedy policy to have a limited ability to recover missed targets. Second,

the greedy policy is also myopic in the sense that it does not trade off short term

performance gains for long-term benefits. Chong et al [28] shows that there are

significant gains to be had by using non-myopic policies in cases such as

1. Target motion, where there is potential benefit for sensing the target before it

becomes unresolvable.

2. Environment variability, when some locations may become unobservable at a

particular epoch (e.g., Oi(t) = 0 for some i and t).

Finally, the greedy policy does not take into account the weights per stage, γ(t), and

therefore might allocate more resources than necessary at earlier stages.

3.4.6 Non-myopic policies

To tackle the drawbacks of the greedy algorithm, it may be reasonable to save

some resources for exploring the entire space X rather than simply exploiting the

current estimate of the ROI Ψ(t). One straightforward way to do this is to allocate
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a percentage of the budget λtotal(t) to all cells, yielding the allocation policy that we

term D-ARAP:

λDARAP
i (t; κ) =

κ(t)λtotal(t)

Q
+ (1− κ(t))λgreedyi (t), (3.78)

where κ(t) ∈ (0, 1) and λgreedyi (t) is given by either equation(3.76) or (3.77). Note

that there are other, possibly equivalent or better, ways to tradeoff exploitation of

Ψ(t) and exploration of X . This includes

• Dispersion of the target indicator probabilities by replacing these probabilities

with non-normalized pseudo-probabilities:

p̃i(t) = (Pr(Ii(t) = 1|Y (t− 1)))m (t), m(t) ∈ (0, 1]. (3.79)

There are several possible ways to choose the dispersion exponentm(t) sequence

for t = 1, 2, . . . , T .

• Random sampling of X , using a compressed sensing matrix, rather than a

uniform allocation to all cells.

• Multiple (coarse)-scale sampling of X , rather than a uniform allocation to all

cells.

To keep the discussion focused, this chapter considers the policy given in equation

(3.78), though the general framework could be applied to any of the policies described

above3.

In general, choosing κ(t) is still a difficult problem. This work proposes two

strategies for selecting κ(t).

3It should be noted that we look for deterministic policies computed offline (i.e., before mea-
surements are measured). In Section 3.4.9, we provide an approximate to the POMDP solution for
finding an online allocation policy. In Section 3.5, performance of the offline and online algorithm
are compared, as well as their computational costs. Note that in the online policies, computational
cost is many orders higher than their offline alternatives, though the additional performance gains
might be beneficial in some scenarios.
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3.4.7 Nested optimization for κ(t)

First, consider the nested optimization problem for finding {κD(t)}Tt=1, which we

will denote as κ
(T )
D (t):

Algorithm 3. Nested policy for κ
(T )
D (t), t = 1, 2, . . . , T .

For each τ = 1, 2, . . . , T :

Step 1: Set κ
(τ)
D (1) = 1, since we assume a non-informative prior on the locations

of targets at t = 1.

Step 2: Set κ
(τ)
D (τ) = 0, which reflects the fact that the last stage should not save

resources for later stages.

Step 3: Set κ
(τ)
D (t) = κ

(τ−1)
D (t− 1) for t = 3, 4, . . . , τ − 1.

Step 4: Optimize J(λDARAP
i ; τ) over κ

(τ)
D (2).

3.4.8 Heuristic optimization of κ(t)

Note that the nested optimization procedure requires searching over a single pa-

rameter at each stage. However, it also requires simulation of a τ -stage policy for

τ = 3, 4, . . . , T . Thus, we require O(T 2) simulations in order to find κ
(T )
D according

to this strategy. Although this optimization is tractable, we may consider a heuristic

approximation that reduces the computational burden to O(T ) simulations. To un-

derstand this heuristic, it is illustrative to look at Fig. 3.3, which plots the myopic

cost

Kt,κ(λ) = J(λDARAP
i (t; κ); t) (3.80)

for κ(1) = 1, κ(2) ∈ (0, 1), t = 2, and ci(t) = 0. We plot Kt,κ(λ) for low, medium,

and high values of λtotal(t) in (a), (b), and (c), respectively. It is seen that in all
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Figure 3.3: We plot the myopic cost K2,κ(λ) given by equation (3.80) for κ(1) = 1,
κ(2) ∈ (0, 1), t = 2, and ci(t) = 0. We plot Kt,κ(λ) for low, medium, and
high values of λtotal(t) in (a), (b), and (c), respectively. It is seen that in
all cases, the myopic cost is optimized when κ(2) = 0. However, lower
SNR values can tolerate a larger value of κ(2) and only have a small
deviation in cost. The red dotted line shows a deviation of 10% from the
minimum cost, while the yellow circle marks the point where κ attains
this value.

cases, the myopic cost is optimized when κ(2) = 0. However, lower SNR values can

tolerate a larger value of κ(2) and only have a small increase in cost. The red dotted

line shows a deviation of 10% from the minimum cost, while the yellow circle marks

the point where κ attains this value. We use the following heuristic strategy:

Algorithm 4. Heuristic policy for κ
(T )
D (t), t = 1, 2, . . . , T .

For each τ = 1, 2, . . . , T :

Step 1: Set κ
(τ)
D (1) = 1, since we assume a non-informative prior on the locations

of targets at t = 1.

Step 2: Set κ
(τ)
D (t) = κ

(τ−1)
D (t) for t = 2, 3, . . . , τ − 1.

Step 3: Let ε ≥ 0 control the deviations that we are willing to tolerate.

Step 4: Then define

κ
(τ)
D (τ) = max

κ
{κ : Kτ,κ(λ) < (1 + ε)Kτ,0(λ)} (3.81)
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Table 3.2: Parameters used for simulation analysis

Parameter Variable Name Value

Number of locations Q 1, 000

Prior sparsity p = Pr(Ii(1) = 1) 0.01

Expected number of targets E[Ñ(t)] 10

Target amplitude mean µθ 1

Target amplitude standard deviation (prior) σθ 1/6

Target amplitude standard deviation (update) ∆ 1/20

Noise variance σ2 1

Death probability α 0

Birth probability β 0

Number of neighbors G 2

This strategy allocates as much energy to the floor probability as possible, under

the condition that the myopic cost is within (100ε)% of the minimum myopic cost.

At low SNR4, we would expect that κ
(T )
D (t) will be large and decay to zero as SNR

improves or t gets large. We note that this strategy clearly does not optimize our

greedy cost function, since κ
(T )
D (T ) 6= 0 unless SNR is asymptotically high. However,

this heuristic solution can be computed by simulating O(T ) stages for estimating

KT,κ(λ) through Monte-Carlo simulations.

Fig. 3.4 figure shows the selection of κ
(T )
D (T ) according to Algorithms 3 (nested)

and 4 (heuristic) for simulation parameters given by Table 3.2. In these simulations,

it is assumed that the total energy budget available at each stage is equal, so that

λtotal(t) = λtotal(0), leading to higher total energy as t increases. Thus, we expect

that the floor percentage κ
(T )
D (t) should decrease as either t or SNR increase. The

policies in Figure 3.4 generally reflect this trend.

4SNR is defined as SNR(λtotal) = 10 log10

(
λtotal/Q

σ2

)
.
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It should be noted that in both Figure 3.4(b) and (d), the heuristic policy has

very smooth behavior as either t or SNR increase. In order to take advantage of this,

Figure3.4(e) plots the heuristic selections against observed SNR, which is defined as

λ
(obs)
total (T ) =

T∑

t=1

λtotal(t) = Tλtotal(0) (3.82)

SNR(obs)(T ) = 10 log10

(
λ
(obs)
total (T )/Q

σ2

)
(3.83)

It is seen that there is a high correlation between all selections as function of ob-

served SNR, which suggests that the heuristic policy could be well-approximated by

a function only of observed SNR, as shown by the solid black line in (e). This leads

to the definition of a functional approximation to the heuristic policy as

κ
(T )
D (t) = κ

(2)
D

(
2;SNR(obs)(t)

)
. (3.84)

Note that this functional approximation reduces the computational burden for

finding
{
κ
(T )
D (t)

}T

t=1
to just O(1) simulations (i.e., it is does not grow as a function

of T ). For large T , this computational savings may be tremendous. We provide a

succinct description of D-ARAP in Algorithm 5.

Algorithm 5. Dynamic Adaptive Resource Allocation Policy (D-ARAP), λD−ARAP

For each t = 1, 2, . . . , T :

Step 1: Select κ(T )(t) = κ
(T )
D (t;SNR), according to the nested optimization policy

(Algorithm 3) or the heuristic policy (Algorithm 4).

Step 2: Allocate λDARAP
i (t; κ) according to equation (3.78) and collect measure-

ments Y (t) according to equation (3.32).

Step 3: Update belief state B(t) from collected measurements.
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3.4.9 Approximate POMDP optimization for κ(t)

In this chapter, we also consider approximations to a POMDP solution through

rollout policies of various lengths (increasing length leads to higher computational

costs). Recall, that POMDPs are based on maximizing the Q-function, which de-

pends on the belief state B(t) and the possible actions a ∈ A, so that

QT−t(B(t), a) = r(B(t), a) + E[V ∗
T−t−1(B(t))|B(t), a] (3.85)

and the optimal cost is given by

V ∗
T (B(0)) = max

a

(
r(B(t), a) + E[V ∗

T−1(B(0))|B(0), a]
)
= max

a
QT−t(B(t), a)

(3.86)

In rollout policies, the Q-function is approximated as

QT−t(B(t), a) = r(B(t), a) + E[V
(base)
T−t−1(B(t+ 1))|B(t), a] (3.87)

where a base policy is defined a priori and the second term can be found through

simple Monte Carlo estimation, starting from the belief state at time t + 1 and

applying the base policy for the next T0 stages. The choice of base policy is a design

parameter, but given enough Monte Carlo simulations to estimate the mean term

E[V
(base)
T−t−1(B(t+ 1))|B(t), a], rollout policies are guaranteed to do at least as well as

the base policy.

In this chapter, we consider two types of rollout policies. First, we consider

optimization over κ(t) using D-ARAP as the base policy, κ(base;T )(t) = κ
(T )
D (t). Note

that this optimization procedure is done separately for each individual realization of

the target state. However, in aggregate, the solution is very similar to the nested

solution which optimizes a single parameter given a base policy (i.e., the nested

solution with 1 fewer stage). Thus we expect the performance of this rollout policy

to be quite similar to D-ARAP.
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Note that it might be desirable to use an approximate POMDP solution to find

{λi(t)}Qi=1. Generally, this is intractable since Q is very large. However, in some cases

involving symmetry, we might able to extend optimization of the allocation policy

to more than a single parameter. For example, consider the situation where a small

part of the scene may have significantly noisier measurements than other parts (e.g.,

being in the null of a radar beam). Then, a better policy could allocate differently

to this region by weighting the probabilities by a coefficient z(t):

p̃i(t) =





z(t)pi(t), i ∈ Rfaulty(t) ⊂ X ,

pi(t), i /∈ Rfaulty(t) ⊂ X .
(3.88)

where Rfaulty(t) is the region (possibly changing) where faulty measurements may

occur. In such a situation, an approximate POMDP solution can optimize over

w(t) and κ(t) in order to provide additional gains over D-ARAP or other alternative

policies.

3.5 Performance analysis

3.5.1 Simulation set-up

In this section, we compare the performance of D-ARAP to a variety of other

policies, including the oracle policies, the uniform policy, and a myopic policy that

sets κ
(T )
D (t) = 0 for all t = 1, 2, . . . , T . Simulation parameters are given by Table 3.2

unless stated otherwise.

3.5.2 Model Mismatch

In this section, a comparison done between D-ARAP (functional) to a myopic

policy that sets κ
(T )
D (t) = 0 for all t = 1, 2, . . . , T . In the simulation, we consider a

static case with very large T and very small prior probability of targets (p = 10−3).
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Moreover, we consider the case of model mismatch, where the model assumed by the

policy planning is given by

θi(t) = θi, θi ∼ N (µθ, σ
2
θ), (3.89)

Ii(t) = Ii. (3.90)

However, the realizations of the amplitudes is given by a smaller parameter

θi = θ0 < µθ (3.91)

for θ0 = (0.50, 0.55, 0.60, 0.65, 0.70, 0.75) and µθ = 1. For θ0 ≪ µθ, noisy mea-

surements from cells containing targets can be easily confused with the background

noise. In these situations, the myopic policy will be more adversely affected by small

Pr(Ii = 1|Y (t)) for targets in the ROI as compared to D-ARAP. In Figure 3.5, we

compare these policies to a uniform search. For low values of θ0, noisy measurements

cause missed targets that are never recovered by the myopic policy for θ0 < 0.75. On

the other hand, D-ARAP has approximately monotonically increasing gains for all

θ0 > 0.5, suggesting greater robustness to noise than the myopic policy. Moreover,

even when θ0 = 0.75, D-ARAP converges to the optimal gain (30 dB) in fewer stages

than the myopic policy.

3.5.3 Complex dynamic behavior: faulty measurements

In the next simulation, we provide a scenario where the sensor has random (un-

detected) faults every 15 stages, causing highly noisy measurements. Note that in

this case, the myopic policy will have catastrophic failure, in the sense that it will

lose existing targets and not be able to recover them. On the other hand, D-ARAP

(which has a minimum floor percentage greater than zero), will always save some

resources in order to recover missed targets.
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This simulation compares the performance of the myopic policy, D-ARAP, and

two approximate POMDP solutions using rollout of size T0 = 2 and T0 = 5. The

POMDP solutions use D-ARAP as the base policy, which should guarantee perfor-

mance at least as good as D-ARAP. The computational burden of each of these

policies is given in Table 3.5.3. Clearly, using an approximate POMDP solution

is several orders of magnitude more computational time than the nested, heuristic,

functional, or myopic solutions.

Figure 3.6 shows the performance of the myopic policy and D-ARAP for several

values of SNR per stage and T = 200. It is seen that the myopic policy shown in (a)

suffers from catastrophic failures for high SNR cases, in the sense that targets are lost

and not recovered. Indeed, as t and SNR increase, the performance of the myopic

policy trends downwards and eventually becomes worse than a uniform search. On

the other hand, the D-ARAP (functional) policy shown in (b) has the ability to

recover from misdetections, because it always allocates some resources to all cells.

Due to computational constraints, we only show comparisons to the approximate

POMDP solutions for SNR of 10 dB. In Figure 3.7, it is seen that the performance

of the rollout policies parallel the D-ARAP policy. This gives confidence in using an

offline policy in order to determine the best allocation policy in this scenario.

It is not completely surprising that the approximate POMDP solution does not

perform significantly better than the D-ARAP solution, since computational con-

straints make it difficult to optimize over κ
(T )
D (t) in an online fashion.

On the other hand, we consider an additional scenario where the user knows

when/where the sensor will fail. In this case, a POMDP solution can be used to

weight the predictive posterior probabilities by a factor w(t) in the region where
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Table 3.3: Computational cost comparison

Algorithm
Offline Simulation Online Simulation Simulated Parameters∗

Time (Big-O) Time (Big-O) Offline Online Total

Myopic, κ(t) = 0 O(1) O(Nsim) 1× 100 1× 102 1.01× 102

Nested, κ(t) O(T 2KNmc) O(Nsim) 4× 105 1× 102 4.00× 105

Heuristic, κ(t) O(TKNmc) O(Nsim) 2× 104 1× 102 2.01× 104

Functional, κ(t) O(KNmc) O(Nsim) 1× 103 1× 102 1.10× 103

T0-stage Rollout, κ(t) O(1)∗∗ O(TT0KNmcNsim) 1× 100 1× 107 1.00× 107

T0-stage Rollout, κ(t) and z(t) O(1)∗∗ O(TT0KZNmcNsim) 1× 100 1× 108 1.00× 108

∗ For parameters, Nsim = 100, T = 20, K = 10 (number of possibilities for κ(t)), Nmc = 100, T0 = 5, Z = 10
(number of possibilities for z(t)).
∗∗ Using a myopic base policy. Otherwise, include the offline simulation time for nested/heuristic/functional
policies.
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faulty measurements occur, so that

p̃i(t) =





z(t)pi(t), i ∈ Rfaulty(t) ⊂ X ,

pi(t), i /∈ Rfaulty(t) ⊂ X .
(3.92)

where Rfaulty(t) is the region (possibly changing) where faulty measurements may

occur. In contrast, we assume that the offline policies (myopic/D-ARAP) can only

ignore these measurements (without additional planning). In this case, the offline

policies will lose significant performance at times where their resources could be used

more effectively.

Figure 3.8 shows the gains in our optimization function over a uniform search

for the myopic policy, D-ARAP, and a POMDP solution that selects over both the

probability weight w(t) and the floor percentage κ(t). It is seen that the POMDP

solution has better performance during these faulty measurement periods (i.e., every

15 stages), as compared to D-ARAP and the myopic policy. Note that in the standard

situation (i.e., without faulty measurements), D-ARAP performs very closely with

the POMDP solution. On the other hand, the myopic policy continues to have a

downward trend, even though no catastrophic events occur as in Figures 3.6 and 3.7.

3.5.4 Comparison to optimal/uniform policies

This section now considers the case where targets are completely observable with

parameters given by Table 3.2. We compare performance in terms of gains in the

optimization function (i.e., cost), gains in MSE and probability of detection for a

small fixed false alarm rate, as compared to a uniform search. Figure 3.9 shows

gains in the optimization function given by equation (3.48) for various values of SNR

and varying policy lengths, T . It is seen that generally the nested policy has the

highest gains in the optimization function among non-oracle policies. The differences
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are most apparent for higher SNR scenarios (c) and (d). Generally, the nested policy

performs very similarly with the heuristic and functional policies, although those

policies have much smaller computational burden. The myopic policy, on the other

hand, has significantly worse performance as t or SNR increase.

Figure 3.10 shows the MSE gains for estimating {θi(t)}i∈Ψ(t) for targets within the

ROI with respect to a uniform search. Note that generally the nested policy has the

highest gains in MSE among non-oracle policies. The differences are most apparent

for higher SNR scenarios (c) and (d), with performance close to the optimal level

as t gets large. Once again, there is relatively little performance differences between

the nested and heuristic/functional policies.

Finally, Figure 3.11 shows the probability of detection for a fixed probability of

false alarm (Pfa = 10−4) as a function of t. Note that the probability of detection

for D-ARAP (nested, heuristic, and functional policies) consistently approaches 1 as

t and λtotal(t) approach infinity. Moreover, they approach unity significantly faster

than the uniform and myopic policies. Finally, note that for the larger values of

SNR, D-ARAP approaches Pd = 1 within very few stages.

3.6 Discussion and future work

In this chapter, we developed a general framework for extending previous adap-

tive search policies to more than 2 stages that can account for dynamic targets.

Consequently, we provided a related cost function that is adaptable to many target

and state models and derived oracle allocations that provided bounds on achievable

performance. We developed a non-myopic policy based on a heuristic approxima-

tion to a dynamic programming optimization problem, which we named D-ARAP.

This heuristic reduces the computational burden related to searching for a policy to
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requiring only O(T ) or O(1) simulations. Finally, we demonstrated excellent empiri-

cal evidence for D-ARAP, including asymptotic consistency, significant performance

gains over a uniform policy, and increased robustness to noise as compared to a

non-myopic policy.

3.7 Appendix: Discussion of the choice of α and β

It should be noted that the performance of the previous algorithms, ARAP and

M-ARAP, depend strongly on the sparsity of the state, which is given by

p̃(t) =
Ñ(t)

Q
. (3.93)

In order to make valid comparisons across stages, it is assumed that α and β are

chosen in order to keep

E[p̃(t)] = p, (3.94)

where p is the prior sparsity level. Note that under the event that N(t+ 1) = N(t),

we know

Z , E[Ñ(t+ 1) = n|Ñ(t) = N,N(t+ 1) = N(t)]

=
N∑

j=0

(N − j)(1− α)N−jαj (3.95)

Assume that α is small so that αj ≈ 0 for j > 1. Then we have

Z ≈ N(1 − α)N + (N − 1)(1− α)N−1α. (3.96)

Including the probability that a target is added to the scene, we have

E[Ñ(t+ 1) = n|Ñ(t) = N ] = (1− β)Z + β(Z + 1),

= β + Z. (3.97)
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Thus, the condition that the number of targets in the scene remain the same in

expectation is given by

N = β + E[Ñ(t + 1) = n|Ñ(t) = N ] (3.98)

for N = E[Ñ(1)] = Qp. Thus, we have a simple equation for choosing β as

β = Qp− [Qp(1− α)Qp + (Qp− 1)(1− α)Qp−1α]

= Qp− (Qp− α)(1− α)Qp−1 (3.99)

Since α = [0, 1) and Qp > 1, we know that equation (3.99) is monotonic in α. Thus,

to ensure that β ∈ [0, 1], we require

1≪ β = Qp− (Qp− α)(1− α)Qp−1. (3.100)

For example, with Q = 104 and p = 10−3, we have α≪ 0.01.

3.8 Appendix: Efficient posterior estimation for given dy-
namic state model

In order to use the algorithms provided in this thesis to adaptively estimate the

state ξ(t) given the measurements, we need to be able to calculate the posterior

probabilities for the indicator variables, {Ii(t)}Qi=1 given the measurements up until

time t. Define the measurement vectors

y(t) = {y1(t), y2(t), . . . , yQ(t)} (3.101)

and

Y (t) = {y(1),y(2), . . . ,y(t)} (3.102)

Let

Pr(Ii(t) = 1|Y (t− 1)) i = 1, 2, . . . , Q, t = 1, 2, . . . , T (3.103)
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be the posterior probabilities that need to be calculated. For t = 1, we have

Pr(Ii(1) = 1) = p, (3.104)

under the assumption that at most one target exists in a single location. For t > 1,

we have

Pr(Ii(t) = 1|Y (t− 1)) =

∫
Pr(Ii(t) = 1,S(t)|Y (t− 1))dS(t)

=

∫
Pr(Ii(t) = 1|S(t))f(S(t)|Y (t− 1))dS(t)

=

N(t)∑

n=1

Pr(s(n)(t) = i|Y (t− 1)),

(3.105)

where the last equation can be derived noting that

Pr(Ii(t) = 1|S(t)) =





1, ∃n : s(n)(t) = i

0, else

(3.106)

Thus, in order to compute equation (3.105), we need to be able to estimate the state

ξ(t) given Y (t− 1).

3.8.1 Recursive equations for updating ξ(t)

In general, we can compute the posteriors using the equations:

f(ξ(t)|Y (t− 1)) =

∫
f(ξ(t)|ξ(t− 1))f(ξ(t− 1)|Y (t− 1))dξ(t− 1) (3.107)

f(ξ(t)|Y (t)) =
f(y(t)|ξ(t))f(ξ(t)|Y (t− 1))∫
f(y(t)|ξ̃(t))f(ξ̃(t)|Y (t− 1))dξ̃(t)

(3.108)

Note that each target has an associated real-valued amplitude x(n)(t) and a location

on a large discrete grid s(n)(t) ∈ {1, 2, . . . , Q} for large Q. Thus, the joint densities

f(ξ(t)|Y (t− 1)) and f(ξ(t)|Y (t− 1)) are in general very high-dimensional functions

that may be intractable to estimate exactly. Under certain assumptions, however, it

may be possible to derive exact equations for these updates.
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3.8.2 Static case

In the static case when α = β = 0 and π0 = 1, we have the simple situation

where

S(t) = S(t− 1). (3.109)

Since targets are fixed in position and cannot occupy the same cell by assumption

in equation (3.30), we can easily show that the joint density factors into:

f(ξ(t)|Y (t′)) = f(Ψ(t),Θ(t)|Y (t′)) = f(Θ(t)|Y (t′),Ψ(t))f(Ψ(t)|Y (t′)) (3.110)

for t′ = t, t − 1, Ψ(t) = {Ii(t)}Qi=1, and Θ(t) = {θi(t)}Qi=1. Moreover, Ψ(t) = Ψ and

since the targets are independent across cells, we have:

f(Θ(t)|Y (t′),Ψ(t)) =

Q∏

i=1

f (θi(t)|yi(t
′), Ii) (3.111)

f(Ψ(t)|Y (t′)) =

Q∏

i=1

f (Ii|yi(t
′)) (3.112)

where yi(t) = {yi(t0)}tt0=1. Note that θi(t) is only defined if Ii = 1. Conditioned

on this event, we furthermore note that θi(t) and yi(t)|θi(t) are normally distributed

given the allocations λi(t). Thus, the posteriors f (θi(t)|yi(t
′), Ii) for t′ = t, t − 1

can be updated exactly through the Kalman filter equations similar to those given

in Chapter II:

δi(t) = yi(t)−
√
λi(t)θ̂i(t|t− 1) (3.113)

si(t) = λi(t)σ̂
2
i (t|t− 1) + σ2 (3.114)

Γi(t) =
σ̂2
i (t|t− 1)

√
λi(t)

si(t)
(3.115)

θ̂i(t|t) = θ̂i(t|t− 1) + Γi(t)δl(t), (3.116)

σ̂2
i (t|t) = [1− Γi(t)hi(t)]σ̂

2
i (t|t− 1), (3.117)
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where δi(t) is the residual measurement error, si(t) is the update measurement error,

Γi(t) is the Kalman gain, and (θ̂i(t|t), σ̂2
i (t|t)) are the updated state estimates. The

predict equations are given by:

θ̂i(t|t− 1) = θ̂i(t− 1|t− 1), (3.118)

σ̂2
i (t|t− 1) = σ̂2

i (t− 1|t− 1) + ∆2
θ. (3.119)

Moreover, the posteriors on the indicator functions can be easily computed recur-

sively as

f(Ii = 1|yi(t)) =
f(yi(t)|Ii = 1,yi(t− 1))f(Ii = 1|yi(t− 1))∑

j=0,1

f(yi(t)|Ii = j,yi(t− 1))f(Ii = j|yi(t− 1))
, (3.120)

where we note that when Ii = 0

yi(t)|Ii = 0,yi(t− 1) ∼ N (0, σ2) (3.121)

and when Ii = 1

f(yi(t)|Ii = 1,yi(t− 1))

=

∫
f(yi(t)|θi(t), Ii = 1)f(θi(t)|Ii = 1,yi(t− 1))dθi(t)

=

∫
φ(yi(t);

√
λi(t)θi(t), σ

2)φ(θi(t); θ̂i(t|t− 1), σ̂2
i (t|t− 1))dθi(t)

= φ(yi(t);
√
λi(t)θ̂i(t|t− 1), λi(t)σ̂

2
i (t|t− 1) + σ2)

(3.122)

where φ(x;µ, σ2) is the Gaussian pdf with mean µ and variance σ2 evaluated at x.

From this equation we see that

yi(t)|Ii = 1,yi(t− 1) ∼ N (
√
λi(t)θ̂i(t|t− 1), λi(t)σ̂

2
i (t|t− 1) + σ2) (3.123)

In the static case, we see that updating the posteriors for Ii for all t = 1, 2, . . . , T

involves (a) updating the conditional mean and variances for θi(t) given the mea-

surements, and (b) updating the posterior probability for Ii = 1. This gives insight

into an approximate method that we will use in the general case when the targets

are allowed to move, enter, or leave the scene.
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3.8.3 Approximations in the general case

Similar to the static case, we assume that there are no interacting targets so that

we can factor our posterior density into a form that makes it tractable to estimate

directly. In order to do this, we have to make the additional assumption that there

is at most one target in the vicinity of a location, so that

|{n : s(n)(t) ∈ H(i)}| ≤ 1 (3.124)

for all i = 1, 2, . . . , Q. This is clearly more restrictive than the assumption in equation

(3.32). Under this assumption, we have for t′ = t, t− 1

f(ξ(t)|Y (t′)) = f(Ψ(t),Θ(t)|Y (t′))

= f(Θ(t)|Ψ(t),Y (t′))f(Ψ(t)|Y (t′))

=

Q∏

i=1

f(θi(t)|Ψ(t),Y (t′))f(Ii(t)|Y (t′))

(3.125)

Beginning with the target amplitudes, we note that

f(θi(t)|Ψ(t),Y (t− 1))

= f(θi(t)|Ii(t) = 1,Y (t− 1))

=

∫
f(θi(t)|Ii(t) = 1,ΨH(i)(t− 1),Y (t− 1))

· f(ΨH(i)(t− 1)|Ii(t) = 1,Y (t− 1))dΨH(i)(t−1),

(3.126)

where ΨH(i)(t) = {Ij(t)}j∈H(i). Define Ei,j(t) to be the event that assigns ΨH(i)(t) as

Ei,j(t) ,





Ik(t) = 1, j = k,

Ik(t) = 0, j 6= k,

∀k ∈ H(i) (3.127)

The event Ei,0(t) refers to the case where a target is added to the scene at location i

at time t. Then, under the assumption that at most one target exists in the vicinity
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of a cell, we have

f(θi(t)|Ψ(t),Y (t− 1))

=
∑

j∈H(i)∪{0}

f(θi(t)|Ii(t) = 1, Ei,j(t− 1),Y (t− 1))

· f(Ei,j(t− 1)|Ii(t) = 1,Y (t− 1))

=
∑

j∈H(i)∪{0}

∫
f(θi(t)|θj(t− 1))

· f(Ei,j(t− 1)|Ii(t) = 1,Y (t− 1))

· f(θj(t− 1)|Ij(t− 1) = 1,Y (t− 1))dθj(t− 1),

(3.128)

where it is understood that in the case where a new target is added to the scene

f(θ0(t− 1)|I0(t− 1) = 1,Y (t− 1)) = f(θ0(t− 1)) ∼ N (µθ, σ
2
θ) (3.129)

and

θi(t) = θ0(t− 1) (3.130)

In the static case, both f(θi(t)|θj(t− 1)) and f(θj(t− 1)|Ij(t− 1) = 1,Y (t− 1)) are

Gaussian which makes it possible to analytically integrate equation (3.128). Indeed,

at time t = 1, it can be easily seen that θj(1) ∼ N (µθ, σ
2
θ). However, for t > 1,

equation (3.128) shows that we get a Gaussian mixture model with mixing coefficients

given by

f(Ei,j(t− 1)|Ii(t) = 1,Y (t− 1)) (3.131)

In order to make the estimation of the posterior distributions very simple, we make

the assumption that

f(Ei,j(t− 1)|Ii(t) = 1,Y (t− 1)) = 1{j=j∗} (3.132)

for a single j∗ ∈ H(i) ∪ {0}. In other words, conditioned on the event that a target

exists at cell i, it is known with probability 1 that the target transitioned from either
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a single neighboring cell or entered the scene at time t. This assumption is restrictive

except at high SNR. However, it allows us to simplify equation (3.128) as

f(θi(t)|Ψ(t),Y (t− 1)) =

∫
f(θi(t)|θj∗(t− 1))

· f(θj∗(t− 1)|Ij∗(t− 1) = 1,Y (t− 1))dθj∗(t− 1),

(3.133)

which can easily seen to be Gaussian distributed as long as f(θj(t)|Ij(t) = 1,Y (t))

is Gaussian. Indeed, we see the recursion

f(θi(t)|Ii(t) = 1,Y (t)) ∝ f(yi(t)|Ii(t), θi(t))f(θi(t)|Ii(t) = 1,Y (t− 1)) (3.134)

Using equations (3.133) and (3.134), it is simple to show that a simply modified

Kalman filter will give the exact recursion required to update the posterior densities.

In fact, it is the same recursion given in the static case, except that we have

θ̂i(t|t− 1) = θ̂j∗i (t−1)(t− 1|t− 1), (3.135)

σ̂2
i (t|t− 1) = σ̂2

j∗i (t−1)(t− 1|t− 1) + ∆2
θ (3.136)

j∗i (t− 1) = arg max
j∈H(i)∪{0}

f(Ei,j(t− 1)|Ii(t) = 1,Y (t− 1)). (3.137)

Looking at the update equations for the target indicators, we get

f(Ii(t) = 1|Y (t− 1)) =
∑

j∈H(i)∪{0}

f(Ii(t) = 1|Ei,j(t− 1))f(Ei,j(t− 1)|Y (t− 1))

(3.138)

and

f(Ii(t) = 1|Y (t)) ∝ f(yi(t)|Ii(t) = 1,Y (t− 1))f(Ii(t) = 1|Y (t− 1)), (3.139)

where

f(yi(t)|Ii(t) = 1,Y (t− 1))

=

∫
f(yi(t)|Ii(t) = 1, θi(t)Y (t− 1))

· f(θi(t)|Ii(t) = 1,Y (t− 1))dθi(t)

(3.140)
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Similar to the derivation in the static case, it can easily be seen that

yi(t)|Ii(t) = 1,Y (t− 1) ∼ N (
√
λi(t)µi(t|t− 1), λi(t)σ

2
i (t|t− 1) + σ2) (3.141)

and

yi(t)|Ii(t) = 0,Y (t− 1) ∼ N (0, σ2) (3.142)

3.8.4 Derivation of cost of optimal allocation

From Section 3.4 and equation 3.62, we have the semi-omniscient allocations

λsemi
i (t) =

λtotal(t)
√

Pr(Ii(t) = 1|Ψ(t− 1))
Q∑

j=1

√
Pr(Ij(t) = 1|Ψ(t− 1))

(3.143)

Define wsemi
i (t)

√
Pr(Ii(t) = 1|Ψ(t− 1)). Then the associated cost for ci(t) = 0

Jt(λ
semi) = E

[
Q∑

i=1

Ii(t)

λsemi
i (t)

∣∣∣Ψ(t− 1)

]

=
1

λtotal(t)
E




Q∑

i=1

Ii(t)
Q∑

j=1

wsemi
j (t)

wsemi
i (t)

∣∣∣∣∣Ψ(t− 1)




=
1

λtotal(t)

(
Q∑

i=1

wsemi
i (t)

)
E

[
Q∑

i=1

Ii(t)

wsemi
i (t)

∣∣∣Ψ(t− 1)

]

=
1

λtotal(t)

(
Q∑

i=1

wsemi
i (t)

)(
Q∑

i=1

Pr(Ii(t) = 1|Ψ(t− 1))

wsemi
i (t)

)

=
1

λtotal(t)

(
Q∑

i=1

wsemi
i (t)

)2

.

(3.144)

Given the assumptions in this section, we know that the probabilities, Pr(Ii(t) =

1|Ψ(t− 1)) can take one of three values. In the case that Ij(t− 1) = 1, then

Pr(Ii(t) = 1|Ψ(t− 1), Ij(t− 1) = 1) =





(1− α)π0, i = j

(1−α)(1−π0)
|G(j)|

, i ∈ G(j)
(3.145)
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Moreover, since a target is added to the scene with probability β and location uni-

formly at random, we have

Pr(Ii(t) = 1|Ψ(t− 1)) = β/Q, j /∈ Ψ(t− 1)∀j ∈ H(i) (3.146)

where the condition j /∈ Ψ(t − 1)∀j ∈ H(i) is used to enforce the assumption that

there are no interacting targets. Define

G(Ψ(t)) = {j : j ∈ G(i), i ∈ Ψ(t− 1)} , (3.147)

H(Ψ(t)) = {j : j ∈ H(i), i ∈ Ψ(t− 1)} . (3.148)

Then, given the assumption that there are |Ψ(t)| = |Ψ(t− 1)| targets and assuming

that |G(i)| = G for all i we have

Q∑

i=1

√
Pr(Ii(t) = 1|Ψ(t− 1))

=
∑

i∈X
i/∈H(Ψ(t−1))

√
β

Q
+

∑

i∈Ψ(t−1)

√
(1− α)π0 +

∑

i∈G(Ψ(t−1))

√
(1− α)(1− π0)

G

≈ Q

√
β

Q
+ |Ψ(t)|

√
(1− α)

(
√
π0 +G

√
1− π0
G

)

=
√
Qβ + |Ψ(t)|

√
(1− α)

(√
π0 +

√
G(1− π0)

)

(3.149)

This yields a cost

Jt(λ
semi) =

[√
Qβ + |Ψ(t)|

√
(1− α)

(√
π0 +

√
G(1− π0)

)]2

λtotal(t)
(3.150)

3.8.5 Discussion of generalizations of state model and posterior estima-
tion methods

As mentioned earlier, it is a difficult, if not intractable, problem to exactly esti-

mate the posterior distribution of ξ(t) given Y (t−1) that is required for our adaptive

algorithms. We have provided a simple algorithm that approximates the posterior
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distribution under some restrictive assumptions. A simple way to alleviate these

restrictions is to use a particle filter implementation for ξ(t) or other approximate

method (e.g., the extended and unscented Kalman filters).

Moreover, we have provided a particular state model that builds on our previous

work with the inclusion of transition, birth, and death probabilities. However, there

are many other models for dynamic state models, including linear and nonlinear

motion models, targets that may occupy multiple adjacent cells, and various noise

models. In any of these cases, one would have to use a different posterior estimation

algorithm to provide estimates of Pr(Ii(t) = 1|Y (t− 1)).

Future work plans to compare other posterior estimation algorithms such as the

JMDP particle filter by Kreucher et al. [59] to the one presented in this thesis, as

well as generalizations to more interesting dynamic state models.

3.8.6 Unobservable targets

One particular generalization of the measurement model that is used in this work

is the inclusion of indicator variables for observable/unobservable targets. In many

applications, certain locations may be obscured for short durations, such as locations

in the null of a radar beam. Define

Oi(t) =





1, Location i is observable

0, Otherwise

for i ∈ {1, 2, . . . , Q}. (3.151)

to be an indicator variable for the observability of the i-th location. Then the mea-

surement model becomes

yi(t) =
√
λi(t)Ii(t)Oi(t)θi(t) + εi(t), (3.152)
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It is assumed that O = {Oi(t)}i,t is known to the user a priori. Thus, we are required

to estimate the densities:

f(ξ(t)|Y (t′),O) (3.153)

for t′ = t, t− 1. We make the simplifying assumption that if Ii(t− 1) = 1, then

Oi(t) = 1⇔ Oj(t) = 1, ∀j ∈ H(i) (3.154)

It can easily be seen that when Oi(t) = 1, we have the identical update equations

to the fully observable case. However, when Oi(t) = 0, the predict equations remain

the same as before, but the update equations are changed in the following manner:

f(Ii(t) = 1|Y (t), Oi(t) = 0) = f(Ii(t) = 1|Y (t− 1)) (3.155)

and the target amplitudes when Oi(t) = 0:

θ̂i(t|t) = θ̂i(t|t− 1) (3.156)

σ̂2
i (t|t) = σ̂2

i (t|t− 1) (3.157)
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(d) Heuristic policy (vs. SNR)
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Figure 3.4: This figure shows the selection of κ
(T )
D (T ) according to Algorithms 3

(nested) and 4 (heuristic) for policies of length T = 20. In (a) and
(b), the selections are plotted against stage for the nested and heuristic
strategies, respectively. In (c) and (d), the selections are plotted against
SNR per stage for the nested and heuristic strategies, respectively. In
(e), a functional approximation to the heuristic strategy is motivated by
plotting the selections in (d) against observed SNR, which is defined in
equation (3.83). The functional approximation is then given by the black
line.
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(d) θ0 = 0.65
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(e) θ0 = 0.70
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(f) θ0 = 0.75

Figure 3.5: This figure shows a comparison of the proposed policy (D-ARAP, blue)
with the myopic policy (green) as a function of gains in cost over a
uniform search in a worst-case analysis (static, π0 = 1), where the target
returns θi(t) are set to various values, θ0 < µθ = 1. For low values of
θ0, noisy measurements cause missed targets that are never recovered
by the myopic policy for θ0 < 0.75. On the other hand, D-ARAP has
approximately monotonically increasing gains for all θ0 > 0.5, suggesting
greater robustness to noise than the myopic policy. Moreover, even when
θ0 = 0.75, D-ARAP converges to the optimal gain in fewer stages than
the myopic policy.
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(a) Myopic Policy
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(b) D-ARAP Policy

Figure 3.6: This figure shows the performance gain (dB) in the expected value of
the optimization function in equation (3.48) in the scenario with faulty
measurements once every 15 stages, which causes the drops in perfor-
mance at these stages. With the myopic policy shown in (a), this causes
catastrophic failure for high SNR, in the sense that targets are lost and
not recovered. Indeed, as t and SNR increase, the performance of the
myopic policy trends downwards and eventually becomes worse than a
uniform search. On the other hand, the D-ARAP (functional) policy
shown in (b) has the ability to recover from misdetections, because it
always allocates some resources to all cells.
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D−ARAP
Rollout (T

0
=2)

Rollout (T
0
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Figure 3.7: In this figure, the performance of two POMDP approximate solutions (a
2-stage rollout policy and a 5 stage-rollout policy) are compared against
the myopic policy and D-ARAP for SNR = 10 dB in the case of faulty
measurements once out of every 15 stages. It is seen that the POMDP
solutions parallels the D-ARAP solution, which suggests that D-ARAP
is close to optimal in this scenario, although at a fraction of the compu-
tational cost of the POMDP solutions.
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Figure 3.8: In this figure, the performance of a POMDP approximate solutions (2-
stage rollout) is compared against the myopic policy and D-ARAP policy
for SNR = 10 dB. In this scenario, the user has the ability to know when
faulty measurements will occur and allocate resources differently. This
is reflected in the fact that the POMDP solution has better performance
during these faulty measurement periods (i.e., every 15 stages), as com-
pared to D-ARAP and the myopic policy. Note that in the standard
situation (i.e., without faulty measurements), D-ARAP performs very
closely with the POMDP solution. On the other hand, the myopic pol-
icy continues to have a downward trend, even though no catastrophic
events occur as in Figures 3.6 and 3.7.



127

0 5 10 15 20
0

1

2

3

4

5

6

Policy length, T

G
ai

n 
in

 o
pt

im
iz

at
io

n 
fu

nc
tio

n
ov

er
 u

ni
fo

rm
 s

ea
rc

h,
 d

B

(a) SNR = -5 dB
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(b) SNR = 0 dB
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(c) SNR = 5 dB
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Heuristic
Functional
Nested
Semi−omniscient

(d) SNR = 10 dB

Figure 3.9: These plots compare the expected values of the cost (optimization func-
tion) given by equation (3.48) as function of the length of the policy,
T = 1, 2, . . . , 20. Gains over a uniform search (on a dB scale) are plotted
for 5 alternative policies: a myopic policy (blue), the heuristic policy
(green), the functional approximation to the heuristic policy (red), the
nested policy (black), and the semi-omniscient oracle policy (magenta).
Note that generally the nested policy has the highest gains in the opti-
mization function among non-oracle policies. The differences are most
apparent for higher SNR scenarios (c) and (d). Generally, the nested
policy performs very similarly with the heuristic and functional policies,
although those policies have much smaller computational burden. The
myopic policy, on the other hand, has significantly worse performance as
t or SNR increase.
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(a) SNR = -5 dB
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(b) SNR = 0 dB
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(c) SNR = 5 dB
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(d) SNR = 10 dB

Figure 3.10: These plots compare the mean squared error of θi(t) within the region of
interest (i.e., Ii(t) = 1) as function of the stage number, t = 1, 2, . . . , 20.
Gains over a uniform search (on a dB scale) are plotted for 5 alterna-
tive policies: a myopic policy (blue), the heuristic policy (green), the
functional approximation to the heuristic policy (red), the nested pol-
icy (black), and the semi-omniscient oracle policy (magenta). Note
that generally the nested policy has the highest gains in MSE among
non-oracle policies. The differences are most apparent for higher SNR
scenarios (c) and (d), with performance close to the optimal level as t
gets large.
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0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stage, t (of T=20)

P
D
 w

ith
 P

fa
=

10
−

4

(c) SNR = 5 dB
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(d) SNR = 10 dB

Figure 3.11: These plots compare the probability of detection for a fixed probability
of false alarm (10−4) as function of the stage number, t = 1, 2, . . . , 20.
The four subplots show different values of SNR per stage. Within each
subplot, the blue curve represents the myopic policy, the green curve
represents the heuristic policy, the red curve represents the functional
policy, the black curve represents the nested policy, the magenta curve
represents the semi-omniscient policy, and the cyan curve represents
the uniform (or exhaustive) search. Note that generally the nested pol-
icy has the highest probability of detection among non-oracle policies,
though it is barely distinguishable from the heuristic and functional
policies. The myopic policy has lower probability of detections, while
the uniform policy performs the worst of all alternatives.



CHAPTER IV

Sensor Management and Provisioning for Multiple

Target Radar Tracking Systems

4.1 Introduction

In this chapter, we develop fundamental performance limits for system provision-

ing, i.e. the problem of determining the number of resources required to accomplish a

complicated system level task such as tracking or discriminating between N targets.

This is a central problem where the number of targets can easily exceed the available

resources. Finding these performance limits is important in many environments,

such as benchmarking, feasibility analysis, and performance tradeoff studies. Being

able to determine the capabilities of tracking/discrimination is important in sensor

management and development of new technologies.

The provided framework is generalizable to many applications, but we specialize

to two specific contexts:

1. Sensor provisioning with a multistatic passive radar system. In particular, we

consider the problem of opportunistic target tracking using the resources of

wireless CDMA cellphone network. The available resource is the time required

to collect measurements for all targets within the region of interest (ROI). In

this analysis, it should be noted that the parameters of the CDMA system
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are selected to be representative of a real system, but they do not necessarily

represent any cellular CDMA protocol or operating conditions.

2. Computational provisioning with images formed from a synthetic aperture

radar (SAR) system, as described in Chapter V The available resource is the

computational time required to form the SAR images within the ROI.

This chapter describes a general approach to system provisioning for multiple ‘sensor’

systems that uses the guaranteed uncertainty management (GUM) philosophy. By

system provisioning we mean using physical models for target detection and estima-

tion to specify fundamental limits on performance (system stability, track entropy,

occupancy rates) for a given system description, such as the number of sensors,

location of sensors, and/or the desired standard errors.

The GUM approach is more conservative than standard stochastic scheduling

approaches to radar provisioning. In particular, it carries strict and absolute guar-

antees on the probability of loss of track of the system. This is in contrast to average

performance guarantees that have been previously adopted [52] by Hero for simi-

lar applications. By using this strict performance-constrained approach, the sensor

management problem becomes non-stochastic and leads to strong results that could

not easily be obtained in the less stringent stochastic scheduling context.

The rest of this chapter is organized as follows. In Sections 4.2 and 4.3, we present

a service load model for both provisioning examples, where a service load model de-

scribes the amount of resources required to reduce uncertainty of a single tracked

target to a prescribed level. In general, we look at the worst-case scenario when

there is uncertainty in the target state. For example, moving targets in SAR images

are likely to cause displacement and dispersion effects when there is uncertainty in



132

their state. Thus, we include the worst-case errors when deriving the service load and

system load models. However, with multistatic radars, we provide an additional eval-

uation tool for determining performance bounds by deriving the Fisher Information

Matrix (FIM) for Doppler/range measurements in a given system configuration.

Section 4.4 proposes a simple resource allocation policy for tracking multiple

targets based on the ‘largest weighted queue length’ policy by Wasserman et al. [89].

By utilizing load balance equations we develop stability conditions for guaranteeing

bounded target uncertainties. This leads to deriving the maximum number of targets

that can be tracked stably, the maximum spatial uncertainty of those targets, and the

occupancy rate (i.e., system efficiency) for track-only provisioning. In Section 4.5,

this theory is extended to a multi-purpose system that engages in activities other

than tracking, such as discrimination and search. Finally, Section 4.6 presents a

case-study analysis for SAR computational provisioning.

4.2 Target and system model: network provisioning for mulit-
static tracking

4.2.1 Target model

Assume that at time 0 a target is detected in a radar cell

C0 = {z = (x, y) : −σx ≤ x− x̄ ≤ σx,−σy ≤ y − ȳ ≤ σy} (4.1)

where z̄ = [x̄, ȳ] is the center position of the cell. In this chapter, we consider targets

in a 2-dimensional space, though the theory is easily extended to 3 dimensions. From

a radar signal processing algorithm, an estimate of the target state and trajectory

ξ =
{
ẑ, ˆ̇z
}

(4.2)

is extracted, along with a set of associated standard errors. This could be the output

of a Kalman filter, sigma tracker, particle filter or other common tracking algorithm.
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Table 4.1: Parameterizations for target estimates from a radar signal processing al-
gorithm in the context of multistatic network provisioning

Context Parameter Description Standard Errors

Multistatic

x̂, ŷ Position σx, σy

φ̂ Direction σφ

v̂ Speed σv

The particular parameterization of equation (4.2) depends on the sensor that is being

used. Table 4.1 provides the parameterization in the multistatic network provisioning

example.

From these estimates and standard errors a confidence region for the positions

(x̂, ŷ) having coverage probability of at least 1− εT can be specified as

[x̂− σx, x̂+ σx]× [ŷ − σy, ŷ + σy] (4.3)

With probability no less than 1 − εT , after an elapsed time of τ seconds from the

last revisit of the target, the above confidence region will map to the union of an

uncountable number of segments. For the multistatic case, the union of confidence

regions is complicated. Instead, we provide the circumscribing spatial uncertainty

region:

CMulti
τ =




(r, φ) :

−(d+ τσv) ≤ r − (r̂ + v̂τ +∆) ≤ (d+ τσv),

−σφ ≤ φ− φ̂ ≤ σφ




, (4.4)

where d = σr
√
2 and ∆ = d/ sin(σφ).

Figure 4.1 provides an illustration of this union of uncertainty regions, as well as

the circumscribing region. The areas of this uncertainty region can be described by

|CMulti
τ | = 4σφ[v̂σvτ

2 + (v̂d+ σv∆)τ +∆d]. (4.5)

Note that the uncertainty region grows superlinearly in τ , which reflects the under-

lying stability problem. When a target is not tracked sufficiently often, it becomes
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increasingly more difficult to find/track it as time progresses.

Cone shaped Cτ

2σr
2σr

Radar cell, C0σφ

τ(v + σv)
τ(v − σv)

v

(a) Multistatic (single cell)

v

τ(v + σv) + ∆ + d
τ(v − σv) + ∆− d

Larger circumscribing Cτ

d ∆

Radar cell, C0

(b) Multistatic (all cells)

Figure 4.1: This figure shows the characterizations of the uncertainty region Cτ in the
multistatic network provisioning example. The blue rectangular regions
show a small radar cell C0 that contains a target with high uncertainty
immediately after revisit. The target’s trajectory is given by (v, φ) with
standard errors (σv, σφ). After τ seconds, a target with initial state
(x, y) ∈ C0 will lie in the conical segment Cτ with high probability. When
the target can lie anywhere in C0, then we can only be confident that
the target will lie in the union of all induced regions. In this situation,
the union of the uncertainty regions is a difficult quantity to compute.
Instead, we consider the larger circumscribing area as shown in (b).

4.2.2 Service load model

In general, we assume that the amount of time required to reduce the uncertainty

of a target to a prescribed value can be described by the service load:

q(τ) = γ(τ)TGUM , (4.6)

where γ(τ) describes the growth of the uncertainty region and TGUM is the amount

of time required to scan a single cell in that region to guarantee some performance

criterion.

It is assumed that a target’s state can be resolved as long as it remains within

the neighborhood of the radar cell. The size of the radar cell is a system-dependent

quantity that may differ as a function of radar operating mode (SAR vs. multistatic)
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and the size of the radar beamwidth, among other parameters. We define TMAX as

an upper bound on the target revisit time that guarantees that the target can be

resolved within the cell.

In general, we are interested in scenarios with N > 1 targets and R ≥ 1 sensors.

A sensor could be a physical quantity (such as the radar platform), a processing

unit for creating images of the scene (SAR context), or a centralized processor for

evaluating measurements from all sensors (multistatic context.) For R sensors and

N targets, let qr,n(τ) denote the load (in seconds) on the r-th sensor to revisit and

update the n-th target after an elapsed time of τ :

qr,n(τ) = γr,n(τ ; δd)TGUM(r, n), (4.7)

where γr,n and TGUM(r, n) are analogously defined as target and sensor dependent

quantities that guarantee the performance criteria.

Note that the service load function γ(τ) depends strongly on the application. For

the multistatic passive radar system, we assume that we have L = 1 static transmit-

ters (e.g., a cell tower) and M static receivers with known positions (e.g., cellular

phones with GPS). The goal is to use bistatic range and Doppler measurements to

estimate the target state. In particular, let the target state be given by {x, y, v, φ}

so that

r(0) = [x y]T (4.8)

r(τ) = r(0) + [(v cosφ)τ (v sin φ)τ ]T (4.9)

Let d(m)(τ) be the bistatic range for the transmitter andm-th receiver, and let d(m)(τ)

be the bistatic Doppler shift for the the transmitter and m-th receiver. Table 4.2

defines many of the quantities used in this section. In general, we only observe the
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Figure 4.2: This figure shows a possible multistatic passive radar situation with L =
1 static transmitters, M = 4 static receivers, and N = 1 targets of
interest. While measurements are being collected, the target moves from
an initial position in the direction of the shown velocity vector.

Table 4.2: Variables used for multistatic passive radar

Variable Description Definition

r
(1)
T Tx Position

r
(m)
R m-th Rx Position

δ
(1)
T (τ) Range (target-Tx) δ

(1)
T (τ) = r(τ)− r

(1)
T

δ
(m)
R (τ) Range (target-Rx m) δ

(m)
R (τ) = r(τ)− r

(m)
R

d(m)(τ) Bistatic Range d(m)(τ) =
∥∥∥δ(1)

T (τ)
∥∥∥
2
+
∥∥∥δ(m)

R (τ)
∥∥∥
2

f (m)(τ) Bistatic Doppler shift d(m)(τ) = 1
λ

[
v · δ

(1)
T

(τ)∥∥∥δ(1)
T

(τ)
∥∥∥
2

+ v · δ
(m)
R

(τ)∥∥∥δ(m)
R

(τ)
∥∥∥
2

]
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bistatic range and Doppler shifts through noisy measurements:

d̃(m)(τ) = d(m)(τ) + ε(m)(τ) (4.10)

f̃ (m)(τ) = f (m)(τ) + ν(m)(τ) (4.11)

(4.12)

for I.I.D. zero-mean Gaussian distributed ε(m)(τ) and ν(m)(τ). Moreover, measure-

ments are collected at a discrete set of times,

τk = kτCPI , k = 1, 2, . . . , K (4.13)

where τCPI is the coherent processing interval and K is chosen to satisfy a perfor-

mance criterion such as probability of detection for a given SNR value. Define the

set of measurements

Ỹ = [D̃ F̃ ]T , (4.14)

where

D̃ = [d̃(m)(τk) : m = 1, 2, . . . ,M, k = 1, 2, . . . , K], (4.15)

F̃ = [f̃ (m)(τk) : m = 1, 2, . . . ,M, k = 1, 2, . . . , K]. (4.16)

In order to characterize the ‘quality’ of the measurements in a given configuration

of transmitter and receivers, we derive the Fisher Information matrix (FIM) which

provides a lower bound on the errors {σx, σy, σv, σφ} for unbiased estimators for the

target state through the inverse of the FIM. Let Λm,n be the (m,n)-th entry of the

FIM. Then

Λm,n = −E
[

∂2

∂θm∂θn
log f(Y ; θ)

∣∣∣θ
]
, m, n = 1, 2, 3, 4 (4.17)

where

θ = {σx, σy, σv, σφ} (4.18)
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In particular, if we assume that

var(ε(m)(τk)) = [σ(m)(τk)]
2, (4.19)

var(ν(m)(τk)) = [β(m)(τk)]
2, (4.20)

Σ =




diag
{
[σ(m)(τk)]

2
}
m

0

0 diag
{
[β(m)(τk)]

2
}
m


 , (4.21)

then

Λm,n =

[
∂Y

∂θm

]T
Σ−1

[
∂Y

∂θn

]
+

1

2
trace

(
Σ−1 ∂Σ

∂θm
Σ−1 ∂Σ

∂θn

)
. (4.22)

Define

J = Λ−1 (4.23)

to be the inverse of the FIM. Then the diagonal elements of J are lower bounds on

{σx, σy, σv, σφ}. Let σr = max {σx, σy}. Then we define the service load as

q(τ) = γ(τ ; σr, σv, σφ)TGUM , (4.24)

where

γ(τ ; σr, σv, σφ) =
|Cτ (τ ; σr, σv, σφ)|
|C0(τ ; σr, σv, σφ)|

(4.25)

is the growth of the uncertainty region, Cτ is defined by 4.28, and

TGUM = KτCPI . (4.26)

Note that this definition for q(τ) may be overly optimistic if the bounds on {σx, σy, σv, σφ}

are unrealistic. However, we may still use this formulation in order to understand

the basic performance bounds of a multistatic passive radar system.
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Table 4.3: Parameterizations for target estimates from a radar signal processing al-
gorithm in the context of SAR computational provisioning

Context Parameter Description Standard Errors

SAR

x̂, ŷ Position σx, σy

v̂x, v̂y Velocity σvx, σvy

âx, ây Acceleration σax, σay

4.3 Target and system model: SAR computational provi-
sioning

The target and system models can be analogously defined in the context of SAR

computational provisioning. In this case, we consider the parameterization of the

target state given by Table 4.3. Moreover, the confidence region for the positions

(x̂, ŷ) after τ seconds is given by

CSAR
τ =




(x, y) :

−εx(τ) ≤ x− r̂x(τ) ≤ εx(τ),

−εy(τ) ≤ y − r̂j(τ) ≤ εy(τ)




, (4.27)

where εj(τ) = σj + σvjτ + σajτ
2/2 and r̂j(τ) = ĵ + v̂jτ + âjτ

2/2 for j = x, y.

This region is illustrated in Figure 4.3, and the associated area can be computed

as

|CSAR
τ | = 4ǫx(τ)ǫy(τ), (4.28)

(4.29)

Note that similar to the multistatic case, the uncertainty region grows superlinearly

in τ .

In order to derive a service load model in the SAR context, we assume that

streaming samples from a single SAR sensor are available from an X-band sensor

with standard parameters (f0 ≈ 10 GHz, BW ≈ 500 MHz, τPRI ≈ 10−3). Without

loss of generality, we will assume that the radar platform travels in the x-direction.
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ry(t) + λy(t)
ry(t)− λy(t)

Radar cell, C0
2σy

2σx rx(t)− λx(t)
rx(t) + λx(t)

(a) SAR (single cell)

rx(t)− λx(t)− σx rx(t) + λx(t) + σx

ry(t) + λy(t)− σy
ry(t)− λy(t)− σy

2σx
2σy

Radar cell, C0

(b) SAR (all C0)

Figure 4.3: This figure shows the characterizations of the uncertainty region Cτ for
the SAR computational provisioning example. The red rectangular re-
gions show a small radar cell C0 that contains a target with high uncer-
tainty immediately after revisit. The target’s trajectory (vx, vy, ax, ay) is
known with standard errors (σvx, σvy, σax, σay). Thus, we can be confident
that a target at the center of the radar cell will lie in the blue rectangular
region after τ seconds as in (a). When the target can lie anywhere in C0,
then we can only be confident that the target will lie in the union of all
induced rectangular regions as depicted by the blue region in (b). For
this figure, the notation is defined with λi(t) = σvit+ σait

2 for i = x, y.
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We are interested in the computational burden associated with standard image

formation from the radar samples using back-projection as described by Soumekh

[82]. The number of FLOPs associated with this process is proportional to the

number of radar samples Np and the number of pixels in the formed image, also

proportional to Np. The required time to detect and/or track within a target cell is

then

TGUM = κN2
p , κ = αradarτCPU (4.30)

where τCPU is the number of seconds/FLOP associated with the CPU and αradar is

the number of FLOPs/N2
p that is dependent on the radar. For concreteness in this

chapter, we assume that κ ≈ 3e10−7 using a 2.8 GHz CPU.

In SAR tracking non-zero velocities can cause errors in the cross-range (x-) di-

rection as described by Fienup [42]. Note that these errors will depend only on the

standard errors (σvx, σvy, σax, σay), since images can be focused to v̂x, v̂y, âx, ây with

no additional computational cost. For a maximum error of δd, this augmented region

and its associated area is

h(Cτ , δd) = {(x, y) : (u, v) ∈ Cτ , x ∈ u+ [−δd, δd], y = v} (4.31)

|h(Cτ , δd)| = 4(εx(τ) + δd)εy(τ) (4.32)

We are interested in resolving targets within a cell size, denoted |C0|. Due to real-time

constraints, we assume that only streaming data is available. Thus, after τ seconds

since the last revisit, the system will be occupied by the task of forming subimages

in h(Cτ , δd) to reduce uncertainty on the target parameters back down to a 1 − εT

confidence region of size |C0|. Thus, the load on the CPU is given by

q(τ) = γ(τ ; δd)TGUM , (4.33)
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where γ(τ ; δd) = |h(Cτ ,δd)|
|h(C0,δd)|

− 1 is the growth of the confidence region. Note that δd

does not depend on τ , but only on the target’s trajectory (vx, vy, ax, ay), which is

arbitrary for any target, and the number of pulses, Np, which is fixed by the user.

4.4 Guaranteed uncertainty management

The problem of utilizing available sensors in an optimal fashion to detect and

track targets falls in the framework of dynamic scheduling of multiple servers to

multiple queues (targets) by Brémaud [18] and Wasserman et al. [89]. The sensor

manager must assign sensors to queues of target-revisit jobs in queues that grow

as time elapses. Each job may have different service requirements. Generally, solv-

ing for the optimal allocation of servers to queues is a difficult, if not intractable,

problem. However, several sub-optimal strategies have been proposed. A subopti-

mal prioritized longest queue (PLQ) strategy is to assign free servers to the longest

queues, where each queue is processed by the server that is best matched to the

service requirements. The following implementation of this strategy is the ‘largest

weighted queue length’ policy proposed by Wasserman et al. [89] for heterogeneous

multiqueueing systems. Let N ⊂ {1, 2, . . . , N} be the number of target tracks not

in the process of being revisited. Then Algorithm 6 provides the Prioritized longest

queue (PLQ) sensor scheduling policy.
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Algorithm 6. Prioritized longest queue sensor scheduling policy

When a sensor r is unoccupied and available for assignment to updating a

target track then either

1. idle the sensor if all target tracks are in process of being revisited (N is

empty).

2. deploy the sensor on the target n ∈ N that maximizes the weighted service

time maxn∈N qr,n(τn), where τn is the elapsed time since the last revisit of

target n.

4.4.1 Balance equations guaranteeing system stability

Balance equations for stable operation of the system are equations that guarantee

that at the time of revisit of a target its service load has not grown larger than it

was at the previous revisit. With a single sensor, we drop the index r from qr,n(τ).

Let q(n)(τ) be the service load to the n-th target chosen according to the PLQ policy.

For n = 1, 2, . . . , N , we have

q(n)(τ) = max
j∈N (n)

qj(q
(n−1)(τ) + τ), (4.34)

where q(0)(τ) = 0. To simplify notation, we assume that the targets have been ranked

in decreasing order of service load, so that

arg max
j∈N (n)

qj(q
(n−1)(τ) + τ) = n, (4.35)

and q(n)(τ) = qn(q
(n−1)(τ) + τ). Next define the system loading function

Q(N)(τ) =

N∑

i=1

q(i)(τ), (4.36)
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which is stable when Q(N)(τ) < τ (critically when Q(N)(τ) = τ). If a solution exists,

let τ = τ ∗ be the solution of the balance equation

Q(N)(τ) = τ. (4.37)

Proposition IV.1. For a single sensor tracking N targets the PLQ policy is sta-

ble, in the sense that the system maintains bounded tracking errors, if the following

conditions hold:

1. a solution to (4.37) exists;

2. the revisit rate is at least 1/τ ∗;

3. The target can be resolved, so that τ ∗ ≪ TMAX .

The value τ ∗ can be interpreted as the steady state total time required for the

sensor to cycle through a complete sequence of target revisits. The stability result of

Proposition IV.1 is tight in the sense that the system becomes unstable if Conditions

1 and 2 are not satisfied. When stability of the PLQ policy is guaranteed, we have

a tight bound on the associated tracking error.

Corollary IV.2. If the system is stable in the sense of Proposition IV.1, then the

track uncertainty region of the i-th target will never exceed H∗(i) = ln |Cτ∗(i)|.

The proof of the above proposition is straightforward but we do not provide de-

tails here. The full proof relies on the fact that q(i)(τ) is monotonic increasing in

τ . We then use mathematical induction to obtain equations (4.34) as the time re-

quired to service the targets, and apply standard load balancing condition of optimal

scheduling theory to obtain (4.37).
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4.4.2 A simple slope criterion for stability

The system load function Q(N)(τ) defined in (4.36) is zero at τ = 0 and is smooth,

differentiable, and monotonic increasing. Thus a necessary condition for the balance

equation (4.37) to have a solution is that its derivative be less than or equal to 1 at

the point τ = 0. By induction the derivative [Q(N)]′(0) = dQ(N)(τ)/dτ |τ=0 can be

shown to be of the form:

[Q(N)]′(0) =

N∑

j=1

j∑

k=1

N∏

i=N−k+1

q′i(0) ≤
N∑

j=1

j∑

k=1

(q′0)
k, (4.38)

where we have defined q′0 = maxi q
′
i(0). If mini q

′
i(0) > 1, then necessarily [Q(N)]′ > 1

so that Q(N)(τ) > τ and the system is unstable. If q′0 < 1, then the system may

be stable. To obtain closed form results we will derive sufficient conditions on N

that guarantee stability by using the upper bound on the right of (4.38) instead of

the exact expression in the middle of (4.38). This upper bound is attained when

all service load functions are identical, qi(0) = qj(0) in which the conditions derived

below will also be necessary. Therefore, the conditions will be tight for a worst case

scenario but will be more stringent than might be required for a typical scenario. As

q′0 ≥ 0, the series summation formula applied to the right hand side of (4.38) gives

the following proposition:

Proposition IV.3. A solution τ ∗ to the balance equation (4.37) exists if and only if

[Q(N)]′(0) =
q′0

1− q′0

(
N − q′0

1− q′0
(1− [q′0]

N)

)
< 1 (4.39)

We can obtain q′0 by differentiating (4.28) or (4.5) plugging into (4.6), and eval-

uating at τ = 0. For the SAR context, this yields

q′0 = κN2
p (σxσy)

−1[σvxσy + σvy(σx + δd)]. (4.40)
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For the multistatic radar, we have

q′0 =

(
σv + v sin σφ

σr
√
2

)
KτCPI . (4.41)

Define Nmax as the maximum value of N such that the inequality in Proposition

IV.3 is satisfied. When the sensor is tasked to track Nmax targets then the system

will be stable (however, we must still verify that the associated τ ∗ is such that

condition 3 of Proposition IV.1 is satisfied). In the case N = Nmax the sensor is fully

utilized and operating at maximum efficiency. When q′0 is small, Nmax can be found

approximately as

Nmax = (1− q′0)/q′0 + q′0/(1− q′0) (4.42)

Furthermore, since 0 ≤ 1 − [q′0]
N ≤ 1, we can assert that if the number of targets

N exceeds Nmax in (4.42), then no solution to the balance equations exists and the

system diverges.

4.4.3 Extension to multiple sensors

When there are R > 1 sensors to manage we can obtain stability conditions in a

similar manner to the previous section. Define b as the ratio of targets per sensor

b = ceil(N/R) (4.43)

Define q(τ) = maxn,r qr,n(τ) and the service load, q(b)(τ) = q(q(b−1)(τ) + τ). In

analogy to the previous section, the system loading function is defined as

Q(b)(τ) =

b∑

i=1

q(i)(τ). (4.44)

Stability conditions and slope conditions can be derived in a similar fashion to the

previous section by replacing N with b = ceil(N/R). The details are omitted here,

but can be found in the technical report by Hero et al. [51].
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4.4.4 Determining track-only system occupancy

We can use the Propositions to determine the efficiency of the system in terms

of its occupancy rates, defined as one minus the proportion of time a sensor in the

system is idle. We assume that the sensors are scheduled under the PLQ policy.

In steady state a stable system of R sensors will be at maximum utilization when

the system is critically stable. This occurs when there are approximately b∗ = N/R

targets per sensor where b∗ is the solution to the equation

q′0
1− q′0

(
b− q′0

1− q′0
(1− [q′0]

b)

)
= 1 (4.45)

Define Nmax = floor(b∗R). At this critically stable operating point of Nmax targets,

the sensors are fully occupied performing just-in-time revisits of the targets. In this

case the maximum service load that each target places on the system is Q(Nmax/R)(τ ∗)

where τ ∗ is the solution of Q(Nmax/R)(τ) = τ . When the same system is assigned

to track a fewer number N < Nmax of targets, there will be idle time. We define

the occupancy of the track-only system as ρ = τ ∗/τε, where τε is the value of τ that

satisfies

Q(N/R)(τ) = Q(Nmax/R)(τ ∗). (4.46)

The interpretation is that τε is operating point of the system that results in the same

loading for the underloaded system tracking N targets as the fully loaded system

tracking Nmax targets.

4.5 Multi-purpose system provisioning

Finally we turn to scenarios when the system may be engaged in other tasks

in addition to tracking. From a computational standpoint, this could be as basic

as time needed for transfer of data and communication. At a more abstract level,
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tasks could include discrimination of targets and/or wide area search for new targets.

This is handled by building in headroom into the track update stability equations.

Let ∆ be the additional load in seconds spent after each revisit on tasks other than

tracking. Consider the case of a single sensor and N targets. For a given ∆, the

stability condition is that there must exist a solution, τ = τ ∗ such that

Q(N)(τ,∆) +N∆ = τ, (4.47)

where

Q(N)(τ,∆) =

N∑

i=1

q(i)(τ,∆) (4.48)

and

q(N)(τ,∆) = qN (q
(N−1)(τ) + τ +∆). (4.49)

Note that since the qi’s are monotonically increasing, we have the bound

Q(N)(τ,∆) ≤ Q(N)(τ +∆), (4.50)

where Q(N)(τ) is the simpler function defined in (4.36). Therefore, for specified ∆,

a sufficient condition for stability is that there exist a τ = τ ∗ such that

Q(N)(τ +∆) +N∆ = τ. (4.51)

Re-expressing this in terms of the variable u = τ+∆, we have the equivalent condition

that there exist a solution u = u∗ to

Q(N)(u) = u− (N + 1)∆. (4.52)

4.5.1 Load margin, excess capacity, and occupancy

The load margin represents the maximum additional load that can be accom-

modated by a tracking system that must perform joint operations such as tracking,
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detection, etc. The load margin ∆max is defined as the maximum value ∆ for which a

solution u to (4.52) exists. When there are N targets and the multi-purpose system

spends ∆ ≤ ∆max seconds per update performing other tasks we define the excess

capacity

cexcess(∆) = 1−∆/∆max. (4.53)

Likewise, we define the multi-purpose system occupancy as

ρ(∆) = 1− [(∆max −∆)N ]/Q(N)(u∗). (4.54)

4.6 Application: SAR computational provisioning

For specified standard errors on tracking accuracy, e.g., available from Kalman

tracking covariance estimates, the above results can be used to generate tables and

curves on the required number of sensor, their revisit rates, and their occupancy, for

tracking N targets with prescribed track error (entropy). In this section, we focus

on computational provisioning within the SAR context. In particular, we assume we

have

1. A radar with parameters defined in Section 4.3.

2. Np = 250 corresponding to Pf=10−6, Pd > 0.99 for detecting a Swerling II

target at a SNR=0 dB [66], Fig. 12.23.

3. Target cell given by (σx, σy)=(6, 0.3) m.

4. Target trajectory, (vx, vy)=(5, 5) m/s, (ax, ay)=(0, 0) m/s2, with std. errors

(σvx, σvy)=(1,1) m/s (σax, σay)=(1,1) m/s2.

5. TMAX = 1 second.
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Figure 4.4: This figure demonstrates various combinations of N/R (for R = 1). In
each plot, the blue diagonal line is the stability boundary and separates
the two regions of operation. When the load curve is below the diagonal,
track is maintained on all targets. Above the stability line, the system
is unstable. Figure 4.4(a) shows the under-provisioned case where the
system load is always above the stability line for τ > 0. In this case, the
system is overwhelmed and tracks are lost. Figure 4.4(b) shows the fully
provisioned case (ρ = 100%), where the minimal amount of resources are
wasted. Figures 4.4(c) and 4.4(d) show the over-provisioned case where
the system keeps all targets in track and has spare time for other tasks,
as well as a dotted line showing the equivalence point compared to the
fully provisioned case.
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Figure 4.5: The system provisioning matrix specifies stability region (dark) as a func-
tion of the numbers of radars and the number targets for track-only radar.
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4.6.1 Loading of track-only system

Figure 4.4 shows results for various numbers of R sensors and N targets, such

that N/R = 9, 14, 17, 30, respectively. In each plot, the blue diagonal line is the

stability boundary and separates the two regions of operation. When the load curve

is below the diagonal, track is maintained on all targets. Above the stability line,

the system is unstable. Figure 4.4(a) shows the under-provisioned case where the

system load is always above the stability line for τ > 0. In this case, the system

is overwhelmed and tracks are lost. Figure 4.4(b) shows the fully provisioned case

(ρ = 100%), where the minimal amount of resources are wasted. Figures 4.4(c) and

4.4(d) show the over-provisioned case where the system keeps all targets in track and

has spare time for other tasks, as well as a dotted line showing the equivalence point

compared to the fully provisioned case.

Figure 4.5 provides a graphical representation of stability in track-only provision-

ing as a function of the number of N targets and R sensors. The figure shows a

matrix whose (i, j) entry is equal to 1 if i sensors can track j targets stably and

equal to 0 otherwise. The dark areas represent the stable operating region.

4.6.2 Multi-purpose system provisioning

Figure 4.6 illustrates a computation of the excess capacity, occupancy, and load

margin for the same radar as in the previous section but when it is tracking only 9

targets and can devote resources to other tasks. Unlike the case of 17 targets that

only intersects the diagonal line y(u) = u−∆ when ∆ = 0, there is a substantial load

margin for the case of 9 targets, ∆max = 0.206/N secs as shown in Figure 4.6(b). At

this full utilization operating point the radar devotes approximately 11% of its time

to tracking and the rest of its time to other tasks. The distance between the upper
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Figure 4.6: System loading curves for computing occupancy and excess capacity for
the multi-purpose radar tracking example. Unlike the case of 17 targets
that only intersects the diagonal line y(u) = u − ∆ when ∆ = 0, there
is a substantial load margin for the case of 9 targets, ∆max = 0.206/N
secs as shown in Figure 4.6(b). At this full utilization operating point
the radar devotes approximately 11% of its time to tracking and the rest
of its time to other tasks. The distance between the upper and lower
diagonal lines y(u) = u and y(u) = u − ∆maxN is 0.206 secs. If the
actual load for other tasks was set to only ∆ = 0.06/N secs as in Figure
4.6(c), giving cexcess = 0.70 and an occupancy of ρ(∆) = 0.76, the system
would be idle 24% of the time.
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and lower diagonal lines y(u) = u and y(u) = u−∆maxN is 0.206 secs. If the actual

load for other tasks was set to only ∆ = 0.06/N secs as in Figure 4.6(c), giving cexcess

= 0.70 and an occupancy of ρ(∆) = 0.76, the system would be idle 24% of the time.

4.7 Conclusions

This chapter has proposed a conservative approach to sensor resource manage-

ment for multiple target tracking subject to typical computational resource con-

straints. The approach requires finding solutions to load balance equations that

guarantee system stability. These solutions yield the minimal system requirements

for provisioning radars. The solutions guarantee stable tracking with prescribed

level of statistical confidence. The provisioning results given here are conservative

and specify the system requirements, steady state occupancy, revisit times, and track

entropy in terms of the PLQ sensor scheduling policy. The PLQ policy will always

perform at least as well as the performance predictions we provide. One can expect

considerably better performance of the system than these predictions for typical

scenarios, although there exists a scenario (namely, all targets are equally difficult

to track) where the predictions are exact. Less stringent provisioning requirements

might be explored using a stochastic optimization.

Future work will consider and compare policies other than the PLQ policy. Of

particular interest are policies using a random allocation that can be used as a

baseline comparison, as well as policies that may have a class-dependent allocation.

Additionally, we may consider optimizing a scheduling policy (in terms of τ ∗) among

multiple alternative policies. Furthermore, in this chapter we have considered tasks

in the load margin separately from the target tracking task. However, if we consider

multiple epochs, tasks such as Kalman filtering and/or target classification may sig-
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nificantly improve the capability to track targets stably over time. Future work plans

to develop a framework for scheduling in the multiple-epoch scenario and analyze the

tradeoffs in load margin vs. non-myopic improvements to our performance bounds.



CHAPTER V

Adaptive Target Detection/Tracking with

Synthetic Aperture Radar Imagery

5.1 Introduction

In the previous chapters, tools were developed for sensor management and adap-

tive search for sparse moving targets. This chapter provides an application for these

tools, namely target detection and tracking with synthetic aperture radar (SAR) im-

ages. The previous chapters relied on explicit characterizations of the uncertainty of

target state estimation. In Chapters II and III, one needed the posterior probabilities

on target location and posterior estimates of the target amplitudes. In Chapter IV,

one needed estimates of the state estimation errors. This chapter proposes inference

algorithms and performance prediction (in terms of likelihood ratios and Cramér Rao

lower bounds) that can be used explicitly for the algorithms in Chapters II through

IV.

The image formation process for SAR images is more complicated than that of

standard electro-optical images. Examples of these complexities include:

• SAR images have complex-valued rather than real-valued intensities, and the

SAR phase information is of great importance for detection and estimation of

target states. [31, 32, 42].
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• SAR images are corrupted by spatiotemporally-varying antenna gain/phase

patterns that often need to be estimated from homogeneous target-free data

[79, 81].

• SAR images have spatially-varying clutter that can mask the target signature

unless known a priori or properly estimated [38].

• SAR images contain motion-induced displacement and diffusion of the target

response [42, 54].

• SAR images include multiple error sources due to radar collection and physical

properties of the reflectors, such as angular scintillation (a.k.a. glints) [16] and

speckle [73, 75].

Despite these complications, a great deal of structure exists in SAR images that

can be leveraged to provide stronger SAR detection and tracking performance. This

includes (a) using the coherence between multiple channels of an along-track radar

in order to remove the stationary background (a.k.a, ‘clutter’), (b) assuming that

pixels within the image can be described by one (or a mixture) of a small number

of object classes (e.g., buildings, vegetation, etc.), and (c) considering kinematic

models for the target motion such as Markov smoothness priors. From this structure

in SAR imagery, one might consider models that assume that the clutter lies in a

low-dimensional subspace that can be estimated directly from the data. Indeed,

recent work Borcea et al. [15] has shown that SAR signals can be represented as

a composition of a low-rank component containing the clutter, a sparse component

containing the target signatures, and additive noise.

In general, SAR images are formed by focusing the response of stationary objects

to a single spatial location. Moving targets, however, will cause phase errors in the
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standard formation of SAR images that cause displacement and defocusing effects.

Most methods designed to detect the target depend on either (a) exploiting the phase

errors induced by the SAR image formation process for a single phase center system

or (b) canceling the clutter background using a multiple phase center system. In

this chapter, we provide a rich model that can combine (and exploit) both sources

of information in order to improve on both methodologies.

Fienup [42] provides an analysis of SAR phase errors induced by translational

motions for single-look SAR imagery. He shows that the major concerns are (a)

azimuth translation errors from range-velocities, (b) azimuth smearing errors due

to accelerations in range, and (c) azimuth smearing due to velocities in azimuth.

Fienup also provides an algorithm for detecting targets by their induced phase errors.

The algorithm is based on estimating the moving target’s phase error, applying a

focusing filter, and evaluating the sharpness ratio as a detection statistic. Jao [54]

shows that given both the radar trajectory and the target trajectory, it is possible to

geometrically determine the location of the target signature in a reconstructed SAR

image. Although the radar trajectory is usually known with some accuracy, the

target trajectory is unknown. On the other hand, if the target is assumed to have

no accelerations, Jao provides an efficient FFT-based method for refocusing a SAR

image over a selection of range velocities. Khwaja and Ma [58] provide a algorithm

to exploit the sparsity of moving targets within SAR imagery; they propose a basis

that is constructed from trajectories formed from all possible combinations of a set

of velocities and positions. To combat the computational complexity of searching

through this dictionary, the authors use compressed sensing techniques. Instead of

searching over a dictionary of velocities, our work proposes to use a prior distribution

on the target trajectory that can be provided a priori through road and traffic models
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or adaptively through observations of the scene over time.

The process of removing the stationary background in order to detect moving

targets is also known in the literature as ‘change detection’ or ‘clutter suppresion’.

Gierull [43] provides a statistical analysis of the phase and magnitude of complex SAR

images for two channels. He shows that SAR images cannot be modeled as spatially-

invariant Gaussian in many cases of interest, such as in urban environments, where

the statistics vary spatially and may be modulated by random variations. In our

work, we model the distributions of the clutter as spatially varying and model the

random modulations directly.

Ender [38] applies space-time adaptive processing (STAP) to multiple-channel

SAR imagery. Similar to standard change detection algorithms such as displaced

phase center array (DPCA) and along-track interferometry (ATI), STAP models the

clutter as being embedded in a one-dimensional subspace. However, STAP extends

those algorithms to using N > 2 channels, where a single channel is used to estimate

the stationary background and the remaining (N − 1) channels are used to estimate

the moving component. However, STAP relies on estimating the complex-valued

covariance matrix of the N -channel system, which in turn depends on the availability

of homogeneous target-free secondary data.

There are a multitude of algorithms for change detection that are based on multi-

temporal SAR images rather than multi-channel data. Bazi and Bruzzone [13] de-

velop methods for multi-temporal change detection that use adaptive thresholds for

declaring changes based on a theoretical analysis of a generalized Gaussian model.

Bovolo and Bruzonne [17] provide another algorithm for change detection that em-

ploys a wavelet-based multiple scale decomposition of multitemporal SAR images,

with an adaptive scale driven fusion algorithm.
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Ranney and Soumekh [79,81] develop methods for change detection from SAR im-

ages collected at two distinct times that are robust to errors in the SAR imaging pro-

cess. They address error sources including inaccurate position information, varying

antenna gains, and autofocus errors. They propose that the stationary components

of multi-temporal SAR images can be related by a spatially-varying 2-dimensional

filter. To make the change detection algorithm numerically practical, the authors

propose that this filter can be well-approximated by a spatially invariant response

within small subregions about any pixel in the image. This thesis adopts this model

for the case where there are no registration errors. Under a Gaussian assumption for

the measurement errors, it can be shown that the maximum likelihood estimate for

the filter coefficients can be computed easily through simple least squares.

Ground Moving Target Indication (GMTI) methods involve the processing of

SAR imagery to detect and estimate moving targets. Often clutter cancellation

and change detection play a preprocessing role in these algorithms [46, 47, 71, 95].

This chapter aims to combine properties of many of these algorithms into a unify-

ing framework that simultaneously estimates the target signature and the nuisance

parameters, such as clutter distributions and antenna calibrations.

It should be noted that many of the previously discussed algorithms work well

in certain situations, but do not provide estimates of their uncertainty that may be

necessary for adaptive sensing, sensor management, or sensor fusion. This chapter

aims to bridge this gap by providing a Bayesian formulation that provides uncertainty

distributions for the presence of the moving targets and their positions. Under this

Bayesian formulation, we can generate the posterior distribution of the target state(s)

given the observations (i.e., the SAR images).

Recently, there has been great interest by Wright et al. [93], Lin et al. [63], Candes
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et al. [19] and Ding et al. [33] in the so-called robust principal component analysis

(RPCA) problem that decomposes high-dimensional signals as

I = L + S +E, (5.1)

where I ∈ RN×M is an observed high dimensional signal, L ∈ RN×M is a low-rank

matrix with rank r ≪ NM , S ∈ R
N×M is a sparse component, and E ∈ R

N×M

is dense low-amplitude noise. In [19, 63, 93], inference in this model is done by

optimizing a cost function of the form

argmin
L,S
‖L‖∗ + γ ‖S‖1 + (2µ)−1 ‖I −L− S‖F (5.2)

where the last term is sometimes replaced by the constraint I = L+ S. One major

drawback of these methods involves finding the algorithm parameters (e.g., tolerance

levels or choices of γ, µ), which may depend on the given signal. Moreover, it has

been demonstrated that the performance of these algorithms can depend strongly on

these parameters.

Bayesian methods by Ding et al. [33] have been proposed that simultaneously

learn the noise statistics and infer the low-rank and sparse components. Moreover,

they show that their method can be generalized to richer models, e.g. Markov de-

pendencies on the target locations. Additionally, these Bayesian inferences provide

a characterization of the uncertainty of the outputs through a Markov Chain Monte

Carlo (MCMC) estimate of the posterior distribution.

The work by Ding et al. [33] is based on a general Bayesian framework [85]

by Tipping for obtaining sparse solutions to regression and classification problems.

Tipping’s framework uses simple distributions (e.g., those belonging to the expo-

nential class) that can be described by few parameters, known as hyperparameters.

Moreover, Tipping considers a hierarchy where the hyperparameters themselves are
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assumed to have a known ‘hyperprior’ distribution. Often the prior and hyperprior

distributions are chosen to be conjugate, so that inference is simple. Tipping provides

insight into choosing the hyperparameter distributions so as to be non-informative

with respect to the prior. This latter property is important in making it possible to

implement inference algorithms with few tuning parameters. Finally, Tipping pro-

vides a specialization to the ‘relevance vector machine’ (RVM), which can be thought

of as a Bayesian version of the support vector machine. Wipf et al. [92] provides an

interpretation of the RVM as the application of a variational approximation to esti-

mating the true posterior distribution. Wipf et al. explains the sparsity properties

of the sparse Bayesian learning algorithms in a rigorous manner. Additionally, it

also provides connections with other popular work in sparse problems, such as the

FOCUSS and basis pursuit algorithms.

We adopt this hierarchical Bayesian model to SAR images. This requires the

following non-trivial extensions: (a) we consider complex-valued data rather than

real-valued intensity images; (b) we model correlated noise sources based on phys-

ical knowledge of SAR phase history collection and image formation; (c) we relax

the assumption of a low-rank background component by assuming that the back-

ground component lies in a low-dimensional subspace; and (d), we directly model

SAR phenomenology by including terms for glints, speckle contributions, antenna

gain patterns, and target kinematics. Moreover, we demonstrate the performance of

the proposed algorithm on both simulated and measured datasets, showing competi-

tive or better performance in a variety of situations. Finally, we show that the output

of the Bayesian model can be used for performance prediction for future passes of

the radar.

The rest of the paper is organized as follows: Notation is given in Section 5.2
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and the image model is provided in 5.3. Markov, spatial, and/or target kinematic

extensions are discussed in Section 5.4. The inference algorithm is given in Section

5.5. Section 5.6 provides theory for performance prediction using the output of

the Bayesian inference. Performance is analyzed over both simulated and measured

datasets in Section 5.7. We conclude and point to future work in Section 5.8.

5.2 Notation

Available is a set of SAR images of a region formed from multiple passes of an

along-track radar platform with multiple antennas (i.e., phase centers.) Moreover,

images are formed over distinct azimuth angle ranges that can be indexed by the

frame number, f . Table 5.1 provides the indexing scheme used throughout this

chapter in order to distinguish between images from various antennas, frames, and/or

passes. Table 5.2 provides a list of indexing conventions used to denote collections

of variables.

Table 5.1: Index variable names used in paper

Index Description Index Variable Range

Antenna (channel) k 1, 2, . . . , K

Frame (azimuth range) f 1, 2, . . . , F

Pass i 1, 2, . . . , N

Pixel p 1, 2, . . . , P

We model the quadrature components of the SAR images with the complex-

normal distribution, where we use the notation

w ∼ CN (0,Γ) (5.3)

where CN (µ,Γ) represents the complex-Normal distribution with mean µ and com-

plex covariance matrix Γ, and ~w is random vector of K complex-values (from each
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Table 5.2: Our data indexing conventions

Variable Convention Description

i
(p)
k,f,i

Standard
Value at pixel p, antenna k,

and frame f , pass i

i
(p)
f,i Underline

Values at pixel p, frame f ,

and pass i over all antennas

i
(p)
f,1:N

Lower-case, Values at pixel p and frame f

Boldface over all antennas and passes

If,i
Upper-case Values over all pixels and

Boldface antennas at frame f and pass i

I
Upper-case, Values over all pixels, antennas,

Boldface, No Indices frames, and passes

of K antennas.)

5.3 SAR image model

We propose a decomposition of SAR images at each frame f and pass i as follows

If,i = Hf,i ◦ (Lf,i + Sf,i + Vf,i) , (5.4)

where Hf,i is a spatiotemporally-varying filter that accounts for antenna calibration

errors, Lf,i is a low-dimensional representation of the background clutter, Sf,i is a

sparse component that contains the targets of interest, Vf,i is zero-mean additive

noise, and ◦ denotes the Hadamard (element-wise) product. Each of these compo-

nents belongs to the space CP×K . The remainder of this section discusses the model

in detail. Figure 5.3 shows a graphical representation of the model.

5.3.1 Low-dimensional component, Lf,i

We propose a decomposition of the low-rank component as

Lf,i = Bf +Xf,i, (5.5)
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Figure 5.1: This figure provides a graphical representation of the proposed SAR im-
age model. The dark circle represents the observed random variable.
The unshaded circles represent the basic parameters of the model, while
the dashed circles represent hyperparameters that are also modeled as
random variables.

where Bf is the inherent background that is identical over all passes, Xf,i is the

speckle noise component that arises from coherent imaging in SAR. Posner [73] and

Raney [75] describe speckle noise, which tends to be spatially correlated depending

on the texture of the surrounding pixels.

The quadrature components of radar channels are often modeled as zero-mean

Gaussian processes, though Gierull [43] demonstrates that for heterogeneous clutter

(such as in urban scenes), one must consider spatially varying models. To account for

this spatial variation, this model assumes that each background pixel can be defined

by one of J classes that may be representative of roads, vegetation, or buildings

within the scene. Our model is low-dimensional since J ≪ P , where P is the number

of pixels in the measured images. We put a multinomial model on each object class

c(p) =
{
c
(p)
j

}J

j=1
∼ Multinomial(1; q1, q2, . . . , qJ) (5.6)

where qj is the prior probability of the j-th object class. Then the class assignment

C(p) is the single location in c with value equal to one. We use a hidden Markov model
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dependency that reflects that neighboring pixels are likely to have the same class.

The class C(p) defines the distribution of the pixel p, where we specifically model the

background and speckle components respectively as complex-normal distributed:

b
(p)
f ∼ CN

(
0,ΓC(p)

B

)
, x

(p)
f,i ∼ CN

(
0,ΓC(p)

X

)
(5.7)

Note that the class type specifies the distribution of the pixels and each vector of

K values (e.g. background b
(p)
f or speckle x

(p)
f,i ) is drawn independently from that

distribution.

5.3.2 Sparse component, Sf,i

The sparse component is modeled as

Sf,i =
(
∆G

f ⊗ 1T
K

)
◦Gf,i +

(
∆M

f,i ⊗ 1T
K

)
◦Mf,i, (5.8)

whereGf,i ∈ CP×K is the specular noise (glints) component with associated indicator

variables ∆G
f ∈ {0, 1}P , Mf,i ∈ CP×K is the (moving) target component with asso-

ciated indicator variables ∆M
f,i ∈ {0, 1}P , 1K is the all ones vector of size K × 1, and

⊗ is the Kronecker product. Note that this shared sparsity model assumes that the

glint/target components are present in one antenna if and only if they are present in

the other antennas. Moreover, glints are known to have a large angular dependence,

in the sense that the intensity of the glint dominates in only a few azimuth angles

but is present from pass to pass as described by Borden [16]. Thus, the indicators

for glints do not depend on the pass index i. Once again, we assume that the glints

and target components are zero-mean complex-normal distributed with covariances

ΓG and ΓM , respectively.

The indicator variable δz,(p) at pixel p where z is representative of either g or m
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is modeled as

δz,(p) ∼ Bernoulli(πz,(p)), (5.9)

πz,(p) ∼ Beta(aπ, bπ) (5.10)

A sparseness prior is obtained by setting aπ/[aπ + bπ] ≪ 1. Alternatively, we can

introduce additional structure in our model by letting aπ and bπ depend on previous

frames (temporally) and/or neighboring pixels (spatially). This is particularly useful

for detecting multi-pixel targets that move smoothly through a scene. Section 5.4

discusses this modification in greater detail.

5.3.3 Distribution of quadrature components

Many SAR detection algorithms rely on the ability to separate the target from the

background clutter by assuming that the clutter lies in a low-dimensional subspace

of the data. Consider a random vector of complex variables w ∼ CN (0,Γ) where

w is representative of b, x, g or m. Under the assumptions that (a) the quadrature

components of each antenna are zero-mean normal with variance σ2 and (b) the

correlation among components wm and wn is given by ρe−jφmn , then Γ can be shown

to have the form

Γ = σ2




1 ρe−jφ12 · · · ρe−jφ1K

ρejφ12 1 · · · ρe−jφ2K

...
...

. . .
...

ρejφ1K ρejφ2K · · · 1




, (5.11)

where σ2 is the channel variance, ρ is the coherence between antennas, and {φnm}n,m
are the interferometric phase differences between the antennas1. In an idealized

1A more general model could account for different channel variance and coherence values, but
since we use the calibration constants Hf,i to equalize the channels, the effect was seen to be
relatively insignificant.
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model with a single point target, the interferometric phases φmn can be shown to

be proportional to the target radial velocity. In images containing only stationary

targets (i.e., the background components), the covariance matrix has a simpler form:

Γbackground = σ2
(
(1− ρ)IK×K + ρ1K1

T
K

)
(5.12)

where IK×K is the K ×K identity matrix and 1K is the all-ones vector of length K.

It should be noted that the covariance matrix in equation (5.11) is related di-

rectly to some common methods for change detection in SAR imagery. In particular,

consider the two antenna case (K = 2). Along-track interferometry (ATI) thresholds

the phase φ12 in order to detect moving targets which have non-zero phases. More-

over, one can easily show that the eigendecomposition of Γ leads to eigenvalues λ

and eigenvectors ν:

λ(Γ) =
{
2σ2(1 + ρ), 2σ2(1− ρ)

}
(5.13)

ν(Γ) =








1

e−jφ12


 ,




1

−e−jφ12







. (5.14)

Displaced phase center array (DPCA) processing thresholds the difference between

the two channels. Indeed, for small phases, the second eigenvector of Γ reduces to

[1; −1]T . Thus DPCA can be interpreted as a projection onto the eigenvector of Γ.

Deming [31] shows that ATI performs well when canceling bright clutter (i.e., high

σ2 and ρ ≈ 1), while DPCA performs well for canceling dim clutter (i.e., small σ2

and ρ ≈ 0.) In our work, we combine the discriminating power of both DPCA and

ATI by modeling the covariance matrices directly. Ender [38] provides space-time

adaptive processing (STAP), where optimal detection schemes for moving targets

are based on the estimation of Γ. However, the performance of STAP depends on

the availability of target-free homogeneously distributed measurements in order to
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estimate Γ effectively. In this chapter, we simultaneously estimate the covariance

matrices as well as the target contributions. Thus, we demonstrate the capability to

detect targets even in the presence of heterogeneous measurements.

In this thesis, the covariance matrix Γ is modeled as a random variable using a

modified version of the Multivariate-Normal-Inverse-Wishart conjugate distributions.

In particular, we let

w ∼ CN
(
0, σ2Γρ

)
(5.15)

Γρ ∼ InvWishart
(
aΓ((1− ρ)IK×K + ρ1K1

T
K), νΓ

)
(5.16)

σ2 ∼ InvGamma(aσ, bσ) (5.17)

ρ ∼ Beta(aρ, bρ) (5.18)

where aσ = bσ = 10−6 as suggested by Tipping [85] to promote non-informative

priors, (aρ, bρ) are chosen so that ρ ≈ 1 to ensure a high coherence among the

background components, νΓ is a parameter that controls how strongly to weight the

prior covariance matrix, and aΓ is chosen so that E[Γρ] = (1− ρ)IK×K + ρ1K1
T
K . In

this thesis, we choose νΓ to be large to reflect our belief that σ2Γρ should be close to

equation (5.11). Note that this model separates the learning of the channel variance

σ2, which we have no a priori knowledge about, from the learning of the correlation

structure Γρ.

5.3.4 Calibration filter, Hf,i

The calibration constants are assumed to be constant within small spatial regions

p ∈ Zg, though they may vary as a function of antenna, frame, or pass. In particular,
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we let

h
(p)
k,f,i = zk,f,i(g), ∀p ∈ Zg, (5.19)

zk,f,i(g) ∼ CN (1, (σH)2) (5.20)

where we note that if (σH)2 is large, then maximum likelihood inference in this case

yields the least-squares solution.

5.3.5 Summary of SAR Image Model

Tables 5.3 provides a summary of the distributions for the proposed decompo-

sition of SAR images. The table also provides a characterization of spatial (across

pixels) and temporal (across frames and passes) dependencies. For example, back-

ground and speckle components have distributions characterized by their class j.

Thus, all pixels with class j belong to a subset Qj ⊂ {1, 2, . . . , P}. In contrast, the

distribution of moving targets is assumed to be identical across all pixels, yet the

distribution of their indicators varies for each pixel, frame, and pass.

Tables 5.5 and 5.6 provide a summary of the parameters of the distributions in

Table 5.3. We provide the simple model for target and glint indicator probabilities

that just assumes that they are sparse in the image. We can introduce additional

richness in the model by allowing the parameters aπ and bπ to vary over pixels, frames,

and passes as described in Section 5.4.1. Table 5.4 shows a matrix of properties of

each individual component to explain how they can be separately identified from

each other.

5.3.6 Discussion of SAR Image Model

This dissertation provides a unifying framework for SAR imagery that incorpo-

rates significant amounts of expert knowledge regarding the physics, kinematics, and
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Table 5.3: Distributional models for each component in equations (5.4), (5.5), and (5.8). Spatial column refers to region where
pixels share distribution. Temporal column refers to pixels which share values across either frame, pass, or both.

Component Variable Distribution Parameters Spatial Temporal

Background b
(p)
f CN

(
0,ΓB(j)

)
ΓB(j) = [σB(j)]2ΓB

ρ (j) p ∈ Qj Each f , All i

Speckle x
(p)
f,i CN

(
0,ΓX(j)

)
ΓX(j) = [σX(j)]2ΓX

ρ (j) p ∈ Qj Each f , Each i

Glints g(p)
f,i

CN
(
0,ΓG

)
ΓG = [σG]2ΓG

ρ All p Each f , Each i

Moving targets m
(p)
f,i CN

(
0,ΓM

)
ΓM = [σM ]2IK×K All p Each f , Each i

Additive noise Vk,f,i(p) CN
(
0,ΓV

)
ΓV = [σV ]2IK×K All p All f , All i

Glint indicator δ
G,(p)
f Bernoulli

(
π
G,(p)
f

)
π
G,(p)
f Each p Each f , All i

Target indicator δ
M,(p)
f,i Bernoulli

(
π
M,(p)
f,i

)
π
M,(p)
f,i Each p Each f , Each i

Class assignment c(p) Multinomial(1; q) q Each p All f , All i

Calibration coefficients Hk,f,i(p) = zk,f,i(g) CN
(
1, [σH ]2

)
[σH ]2 p ∈ Zg Each f , Each i
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Table 5.4: Identifiability for components of model in equations (5.4), (5.5), and (5.8).

Component
Identical Identical in Strong Described by a

Amplitude
Sparse Sparse

Markov
over passes spatial regions correlations∗ few distributions (angle) (pass)

Background Yes No Yes Yes Varying No No No

Speckle No No Yes Yes Varying No No No

Glints No No Yes No High Yes No No

Moving Targets No No No No∗∗ Medium Yes Yes Yes

Calibration coeff. No Yes No No Medium No No No

Additive noise No No No No Low No No No

∗ Strong dependencies when the background/speckle/glints have high amplitudes.
∗∗ Model can be extended to include generalizations such as multiple target classes and/or template matching.
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Table 5.5: Distributional models for covariance parameters of distributions in Table 5.3

Component Variable Distribution Parameters Suggested Value Region

Background covariance ΓB(j) = [σB(j)]2ΓB
ρ (j)

Each Qj

Variance
[
σB(j)

]2
Inv-Gamma aσ, bσ 10−6, 10−6

Correlation matrix ΓB
ρ (j) Inv-Wishart aΓ, νΓ See noteb, O(P )

Coherence ρB(j) Beta aρ, bρ aρ/(aρ + bρ) ≈ 1

Speckle covariance ΓX(j) = [σX(j)]2ΓX
ρ (j)

Each Qj

Variance
[
σX(j)

]2
Inv-Gamma aσ, bσ 10−6, 10−6

Correlation matrix ΓX
ρ (j) Inv-Wishart aΓ, νΓ See noteb, O(P )

Coherence ρX(j) Beta aρ, bρ aρ/(aρ + bρ) ≈ 1

Glint covariance ΓG = [σG]2ΓG
ρ

All p
Variance

[
σG
]2

Inv-Gamma aσ, bσ 10−6, 10−6

Correlation matrix ΓG
ρ Inv-Wishart aΓ, νΓ See noteb, O(P )

Coherence ρG Beta aρ, bρ aρ/(aρ + bρ) ≈ 1

Target covariance ΓM = [σM ]2IK×K
All p

Variance
[
σM
]2

Inv-Gamma aσ, bσ 10−6, 10−6

Additive noise covariance ΓV = [σV ]2IK×K
All p

Variance
[
σV
]2

Inv-Gamma aσ, bσ 10−6, 10−6
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Table 5.6: Distributional models for other parameters of distributions in Table 5.3

Component Variable Distribution Parameters Suggested Value Region

Variance
[
σV
]2

Inv-Gamma aσ, bσ 10−6, 10−6

Target indicator probability πM
f,i(p) Beta aπ, bπ aπ/(aπ + bπ)≪ 1 Each p, f, i

Glint indicator probability πY
f (p) Beta aπ, bπ aπ/(aπ + bπ)≪ 1 Each p, f

Region type probabilities q = {q1, . . . , qJ} Dirichlet {ej}Jj=1 ej = 1/J All p

Calibration coefficient variance (σH)2 Inv-Gamma aσ, bσ 10−6, 10−6 All p
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statistics behind SAR imagery. However, it is important to note that the framework

could be extended to increase model fidelity or to generalize to other interesting

cases. In particular, this model primarily uses random variables that are distributed

as either multivariate Gaussian or Bernoulli. In contrast, we could use other dis-

tributional models that are more robust to mismatches between the model and the

observed data. For example, Chen et al. [27] shows that covariance estimation can be

done with increased robustness to heavy-tailed distributions as compared to standard

estimators that use Gaussian assumptions.

Another important generalization that may considered concerns the choice of

the prior parameters and distributions as described by the tables in the previous

sections. For example, the inclusion of a glint variable makes sense if the scene

contains many man-made objects, but doesn’t really impact SAR images of natural

scenes. In order to deal with these considerations, one might consider another level

of the hierarchical model that contains contextual information. It should be noted

that this sort of knowledge has significantly lower dimension than the SAR images

themselves, and thus might not require a large computational burden.

Both of the discussed generalizations have the property that they may create

higher fidelity with the observed data. However, both of the generalizations intro-

duce a tradeoff between this improved performance and the required computational

burden. This is most apparent when using non-Gaussian distributions that do not

admit simple posterior distributions (that can be sampled efficiently). Future work

may look at the relative gains of using more general models as compared to their

computational burden.

This framework also has the property that it encompasses many other algorithms

as special cases. For example, template matching for target signatures could easily
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be accomplished by using templates as priors on the target indicator probabilities,

but without considering the random variables for the background, speckle, and glint

variables. On the other hand, we could consider a model that includes estimation

of the nuisance parameters (background, glints, etc.) as well as using template

matching. This is one of the key contributions of this model, in the sense that the

proposed framework can combine expert knowledge in a simple way in order to gain

discriminating power.

5.4 Markov/spatial/kinematic models for the sparse compo-

nent

5.4.1 Indicator probability models

This model contains multiple indicator variables with prior probabilities dis-

tributed as Beta(aπ, bπ). Moreover, sparsity is obtained when aπ/[aπ + bπ] ≪ 1.

Alternatively, we can introduce additional structure in our model by letting aπ and bπ

depend on previous frames (temporally) and/or neighboring pixels (spatially). This

is especially useful for detecting multi-pixel targets that move smoothly through a

scene.

Define WM(p,∆M
f,i) to be a function that maps the indicator variables ∆M

f,i to a

real number. For example, this may be the average number of non-zero indicators

in the neighborhood of pixel p, or a weighted version that puts higher value on

neighboring pixels. For f = 1, we let



aM1,i(p)

bM1,i(p)


 =





[aH bH ]
T , WM(p,∆M

1,i) > εMspatial,

[aL bL]
T , else,

(5.21)
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and for f > 1



aMf,i(p)

bMf,i(p)


 =





[aH bH ]
T , WM(p,∆M

f,i) > εMspatial and

WM(p,∆M
f−1,i) > εMtemporal,

[aL bL]
T , else.

(5.22)

In this chapter, we choose (aL, bL, aH , bH) so that aL/(aL+ b+L)≪ 1 and aH/(aH +

b+H)≫ 0. A similar model can be introduced for the probabilities of the glints.

5.4.2 Target kinematic model

In some applications, such as target tracking or sequential detection, we may

have access to an estimate of the kinematic state of the target(s) of interest, such as

position, velocity and acceleration. This may be useful for predicting the location

of the target at sequential frames. For simplicity, consider a single target at time

τ whose state ξ(τ) = (r(τ), ṙ(τ)) is known with standard errors Σξ(τ). Note that

the uncertainty model for (r, ṙ) may be (a) known a prior from road maps or traffic

behavior patterns, or (b) learned adaptively using some signal processing algorithm

such as the Kalman or particle filters.

In standard SAR image formation, moving targets tend to appear displaced and

defocused as described by Fienup [42] and Jao [54]. Moreover, Jao showed that

given the radar trajectory (q, q̇) and the target trajectory (r, ṙ), one can predict the

location of the target signature within the image p by solving a system of equations

that equate Doppler shifts and ranges, respectively, at each pulse:

d

dτ
[‖p− q(τ)‖2 − ‖r(τ)− q(τ)‖2]p=p∗ = 0 (5.23)

‖p∗ − q(τ)‖2 = ‖r(τ)− q(τ)‖2 , (5.24)
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procedure {Θ}i=1:Nsamples
= SARGibbs(Θ0, I)

Θ← Θ0

for iteration = 1 to Nburnin +Nsamples do
Sample ∼ f

(
B,X,G,M ,∆G,∆M |I,−

)
//Base

Sample ∼ f (H|I,−) //Calibration filter

Sample ∼ f (C|I,−) //Class assignment

Sample ∼ f (η|I,−) //Hyper-parameters

Θiteration−Nburnin
← Θ if iteration > Nburnin

end for

end procedure

Figure 5.2: Gibbs Sampling Pseudocode

which can be reduced to the simpler system of equations:

q̇(τ) · [p∗ − q(τ)] = [ṙ(τ)− q̇(τ)] · [r(τ)− q(τ)] (5.25)

‖p∗ − q(τ)‖2 = ‖r(τ)− q(τ)‖2 (5.26)

The probable locations of the target can be predicted by one of several methods,

including:

• Monte Carlo estimation of the target posterior density.

• Gaussian approximation using linearization or the unscented transformation to

approximate the posterior density

• Analytical approximation.

Given an estimate of the posterior density, we can modify the functionWM described

in the previous section to include dependence on this kinematic information. Details

of the posterior density estimation are provided in appendix 5.9.

5.5 Inference

In the proposed hierarchical model, the distribution of hyper-parameters at the

base layer are generally chosen to be conjugate to the distributions at the next layer.
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This allows for efficient approximation methods for the posterior distribution in the

sense that we can sample exactly from these distributions. In particular, we use

a Markov Chain Monte Carlo (MCMC) algorithm in the form of a Gibbs sampler

to iteratively estimate the full joint posterior. In MCMC, this distribution is ap-

proximated by drawing samples iteratively from the conditional distribution of each

(random) model variable given the most recent estimate of the rest of the variables

(which we denote by −). Let Θ =
{
B,X,G,M ,∆G,∆M ,H ,C,η

}
represent a

current estimate of all of the model variables where η represents the set of all hyper-

parameters. Given measurements I, the inference algorithm is given in Figure 5.2.

Note that MCMC algorithms require a burn-in period after the Markov chain has

become stable, where the duration of burn-in period depends on the problem. After

this point, we collect Nsamples samples that represent the full joint distribution. Full

details of the sampling procedures are given in in appendix 5.10. However, we point

out a couple of important features here. First, the sampling of the base model can

be rewritten as

f(B,X,G,M ,∆G,∆M |I,−) (5.27)

=
∏

p,f

f(b
(p)
f ,x

(p)
f,1:N , g

(p)
f,1:N ,m

(p)
f,1:N , δ

G,(p)
f , δ

M,(p)
f,1:N |I,−)

The conditional independence among pixels and frames given the nuisance parame-

ters allows us to easily parallelize the sampling procedure over the largest dimensions

of the state. Moreover, we can extend the parallelization to sampling independently

over passes by separating the sampling of equation (5.27) into two Gibbs steps from
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the densities:

f(b
(p)
f ,x

(p)
f,1:N ,m

(p)
f,1:N , δ

M,(p)
f,1:N |I,−) (5.28)

= f(b
(p)
f |I,x

(p)
f,1:N ,m

(p)
f,1:N , δ

M,(p)
f,1:N ,−)

·
∏

i

f(x
(p)
f,i , m

(p)
f,i |δ

M,(p)
f,i , I,−)f(δM,(p)

f,i |I,−)

f(g
(p)
f,1:N , δ

G,(p)
f |I,−) (5.29)

= f(δ
G,(p)
f |I,−)

∏

i

f(g(p)
f,i
|I, δG,(p)

f ,−)

In both of the sampling steps in equations (5.28) and (5.29), we have an exact

inference algorithm over multivariate-Gaussian distributed variables and Bernoulli

distributed variables. This leads to faster convergence of the Markov chain and sub-

sequently fewer burn-in samples. The conditional density for the nuisance parameters

η given the remainder variables can also be re-written to allow for efficient sampling.

In particular, due to conditional independence we have:

f(η|I,−) =f(ΓM |M ,∆M)f(πM |M ,∆M ,ΓM)

·f(ΓG|G,∆G)f(πG|G,∆G,ΓG)

·
∏

j

f(ΓB(j)|B,C)f(ΓX(j)|X,C)

(5.30)

where Γ represents the parameters related to the covariance matrices (i.e., the vari-

ance σ2, correlation structure Γρ, and the coherence ρ). Once again, this decompo-

sition allows for a sampling procedure that leads to faster convergence of the Gibbs

sampler. Moreover, the sampling procedures for the individual densities in equation

(5.30) tend to require sufficient statistics that are of significantly smaller dimension

and thus more desirable from a computational viewpoint. For example, sampling of

the covariance matrix ΓM depends only on a K × K sample covariance matrix. It

should be noted that sampling of the covariance matrices requires additional effort



180

in order to constrain its shape to that of equation (5.11). In particular, we use a

Metropolis-Hastings step, which can be easily done by noting that the posterior den-

sity f(ΓW , ρW , (σ2)W |W ) is proportional to an Inverse-Wishart distribution. Details

are provided in the in appendix 5.10.

5.6 Performance prediction

Among the benefits of using our SAR image model is the ability to use the

inferred statistics in order to do performance prediction that can be used for planning

purposes and feasibility analysis. In this chapter, we provide a likelihood ratio test

(LRT) for detection and derive a Cramér-Rao Lower Bound (CRLB) for estimator

mean squared error (MSE).

5.6.1 Detection

The LRT for detecting a target in frame f and pass i follows from the detection

problem:

H0 : i
(p)
f,i = h

(p)
f,i ◦

(
c
(p)
f,i + v

(p)
f,i

)

H1 : i
(p)
f,i = h

(p)
f,i ◦

(
c
(p)
f,i +m

(p)
f,i + v

(p)
f,i

) p ⊂ {1, . . . , P}

where we assume p ∈ X ⊂ {1, . . . , P} is a set of pixels containing the target signature

and the background clutter is given by

c
(p)
f,i = b

(p)
f + x

(p)
f,i + δGf g

(p)

f,i
∼ CN

(
0,ΓC(p)

)
, (5.31)

where ΓC(p)
△
= ΓB(p)+ΓX(p)+δGf Γ

G(p). Assuming that the pixels are independently

distributed, the LRT is given by:

ΛLRT =
∏

p∈X

ψCN (i
(p)
f,i ; 0,Γ

1(p))

ψCN (i
(p)
f,i ; 0,Γ

0(p))
(5.32)

Γ0(p) = ΓM + ΓC(p) + ΓV , Γ1(p) = Γ0(p) + ΓM (5.33)
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Table 5.7: Parameters of simulated dataset
Parameter Value

Pixels in image, P P = 100× 100

Number of frames per pass, F F = 1

# of antennas, K K = 3

# of passes, N N ∈ {5, 10, 20}
# of target pixels/image, Ntargets Ntargets = 20

Clutter of background, ρ ρ ∈ {0.9, 0.99, 0.999, 0.9999}
Variance of targets, σ2

target σ2
target = 1

Variance of background
Either σ2

dim = σ2
clutter/100

or σ2
bright = σ2

clutter

Signal-to-noise-plus clutter (SCNR)
SCNR

△
=

σ2
target

σ2
clutter

+σ2
noise

∈ {0.1, 0.5, 1, 2}

where ψCN (y;µ,Γ) is the complex-normal distribution pdf of y with mean µ and

covariance Γ. Moreover, it can be easily shown that ΛLRT is equivalent to the test

statistic

T =
∑

p∈X

(
i
(p)
f,i

)H [
(Γ1(p))−1 − (Γ0(p))−1

] (
i
(p)
f,i

)
. (5.34)

5.6.2 The CRLB

The derivation of the CRLB is provided in Appendix 5.11.

5.7 Performance analysis

5.7.1 Simulation

We first demonstrate the performance of the proposed algorithm, which we refer

to as the Bayes SAR algorithm, on a simulated dataset. Images were created ac-

cording to the model given in Section 5.3 with parameters given in Table 5.7. The

low-dimensional component was divided into one of two classes (‘dim’ or ‘bright’).

Pixels were deterministically assigned to one of these classes to resemble a natural
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Table 5.8: Comparison of proposed method (Bayes SAR) to RPCA Methods with
N = 20, F = 1, K = 3. Note that the Bayes SAR method performs about
twice as well as either of the RPCA methods for all criteria. In particular,
the Bayes SAR method produces a sparse result (last column), whereas
the RPCA methods do not.

(a) Bayes SAR

SCNR Coherence
‖L−L̂‖

2

‖L‖2

‖S−Ŝ‖
2

‖S‖2

‖S−Ŝ‖
0

‖S‖0

10% 0.900 0.057 0.578 0.550

10% 0.9999 0.045 0.419 0.367

100% 0.900 0.057 0.155 0.150

100% 0.9999 0.052 0.122 0.096

200% 0.900 0.057 0.123 0.137

200% 0.9999 0.056 0.114 0.092

(b) Opt. RPCA

SCNR Coherence
‖L−L̂‖

2

‖L‖2

‖S−Ŝ‖
2

‖S‖2

‖S−Ŝ‖
0

‖S‖0

10% 0.900 0.111 3.175 111.026

10% 0.9999 0.113 3.237 109.716

100% 0.900 0.111 1.189 109.520

100% 0.9999 0.110 1.173 108.203

200% 0.900 0.112 1.058 111.120

200% 0.9999 0.110 1.035 109.583

(c) Bayes RPCA

SCNR Coherence
‖L−L̂‖

2

‖L‖2

‖S−Ŝ‖
2

‖S‖2

‖S−Ŝ‖
0

‖S‖0

10% 0.900 0.117 0.998 3.761

10% 0.9999 0.108 0.990 3.799

100% 0.900 0.116 0.764 3.451

100% 0.9999 0.117 0.741 3.494

200% 0.900 0.125 0.706 3.665

200% 0.9999 0.129 0.692 3.720
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SAR image (see Figure 5.4). The sparse component included a randomly placed tar-

get with multiple-pixel extent. A spatiotemporally varying antenna gain filter was

uniformly drawn at random on the range [0, 2π) for groups of pixels of size 25× 25.

Lastly, zero-mean IID noise was added with variance σ2
noise.

The Bayes SAR model is applied to infer the low-dimensional component Lf,i

and sparse target component Sf,i with estimates denoted L̂f,i and Ŝf,i, respectively.

Hyperparameters of the model are chosen according to the Section 5.5. Results are

given by the mean of MCMC inference with 500 burn-in iterations followed by 100

collection samples. We consider three metrics to evaluate the reconstruction errors:

‖L−L̂‖
2

‖L‖2
,
‖S−Ŝ‖

2

‖S‖2
,
‖S−Ŝ‖

2

‖S‖0
, where the norm is taken over the vectorized quantities.

In comparison to the Bayes SAR model, results are given for state-of-the-art

algorithms for Robust Principal Component Analysis (RCPA): an optimization-based

approach proposed by Wright et al. [93] and Candes et al. [19] and a Bayesian-based

approach proposed by Ding et al. [33]2. The optimization-based approach requires

a tolerance parameter which is related to the noise level, as suggested by Ding et

al. [33]. We chose this parameter in order to have the smallest reconstruction errors.

The Bayesian method did not require tuning parameters, except for choosing the

maximum rank of Lf,i which was set to 20.

Figure 5.3 compares the relative reconstruction error of the sparse (target) com-

ponent,
‖S−Ŝ‖

2

‖S‖2
, across all algorithms, number of passes N , coherence of antennas

ρ, and SCNR. In all cases, the Bayes SAR method outperforms the RPCA algo-

rithms with improving performance if either coherence or SCNR increases. Table

5.8 provides additional numerical results for the case N = 20. The RCPA algorithms

2For the optimization-based approach, we used the exact alm rpca package (MATLAB) by Lin et
al. [63], downloaded from http://watt.csl.illinois.edu/perceive/matrix-rank/home.html.
For the Bayesian-based approach, we used the Bayesian robust PCA package, downloaded from
http://www.ece.duke.edu/~lihan/brpca_code/BRPCA.zip.
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perform poorly in reconstructing the sparse component with relative errors near or

greater than 1. This reflects the fact that (a) these algorithms miss significant sources

of information, such as the correlations among antennas and among quadrature com-

ponents, and (b) N = 20 may be too few samples to reliably estimate the principal

components in these non-parametric models. In measured SAR imagery, it might be

unreasonable to expect N ≫ 20 passes of the radar, which suggests that these RPCA

algorithms will likely perform poorly on such signals. In contrast, it is seen that the

Bayes SAR method obtains low reconstruction errors for both low-dimensional and

sparse components as either coherence or SCNR increase.

Since both Bayes SAR and BRPCA are hierarchical Bayesian models for sepa-

rating signals into low-dimensional and sparse components, one might wonder why

the performance of the two algorithms is so different in these simulations. The main

underlying reason for the difference in the performance is that BRPCA models the

low-dimensional signal as low-rank, so that each pixel can be described by a few linear

factors, while Bayes SAR assumes that the low-dimensional background is random,

but can be described by a few multivariate Gaussian distributions. This suggests

that the random variations in the low-dimensional component caused by speckle and

glints cannot be adequately modeled using a low-rank assumption (as in BRPCA).

It should be noted that both Bayes SAR and BRPCA have very similar models for

the sparse target component, using temporal/spatially Markov models for the target

indicators.

5.7.2 Measured data

In this section, we compare performance of the Bayes SAR approach using a set

of measured data from the 2006 Gotcha SAR sensor collection. In particular, images
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were formed from phase histories collected over a scene of size 375m by 1200m for

N = 3 passes and K = 3 antennas. Each image was created with a coherent

processing time of 0.5 seconds with the addition of a Blackman-Harris window in the

azimuth direction to reduce sidelobes. Images were created at overlapping intervals

spaced 0.25 seconds apart for a total of 18 seconds. Note that the ability to take

advantage of correlated images (as in this case) is one of the benefits of using the

proposed model/inference algorithm.

We consider three alternative approaches in comparison to the Bayes SAR ap-

proach: (1) displaced-phase center array (DPCA) processing, (2) along-track in-

terferometry (ATI), and (3) a mixture of DPCA/ATI. Note that all variants of

ATI/DPCA depend on the chosen thresholds for phase/magnitude, respectively.

Comparisons to DPCA/ATI

We begin by comparing the output of the proposed algorithm across the entire

375m by 1200m scene. Figure 5.5 shows the output of the Bayes SAR algorithm

and the DPCA/ATI comparisons. It is seen that there are significant performance

gains by using calibrated images as shown in (c) and (f) as compared to their original

versions, (b) and (e), respectively. Furthermore, the proposed approach also provides

a sparse output without choosing thresholds as required by DPCA/ATI. Note that

in this figure, calibration is accomplished by using the outputs Hf,i from the Bayes

SAR approach.

Figures 5.6 and 5.7 display the detection performance over two smaller scenes of

size 125m by 125m as a function of magnitude and phase, respectively. For each scene,

images are provided for sequential scenes separated by 0.5 seconds. Scene 1 contains

strong clutter in the upper left region, while Scene 2 has relatively little clutter. It is
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seen that the proposed approach (2nd column) provides a sparse solution containing

the targets of interest in each of the 4 images. Moreover, the 3rd column provides

the estimated probability that a target occupies a given pixel, in comparison to the

(0,1) output of DPCA. Although most estimated probabilities are near 1, there are

a few cases where this is not the situation: in scene 2(d), a low-magnitude target is

detected with low probability in the lower-right; in scene 1(b) a few target pixels from

the clutter region are detected with low probability. In contrast, the performance of

DPCA depends strongly on the threshold. In Scene 1, a 30 dB threshold provides

a large number of false alarms. However, in Scene 2, the low-magnitude targets are

missed for the 15 dB threshold, but detected at the 30 dB threshold.

Figure 5.7 shows the detection performance based on phase over the same 4

images. It is once again seen that the performance of the ATI/DPCA algorithms

depend strongly on the thresholds, with performance that varies across thresholds

from image to image. On the other hand, the proposed approach is able to detect the

targets with high fidelity regardless of the scene/image and does not require tuning

of thresholds for detection.

Target motion models

Figure 5.8 shows the output of the proposed approach when prior information

on the location of the targets might be available. For example, in the shown scene,

targets are likely to be stopped at an intersection. The performance improvement is

given for a mission scene that contains target in this high probability region. On the

other hand, there are no significant performance decreases in the reference scene that

does not contain targets in the intersection region. This type of processing could be

extended to a tracking environment, where targets are projected to likely be in a
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Table 5.9: Radial velocity estimation (m/s) in 2006 Gotcha collection dataset
(a) Target 1

Algorithm Bias MSE No. Missed

Raw 0.64 0.94 1

Calibrated 0.71 1.02 0

Bayes SAR 0.03 0.10 0

ATI/DPCA∗ -0.04 0.20 27

ATI/DPCA∗∗ 0.10 0.20 2

(b) Target 2

Algorithm Bias MSE No. Missed

Raw 0.47 0.77 6

Calibrated 0.48 0.79 0

Bayes SAR 0.19 0.22 0

ATI/DPCA∗ -0.07 0.43 30

ATI/DPCA∗∗ 0.23 0.28 3

given location within the formed SAR image as discussed in Section 5.4.

Estimation of radial velocity

The dataset used in this section contained a few GPS-truthed vehicles from which

we can derive (a) the ‘true’ location of the target within the formed SAR image, and

(b) the target’s radial velocity which is known to be proportional to the measured

interferometric phase of the target pixels in an along-track system. Figure 5.9 shows

the estimated radial velocities for two targets over 18 seconds at 0.25 second incre-

ments. We compare the estimation of radial velocity from the output of the Bayes

SAR algorithm, from the raw images, from the calibrated images, and from two

DPCA/ATI joint algorithms with phase/magnitude thresholds of (25 deg, 15 dB)

and (25 deg, 30 dB) respectively. For fair comparisons, the DPCA/ATI thresholds

are applied to the calibrated imagery, though this is a non-trivial step in general.

Numerical results are summarized in Table 5.9. It is seen that the Bayes SAR algo-
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rithm outperforms the others in terms of MSE for both targets. Moreover, the Bayes

SAR algorithm never misses a target detection in this dataset, which is not the case

for the DPCA/ATI algorithms.

Performance prediction

Since the proposed SAR image model estimates the statistics of the background

component directly, we can predict performance for detection and estimation for

future passes without the entire machinery of the hierarchical Bayesian model. Figure

5.10 shows an example of using the Bayes SAR model in order to derive likelihood

ratio tests according to the test statistic given in equation (5.34). Similarly, Figure

5.11 provides an example for bounds on estimation errors for x− and y− positions

given the outputs of the Bayes SAR model.

5.8 Discussion and future work

This chapter extends research in decomposing high-dimensional signals/images

into low-rank and sparse components in the presence of noise [19, 63, 93] to the

case of separating target signatures from a low-dimensional clutter subspace in SAR

imagery. In particular, we combine our understanding of the physical, kinematic, and

statistical properties of SAR imagery into a single unified Bayesian structure that

simultaneously (a) estimates the nuisance parameters such as clutter distributions

and antenna miscalibrations and (b) extracts a sparse component containing the

target signatures required for detection and estimation of the target state. Similar

to Ding et al. [33], this algorithm requires few tuning parameters since most quantities

of interest are inferred directly from the data - this allows the algorithm to be robust

to a large collection of operating conditions. The performance of the proposed

approach is analyzed over both simulated and measured datasets, demonstrating
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competing or better performance than the robust PCA algorithms and ATI/DPCA.

Moreover, it is shown that the outputs of the Bayesian inference can be used for

future performance prediction through examples of derived likelihood ratio tests and

Cramér-Rao Lower Bounds for spatial errors.

Future work will include the development of algorithms that exploit the use of a

posterior distribution for improved performance in a signal processing task, e.g. de-

tection, tracking or classification. In particular, we are interested in using algorithms

for simultaneously detecting and estimating targets over a sparse scene with resource

constraints as discussed in Chapters II and III, as well determining the fundamental

performance limits of a SAR target tracking system. Furthermore, we would also like

to consider other generalizations to the SAR image model, such as complex target

maneuvers, multiple target classes, and explicit tracking of the target phase.

5.9 Appendix: Target signature prediction

In some applications, such as target tracking or sequential detection, we may

have access to an estimate of the kinematic state of the target(s) of interest, such as

position, velocity and acceleration. This may be useful for predicting the location of

the target at sequential frames. For simplicity, consider a single target whose state

(r(τ), ṙ(τ)) is known with standard errors (σr, σṙ), where τ denotes the slow-time

(i.e., time of the radar pulse). In standard SAR image formation, moving targets tend

to appear displaced and defocused in as described in the literature by Fienup [42]

and Jao [54]. Moreover, Jao shows that given the radar trajectory (q, q̇) and the

target trajectory (r, ṙ), one can predict the location of the target signature within

the image p by solving a system of equations that equate Doppler shifts and ranges,
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respectively, at each pulse:

d

dτ
[‖p− q(τ)‖2 − ‖r(τ)− q(τ)‖2]p=p∗ = 0 (5.35)

‖p∗ − q(τ)‖2 = ‖r(τ)− q(τ)‖2 , (5.36)

which can be reduced to the simpler system of equations:

q̇(τ) · [p∗ − q(τ)] = [ṙ(τ)− q̇(τ)] · [r(τ)− q(τ)] (5.37)

‖p∗ − q(τ)‖2 = ‖r(τ)− q(τ)‖2 (5.38)

In practice, the target state (r, ṙ) is unknown or known with some uncertainty. In

the latter case, we can predict the probable locations of the target signature by one

of several methods, including:

• Monte Carlo estimation of the target signature locations.

• Gaussian approximation using linearization or the unscented transformation.

• Analytical approximation as proposed by Newstadt et al. [70].

5.9.1 Notation

Following the derivation of Jao [54], we will assume the following notation:

• r(τ) = (rx, ry, rz) is the position of a point scatterer.

• q(τ) = (qx, qy, qz) is the position of the radar platform.

• ṙ(τ) = (ṙx, ṙy, ṙz) is the velocity of a point scatterer.

• q̇(τ) = (q̇x, q̇y, q̇z) is the true position of the platform.

• p = (px, py, pz) is a pixel location within the image.

• τ represents the slow-time (i.e., pulse of the radar sample).
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5.9.2 Deterministic solution

In the deterministic case, where r, ṙ,q, and q̇ are all known, we can find the pixel

p∗ where the target signature will be focused at time τ by solving equations (5.25)

and (5.26). In particular, if we assume that z-coordinate is given by a function

pz = h(px, py), (5.39)

then we can give explicit expressions for (px, py, pz) in some cases of h. We will focus

on the simple case where h(px, py) = z0 (i.e, constant elevation), though this can be

easily extended to other cases (for example, with a depth elevation map).

To solve the system of equations, let

α(τ) = ‖r(τ)− q(τ)‖22 (5.40)

β(τ) = q̇(τ) · r(τ)− ṙ(τ) · (r(τ)− q(τ)) (5.41)

Then we have

α(τ) = ‖p∗ − q(τ)‖22

= (p∗x − qx(τ))2 +
(
p∗y − qy(τ)

)2
+ (z0 − qz(τ))2

(5.42)

and re-arranging equation (5.25) we have

β(τ) = q̇(τ) · p∗

= q̇xp
∗
x + q̇yp

∗
y + q̇zz0

(5.43)

For this derivation, assume that q̇x 6= 03. Therefore, solving for p∗x, we get:

p∗x =
β(τ)− q̇yp∗y − q̇zz0

q̇x

=

(
β(τ)− q̇zz0

q̇x

)
+

(
− q̇y
q̇x

)
p∗y

= γ0 + γ1p
∗
y

(5.44)

3By assumption, the radar has non-zero velocity in the xy-plane. Thus, if q̇x = 0, then this
derivation should be valid if we switch the x and y indices.
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Plugging into equation (5.42) we get:

α(τ) =
(
γ0 + γ1p

∗
y − qx(τ)

)2
+
(
p∗y − qy(τ)

)2
+ (z0 − qz(τ))2 (5.45)

which can be re-arranged as

ay(p
∗
y)

2 + byp
∗
y + cy(p

∗
y)

2 = 0 (5.46)

where

ay =
(
1 + γ21

)

by = 2 (γ0γ1 − γ1qx(τ)− qy(τ))

cy = (γ0 − qx(τ))2 + (qy(τ))
2 + (z0 − qz(τ))2 − α(τ)

=
(
γ20 + z20

)
− 2 (γ0qx(τ) + z0qz(τ)) + ‖q(τ)‖22 − ‖r(τ)− q(τ)‖22

(5.47)

Then p∗y is given by the solution of the quadratic equation:

p∗y =
−by ±

√
b2y − 4aycy

2ay
(5.48)

and p∗x is given by equation (5.44). This solution suggests that the target energy will

generally actually appear at two locations. However, in most cases only one of these

locations will be in the formed SAR image. Thus, we generally choose the solution

(p∗x, p
∗
y) that is closest to the scene center (0, 0).

Finally, we note that equations (5.44) and (5.48) provide the pixel location con-

taining the target energy at a single pulse time, τ . Generally, images are formed

by integrating pulses over a coherent processing interval (CPI) containing multiple

times τ ∈ [T0, T1].

5.9.3 Uncertainty model

It is unlikely that we will have perfect information regarding the target state r(τ)

and ṙ(τ) at all times τ . On the other hand, there are special cases where we might

have some information about these states that include
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• A tracking environment, where we estimate target position and velocities with

standard errors, σr and σṙ, respectively.

• A persistently monitored scene, where we have knowledge of traffic patterns or

road systems. In such a case, we have prior knowledge of likely target states.

In either case, we have a characterization of likely behavior of the target kinematic

state. We can represent this knowledge in many ways that could include

• A linear kinematic model, where

r(τ) = r0 + vτ + aτ 2/2

r0 ∼ N
(
µr, σ

2
rI
)

v ∼ N
(
µv, σ

2
vI
)

a ∼ N
(
µa, σ

2
aI
)

(5.49)

• A random kinematic model, where at each time τ

r(τ) ∼ N
(
µr(τ), [σr(τ)]

2I
)

ṙ(τ) ∼ N
(
µṙ(τ), [σṙ(τ)]

2I
) (5.50)

Note that both models assume that the position and velocity vectors are Gaussian

distributed. However, the first model is characterized by only 6 random variables (2

each for position, velocity, and acceleration) regardless of the number of pulses. The

second model, on the other hand, assumes 4 random variables for each pulse τ . In

fact, the first model can be seen as a specialization of the second model for specific

structures for the mean and variance parameters.

In this document, the choice of target kinematic model depends on the inference

method which we will use to derive the distribution of the target locations. In Monte

Carlo sampling, the choice of model is of relatively insignificant computational burden
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as compared to the generation of the Monte Carlo samples. On the other hand, in

the analytical approximation methods, the choice of target kinematic model is of

great importance.

The goal of this section is to provide a prediction model for the locations of

targets within a SAR image given a target kinematic model. In particular, we define

this model through the distribution of pixel locations:

f(px, py) (5.51)

which is assumed to have support on R
2. Generally, images are formed on a discrete

grid so that we should really consider a discrete distribution. However, for simplicity

we consider a continuous domain in this section.

Moreover, we have to be careful how we define the distribution of pixel lo-

cations for SAR images formed by integrating multiple radar pulses. Consider a

probability distribution function (PDF) for the target location at pulse τi given by

f(px(τi), py(τi)). We define the target distribution of interest as:

f(px, py) =
1

T

T∑

i=1

f(px(τi), py(τi)) (5.52)

This is equivalent to the distribution of the target occupying location (px, py) at any

of T integrated pulses. We could consider a richer description by solving for the

joint distribution on {px(τi), py(τi)}Ti=1. However, this will be generally very high-

dimensional and might not provide any additional benefit over the distribution given

by equation (5.52) be useful for the purposes described in the paper.

Finally, since we will solve for the distributions f(px(τi), py(τi)) independently for

each τi, we will consider the random kinematic model only. In the naive situation

where the distributions of target locations are independent over time, this will provide

solutions that can be approximated analytically with just a few minor assumptions.
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5.9.4 Monte Carlo prediction

The most straightforward way to approximate the distribution in equation (5.52)

is to use Monte Carlo sampling from the linear/random target kinematic models,

followed by projection of those target states into the image domain using equations

(5.44) and (5.48). A Monte Carlo representation is subsequently given by the average

number of samples occupying any pixel. Note that since the Monte Carlo represen-

tation will contain discrete samples, we will end up with a discrete probability mass

function (PMF) rather than a PDF.

5.9.5 Gaussian approximation

Rather than using a potentially high-dimensional PMF or PDF representation

of the target location at time τi, we could consider a Gaussian approximation that

represents the probability distribution with just two parameters: the mean µi ∈ R2

and the covariance Σi ∈ R2×2 for each slow-time. Then the PDF is given by a

Gaussian mixture model of form:

f(p) ≈ 1

T

T∑

i=1

φCN (p;µi,Σi) (5.53)

where φCN (x;µ,Σ) is the multivariate normal distribution PDF of x with mean µ

and covariance Σ.

To find the means µi and covariances Σi, we could consider linearization of the so-

lution to equations (5.44) and (5.48) around a particular state ξ(τi)
△
= {r(τi), ṙ(τi)}.

This is akin to the approximation made by the Extended Kalman Filter, where the

state is Gaussian but the observations are non-linear. Let us define

g(ξ(τi)) =



p∗x(ξ(τi))

p∗y(ξ(τi))


 (5.54)
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where p∗x and p∗y are given by equations (5.44) and (5.48). Then the first-order

linearization around the mean µξ is given by:

G(ξ) = g(µξ) +
(
∇g(ξ)

∣∣
ξ=µξ

)T
(ξ − µξ) (5.55)

Since this is a linear function of a Gaussian distributed vector in ξ(τi), we know that

the pixels p(τi) ≈ G(ξ(τi)) are distributed as

p(τi) ∼ N

(
g(µξ(τi)),

(
∇g(ξ)

∣∣
ξ=µξ(τi)

)T
Σξ(τi)

(
∇g(ξ)

∣∣
ξ=µξ(τi)

))
, (5.56)

where Σξ(τi) is given by

Σξ(τi) =




Σr(τi) 0

0 Σṙ(τi)


 (5.57)

5.9.6 Analytical approximation

It is also possible to get a closer approximation than the linearization example

provided above by doing some analytical derivations. In particular, let us assume

that the radar platform moves in the x-direction so that q̇y = q̇z = 0 and |q̇x| > 0.

In the general case, this derivation would hold for a transformed set of coordinates

(p′x, p
′
y), though we won’t go into that derivation here. In the former case, equations

(5.44) and (5.48) reduce to:

p∗x =
β(τ)

q̇x
=
q̇xrx − (rx − qx)vx − (ry − qy)vy

q̇x
(5.58)

p∗y = qy ±
√
α(τ)− (px − qx)2 − (z0 − qz)2 (5.59)

From equation (5.58), we see that

f(p∗x|rx, ry) ∼ N(µ, σ2) (5.60)
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where

µ =
1

q̇x
([q̇x − µvx]rx − µvyry + qxµvx + qyµvy) (5.61)

σ2 =
(rx − qx)2 + (ry − qy)2

(q̇x)2
σ2
v (5.62)

where we have assumed that Σṙ = σ2
vI. Note that σ

2 is a function of the position r.

However, since ‖q‖ ≫ ‖r‖ in general, we make a zero-th order approximation here

so that

σ2 ≈ σ2
0

△
=

(µrx − qx)2 + (µry − qy)2
(q̇x)2

σ2
v (5.63)

In this case, we see that we can find

f(px) =

∞∫

−∞

∞∫

−∞

f(px|rx, ry)f(rx, ry)drxdry

=

∞∫

−∞

∞∫

−∞

φCN (px;µ(rx, ry), σ
2
0)φCN (rx;µrx, σ

2
r)φCN (ry;µry, σ

2
r )drxdry

(5.64)

where we have assumed that Σr = σ2
rI. Since µ(rx, ry) is linear in rx and ry from

equation (5.61), we can analytically solve this integral to see that

p∗x ∼ N(µpx, σ
2
px) (5.65)

where

µpx =
1

q̇x
(qxµvx + qyµvy + q̇xµrx − µvxµrx − µvyµy) (5.66)

σ2
px =

σ2
r

(q̇x)2
[
(q̇x − µvx)

2 + µ2
vy

]
+ σ2

0 (5.67)

Since p∗y in equation (5.59) is non-linear, we make one more assumption with a first-

order linearization around p∗y(µr). Note note that given p∗x, equation (5.59) only

depends on the target state through r (and not on the velocity ṙ). Define s(r, px)

to be the value of equation (5.59) given state r and pixel location px. Then we
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approximate p∗y as

p∗y(r)|p∗x ≈ s(µr, p
∗
x) +

(
∇s(µr, p

∗
x)
∣∣
r=µr

)T
(r − µr) (5.68)

Finally, we note that given px, py is Gaussian distributed with distribution:

py|px ∼ N(µpy, σ
2
py) (5.69)

µpy = s(µr, p
∗
x) (5.70)

σ2
py = σ2

r

(
∇s(µr, p

∗
x)
∣∣
r=µr

)T (
∇s(µr, p

∗
x)
∣∣
r=µr

)
(5.71)

Note that both p∗x and p∗y | p∗x have Gaussian distributions that can be described

by a mean and covariance term. In contrast to Section 5.9.5, the distribution is

not jointly Gaussian because the mean and covariance of p∗y | p∗x depend on p∗x.

Nevertheless, one can easily evaluate this PDF at any pixel (px, py). Over short

CPIs, both approximations will probably lead to similar results.

5.10 Appendix: Inference Details

In the hierarchical model proposed in Section 5.3, the distribution of hyper-

parameters at the base layer are generally chosen to be conjugate to the distributions

at the next layer. This allows for efficient approximation methods for the posterior

distribution in the sense that we can sample exactly from these distributions. In

particular, we use a Markov Chain Monte Carlo (MCMC) algorithm in the form

of a Gibbs sampler to iteratively estimate the full joint posterior. In MCMC, this

distribution is approximated by drawing samples iteratively from the conditional dis-

tribution of each (random) model variable given the most recent estimate of the rest

of the variables (which we denote by −). Let Θ =
{
B,X,G,M ,∆G,∆M ,H ,C,η

}

represent a current estimate of all of the model variables where η represents the set of



199

all hyper-parameters. Given measurements I, the inference algorithm is given in Fig-

ure 5.2. Note that MCMC algorithms require a burn-in period after the Markov chain

has become stable, where the duration of burn-in period depends on the problem.

After this point, we collect Nsamples samples that represent the full joint distribution.

The sampling details are provided for each of the steps in Figure 5.2 individually.

5.10.1 Basic Decomposition

Given the parameters in Tables 5.5 and 5.6, we arrive at one of the primary

benefits of using Gibbs Sampling for inference: namely that we can independently

sample across pixels and frames. In distributional form, we have

f(B,X,G,M ,∆G,∆M |I,−) (5.72)

=
∏

p,f

f(b
(p)
f ,x

(p)
f,1:N , g

(p)
f,1:N ,m

(p)
f,1:N , δ

G,(p)
f , δ

M,(p)
f,1:N |I,−)

The conditional independence among pixels and frames given the nuisance parame-

ters allows us to easily parallelize the sampling procedure over the largest dimensions

of the state. Moreover, we can extend the parallelization to sampling independently

over passes by separating the sampling of equation (5.72) into two Gibbs steps from

the densities:

f(b
(p)
f ,x

(p)
f,1:N ,m

(p)
f,1:N , δ

M,(p)
f,1:N |I,−) (5.73)

= f(b
(p)
f |I,x

(p)
f,1:N ,m

(p)
f,1:N , δ

M,(p)
f,1:N ,−)

·
∏

i

f(x
(p)
f,i , m

(p)
f,i |δ

M,(p)
f,i , I,−)f(δM,(p)

f,i |I,−)

f(g
(p)
f,1:N , δ

G,(p)
f |I,−) (5.74)

= f(δ
G,(p)
f |I,−)

∏

i

f(g(p)
f,i
|I, δG,(p)

f ,−)
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It should be noted that each of these distributions have explicit forms as either

multivariate Gaussian or Bernoulli distributed. For example consider the distribution

f(x
(p)
f,i , m

(p)
f,i |δ

M,(p)
f,i , I,−) = f(x

(p)
f,i , m

(p)
f,i |δ

M,(p)
f,i , r

(p)
f,i ,−) (5.75)

where we define

r
(p)
f,i

△
=
(
i
(p)
f,i ./h

(p)
f,i

)
− δG,(p)

f g(p)
f,i
, (5.76)

where ./ is the point-wise division operator. In particular, we know that

r
(p)
f,i = b

(p)
f + x

(p)
f,i + δ

M,(p)
f,i m

(p)
f,i + v

(p)
f,i , (5.77)

Thus, given δ
M,(p)
f,i , we have r

(p)
f,i as a linear combination of Gaussian random variables.

Thus, by standard conditional distributions of a Gaussian random vector, we know

that the distribution of b
(p)
f and x

(p)
f,i must also be Gaussian. Table 5.10 gives the

means and covariances of the Gaussian distributions in equations (5.73) and (5.74).

Moreover, the distributions of the indicator functions are easily found by Bayes rule.

For example, define the quantity

zd = f(i
(p)
f,i |δ

M,(p)
f,i = d, h

(p)
f,i , δ

G,(p)
f , g(p)

f,i
, b

(p)
f ). (5.78)

Then it is easily seen that for the target indicators we have by Bayes rule

f(δ
M,(p)
f,i = 1|I,−) =

z1f(δ
M,(p)
f,i = 1)

∑
d=(0,1)

zdf(δ
M,(p)
f,i = d)

=

[
1 +

1− πM
f,i(p)

πM
f,i(p)

z0
z1

]−1
(5.79)

Note that zd is just an evaluation of the Normal PDF so that it can be simply

calculated. Table 5.11 provides explicit values of zd for both the target and glint

indicators, where φCN (x;µ,Σ) is the multivariate normal PDF with mean µ and

covariance Σ.
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Table 5.10: Gaussian distribution parameters for distributions of base layer parameters in SAR image model equations (5.73)
and (5.74)

Component Variable Mean Covariance Parameters

Background b
(p)
f Λr

(p)
f

(IK×K −Λ)ΓB(p)
r
(p)
f =

∑N
i=1(i

(p)
f,i ./h

(p)
f,i − x

(p)
f,i − δ

G,(p)
f g(p)

f,i
− δM,(p)

f,i m
(p)
f,i )

Λ = ΓB(p)
(
ΓB(p) + ΓV

)−1

Speckle, Target



x
(p)
f,i

m
(p)
f,i


 Λr

(p)
f,i

Σ11 −ΛΣ12

Σ11 =




ΓX(p) 0

0 δ
M,(p)
f,i ΓM


 ,Σ12 =




ΓX(p)

δ
M,(p)
f,i ΓM




r
(p)
f,i = i

(p)
f,i ./h

(p)
f,i − b

(p)
f − δ

G,(p)
f g(p)

f,i

Λ = ΣT
12

(
ΓX(p) + δ

M,(p)
f,i ΓM + ΓV

)−1

Glints g(p)
f,i Λr

(p)
f,i

(IK×K −Λ)ΓG
r
(p)
f,i = i

(p)
f,i ./h

(p)
f,i − x

(p)
f,i − δ

M,(p)
f,i m

(p)
f,i − b

(p)
f

Λ = δ
G,(p)
f ΓG

(
δ
G,(p)
f ΓG + ΓV

)−1
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Table 5.11: Bernoulli distribution parameters for distributions of indicator variables in equations (5.73) and (5.74)

Component Variable f(δ = 1|−) zd r(p)

Glints δ
G,(p)
f

[
1 +

1−πG
f
(p)

πG
f
(p)

z0
z1

]−1

φCN (r(p)/N ; 0, dΓG + ΓV )
∑N

i=1

(
i
(p)
f,i ./h

(p)
f,i − b

(p)
f − x

(p)
f,i − δ

M,(p)
f,i m

(p)
f,i

)

Targets δ
M,(p)
f,i

[
1 +

1−πM
f,i

(p)

πM
f,i

(p)
z0
z1

]−1

φCN (r(p); 0, dΓM + ΓV ) i
(p)
f,i ./h

(p)
f,i − b

(p)
f − x

(p)
f,i − δ

G,(p)
f g(p)

f,i
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5.10.2 Calibration coefficients

For this thesis, we assumed that pixels within a subset Zg ⊂ {1, 2, . . . , P} share

the same calibration constant so that

h
(p)
k,f,i = zk,f,i(g), ∀p ∈ Zg. (5.80)

with zk,f,i(g) ∼ CN
(
1, (σH)2

)
. In our formulation (and dropping the (k, f, i) indices

for simplicity) we have measurements of the form

i(p) = z(g)(l(p) + s(p) + v(p)), ∀p ∈ Zg. (5.81)

Define y(p) = l(p) + s(p) which is a known quantity in our Gibbs sampling inference

step. Moreover, we assume that |y(p)| ≫ |v(p)| so that for any p ∈ Zg we have

i(p) = z(g)
(
y(p) + v(p)

)

≈ z(g)y(p) + E[z(g)]v(p)

= z(g)y(p) + v(p)

(5.82)

Note that given y(p) (as in the Gibbs sampling step), we have the situation where i(p),

z(g), and v(p) are all Gaussian distributed random variables. Thus, the conditional

distribution of z(g) is also Gaussian with:

z(g)|y ∼ CN
(
µz(g), σ

2
z(g)

)
(5.83)

µz(g) = 1 +

[
(σH)2

(σV )2 + yHy(σH)2

]
yH (i− y) (5.84)

σ2
z(g) =

(σH)2(σV )2

(σV )2 + yHy(σH)2
(5.85)

where y =
{
y(p)
}
p∈Zg

and i =
{
i(p)
}
p∈Zg

. Note that when (σH)2 is large, then

maximum likelihood inference in this case yields the least-squares solution for z(g).
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5.10.3 Object class assignment

In this model, we assume that each pixel can be assigned to one of J possible

classes. We assume that the number J is known a priori and do not consider the

details involved in the merging or splitting of object classes here. More detailed

models (such as the so-called Indian Buffet processes) can also estimate the number

of classes directly from the data.

In this model, inference on class assignment is straightforward given the distri-

butions (i.e., covariance matrices) for each class. Define the matrices

b(p) =




b
(p)
1

b
(p)
2

...

b
(p)
F




∈ C
F×K x(p) =




x
(p)
1,1

x
(p)
1,2

...

x
(p)
F,N




∈ C
FN×K (5.86)

Then the probability that pixel p belongs to class j is given by:

w
(p)
j

△
= Pr(pixel p has class j) = exp{TB + TX + qj} (5.87)

where qj is the prior probability of class j and

TB = −trace
(
[ΓB(j)]−1b(p)(b(p))H

)
− F

2
log |ΓB(j)| −KF log(2π) (5.88)

TX = −trace
(
[ΓX(j)]−1x(p)(x(p))H

)
− FN

2
log |ΓX(j)| −KFN log(2π) (5.89)

Then the class assignment to pixel p is the single location in c(p) with value equal to

one, where

c(p) ∼ Multinomial(1;w(p)) (5.90)

Note that we can improve upon this model by allowing the probabilities for pixel

p to vary spatially (i.e., pixels are likely to share the same class with neighboring
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pixels). One simple way to include this information is to let

m(p) = w(p) ∗ g(p)
HMM

(5.91)

where g(p)
HMM

is some filter for averaging nearby pixels and ∗ is the convolution

operator (assumed to be supported on the same set of pixels as w(p)). Then we draw

c(p) ∼ Multinomial(1;m(p)) (5.92)

5.10.4 Hyper-parameters

In this model, we have three types of hyper-parameters that need to be estimated:

covariance matrices (or variances), indicator probabilities, and object class probabil-

ities. In all cases, the distribution of these parameters depend on test statistics of

much smaller dimension that P .

Covariance matrix inference

We model the covariance matrices for the Normal distributions in two ways: (1)

for the stationary components (background, speckle, and glints), we model the co-

variance matrix as a random variable; and (2) for the other components (targets,

additive noise, calibration coefficients), we assume independence among the anten-

nas. In particular, consider a random vector of K elements, w, with

w ∼ CN
(
0, σ2Γρ

)
(5.93)

σ2 ∼ InvGamma(aσ, bσ) (5.94)

Then in the stationary case, we have

Γρ ∼ InvWishart
(
aΓ((1− ρ)IK×K + ρ1K1

T
K), νΓ

)
(5.95)

ρ ∼ Beta(aρ, bρ) (5.96)
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and in the independent case, we have

Γρ = IK×K (5.97)

First consider the case where Γρ is a random variable. Assume that we have n

independent samples of w, which we refer to as W = vec {w}. Then, we consider a

Gibbs sampling procedure:

Sample ∼ f(σ2|W ,Γρ, ρ) (5.98)

Sample ∼ f(Γρ, ρ|W , σ2) (5.99)

Let τ = 1/σ2 ∼ Gamma(aσ, bσ). Then

f(τ |W ,Γρ, ρ) ∝ f(W |τ,Γρ)f(τ)

∝
[
τn/2 exp

{
−τ
2
trace(Γ−1

ρ WWH)
}] [(bσ)aσ

Γ(aσ)
τaσ−1 exp {−bστ}

]

∝ (b′)a
′

Γ(a′)
τa

′−1 exp {−b′τ}

(5.100)

where

a′ = aσ +
n

2

b′ = bσ +
trace(Γ−1

ρ WWH)

2

(5.101)

This demonstrates that in this situation, σ2 has an Inverse-Gamma distribution with

parameters a′ and b′. Note that in the case where Γρ = IK×K, then the posterior

parameters are given by

a′ = aσ +
n

2
(5.102)

b′ = bσ +
trace(WWH)

2
(5.103)

Thus, in the Gibbs sampling procedure, the variance parameter σ2 is Inverse-Gamma

distributed whether or not Γρ is modeled as a random variable. Table 5.12 provides
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the posterior Inverse Gamma distribution parameters for the variance parameters in

our model, where vec {·} refers to the vectorization operator.

For the background, speckle, and glint components, we also need to sample the

coherence parameter ρ and correlation matrix Γρ. Let W̃ = W /σ be our observed

measurements given σ2 as given by equation (5.99). Define µ̃ = µ/σ. Then we have

W̃ |
(
Γρ, σ

2, ρ
)
∼ CN (µ̃,Γρ)

Γρ ∼ InvWishart
(
[ρ1K1

T
K + (1− ρ)IK×K ](ν −K − 1), ν

)

ρ ∼ Beta(aρ, bρ)

(5.104)

Note that this is in the form of the Multivariate-Normal-Inverse-Wishart conjugate

distribution given ρ. This leads to the well known posterior parameters:

Γρ|
(
W̃ , σ2, ρ

)
∼ InvWishart(ΛρaΓ +

n∑

m=1

(
y
m
− µ̃

)(
y
m
− µ̃

)H
, νΓ + n) (5.105)

where Λρ = ρ1K1
T
K + (1− ρ)IK×K . Ideally, we would like to sample both Γρ and ρ

jointly. Even though we can simply sample from equation (5.105), the same is not

true for the density

ρ|
(
W̃ , σ2, ρ

)
(5.106)

which is required in order to jointly sample these parameters. Fortunately, we know

that

f(Γρ, ρ|W̃ , σ2) ∝ f(Γρ|W̃ , σ2, ρ)f(ρ) (5.107)

which is easily evaluated since we have closed form functions for both of these den-

sities. Thus, we can use Metropolis-Hastings to sample ρ and Γρ.
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Table 5.12: Inverse Gamma distribution parameters for distributions of variances and covariance matrix estimates

Component Variable a′ b′ Other parameters

Background (σB(j))2 aσ +
M
2

trace(Γ−1
ρ WWH )

2
M = F |Qj|,W = vec

{
b
(p)
f

}
f,p∈Qj

Speckle (σX(j))2 aσ +
M
2

trace(Γ−1
ρ WWH )

2
M = NF |Qj|,W = vec

{
x
(p)
f,i

}
f,i,p∈Qj

Glints (σG)2 aσ +
M
2

trace(Γ−1
ρ WWH )

2
M =

∑
f,p δ

G,(p)
f ,W = vec

{
g(p)
f,i

}
{
p,f,i:δ

G,(p)
f

=1
}

Target (σM)2 aσ +
M
2

trace(WWH )
2

M =
∑

f,i,p δ
M,(p)
f,i ,W = vec

{
m

(p)
f,i

}
{
p,f,i:δ

M,(p)
f,i

=1
}

Calibration (σH)2 aσ +
M
2

trace(WWH )
2

M = KFNP/|Zg|, W = vec {zk,f,i(g)}k,f,i,g
Additive noise (σV )2 aσ +

M
2

trace(WWH )
2

M = KFNP, W = vec

{
i
(p)
k,f,i

h
(p)
k,f,i

− l(p)k,f,i − s
(p)
k,f,i

}

k,f,i,p

Note: The set Qj is defined as Qj
△
=
{
p : c(p) = j

}
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Indicator probabilities

In the basic model where the indicator Beta distribution parameters do not de-

pend spatially or temporally, then the posterior indicator probabilities for

δ ∼ Bernoulli(π) (5.108)

π ∼ Beta(aπ, bπ) (5.109)

are given by

π|δ ∼ Beta(aπ + δ, bπ + (1− δ)) (5.110)

Note that we can modify aπ and bπ as in Section 5.4.1. However, the posterior infer-

ence for the probabilities is identical by replacing aπ and bπ by their spatiotemporally

varying version.

Object class probabilities

We use a Multinomial-Dirichlet conjugate pair to determine object class as-

signments, where the class probabilities q have a prior Dirichlet distribution with

cj = 1/J for j = 1, 2, . . . , J . Then, after observing the class assignments, we can

calculate the number of pixels in any class

Nj = |Qj| =
∣∣{p : c(p) = j

}∣∣ (5.111)

Then the posterior distribution for the class probabilities is given by

q| {Nj}Jj=1 ∼ Gamma
(
q +N, 1

)
/J (5.112)

where [N ]j = Nj .
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5.11 Appendix: Cramér Rao Lower Bound

5.11.1 Model

Assume we have phase history measurements for k antennas at each of l frequen-

cies and m slow-time pulses. Note that a SAR image is formed with a non-linear

mapping of the phase-history to the imaging domain. Range-Doppler images can be

formed using a 2-dimensional FFT of the phase-history data, while other algorithms

such as backprojection or polar format algorithm transform the phase-history data

to the spatial (x, y) domain.

Previous bounds for estimation error by Fasih [41] in SAR images have considered

IID noise over all pulses, frequencies, and antennas. In this section, we consider

correlated noise across antennas as given in our SAR image model. In particular, for

the l-th frequency andm-th pulse, let us assume we have phase history measurements:

gklm = µk
lm + εklm, k = 1, . . . , K (5.113)

for

µk
lm = G exp

{
j
(
ψk
lm + x(mτ)hxlm + y(mτ)hylm

)}
(5.114)

ψk
lm = ψ0 + (k − 1)φ, (5.115)

x(mτ) = x0 + (mτ)vx, (5.116)

y(mτ) = y0 + (mτ)vy, (5.117)

where τ is the time between slow-time pulses and εklm is zero-mean complex-valued

additive noise with circular normal distribution:

{
εklm
}K
k=1
∼ CN (0,Λlm) . (5.118)

Note that εklm is representative of the background variation that can possibly include
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clutter. In particular, we assume that the covariance matrix is given by

Λlm = λ2lmIK×K + κ2lm1K1
T
K . (5.119)

where IK×K is the K ×K identity matrix and 1K is the all-ones vector of length K.

In the no-clutter case, we have λ2lm = σ2
v and κ2lm = 0. In the clutter-case, we have

λ2lm = σ2
v + (σs

lm)
2 + (σx

lm)
2 + δy,m(σy

lm)
2 (5.120)

κ2lm = ρslm(σ
s
lm)

2 + ρxlm(σ
x
lm)

2 + δy,mρylm(σ
y
lm)

2 (5.121)

Let the parameter vector be defined as

Θ = {x0, y0, vx, vy, G, ψ0, φ} (5.122)

Then the Fisher information matrix is given by the elemnent-wise definition by Kay

[57]:

[FIM]uv = 2
∑

l,m

ℜ
{(

∂~ulm
∂θu

)H

Λ−1
lm

(
∂~ulm
∂θv

)}
+
∑

l,m

trace

(
Λ−1

lm

∂Λlm

∂θu
Λ−1

lm

∂Λlm

∂θv

)

(5.123)

where µlm =
{
µk
lm

}K
k=1

.

5.11.2 Mean term

Let us first focus on the FIM contribution from the mean component:

2
∑

l,m

ℜ
{(

∂~µlm

∂θu

)H

Λ−1
lm

(
∂~µlm

∂θv

)}
(5.124)

The following table gives the partial derivatives for each parameter in Θ for

αlm = exp {j (ψ0 + x(mτ)hxlm + y(mτ)hylm)} (5.125)

Note that the last column of Table 5.13 shows that all components at the k-

antenna share the same dependence on the parameter αlm and a phase component
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Table 5.13: Partial derivatives for FIM derivation

Parameter, θu
∂µk

lm

∂θu
uk

△
=

∂µk
lm

∂θu
/(αlme

jφ(k−1))

x0 Ghxlmαlme
jφ(k−1) Ghxlm

y0 Ghylmαlme
jφ(k−1) Ghylm

vx Gmτhxlmαlme
jφ(k−1) Gmτhxlm

vy Gmτhylmαlme
jφ(k−1) Gmτhylm

G αlme
jφ(k−1) 1

ψ0 Gαlme
jφ(k−1) G

φ Gαlm(k − 1)ejφ(k−1) G(k − 1)

ejφ(k−1). Define the vectors

~u =




u1

u2e
jφ

...

uKe
jφ(K−1)




, ~v =




v1

v2e
jφ

...

vKe
jφ(K−1)




(5.126)

where uk and vk are given by the third column in Table 5.13 for partial derivatives

with respect to θu and θv respectively. Then the summand in equation (5.124) can

be written as

ℜ
{(

∂~µlm

∂θu

)H

Λ−1
lm

(
∂~µlm

∂θv

)}
= ℜ

{
(αlm~u)

H Λ−1
lm (αlm~v)

}

= ℜ
{
α∗
lmαlm~u

HΛ−1
lm~v
}

= ℜ
{
~uHΛ−1

lm~v
}

(5.127)

where we note that α∗
lmαlm = 1. Note that u and v do not depend on the target

state (x0, y0, vx, vy). Thus, the mean contribution to the FIM will be independent

of the target state. Furthermore, if Λlm does not depend on these parameters as

in the clutter-free case, then the FIM and CRB will be independent of the target

parameters; i.e., we should be able to find an algorithm that can track the target

equally well regardless of its actual state.

To simplify the computation of the mean contribution to the FIM, consider the
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fact that

Λ−1
lm =

[
κ2lm1K1

T
K + λ2lmIK×K

]−1
(5.128)

= λ−2
lm

(
IK×K −

κ2lm
Kκ2lm + λ2lm

1K1
T
K

)
(5.129)

= L0
lmIK×K + L1

lm1K1
T
K , (5.130)

where

L0
lm = λ−2

lm , (5.131)

L1
lm =

κ2lm
Kκ2lmλ

2
lm + λ4lm

. (5.132)

Then equation (5.127) becomes

ℜ
{
~uHΛ−1

lm~v
}
= ℜ

{
~uH
(
L0
lmIK×K + L1

lm1K1
T
K

)
~v
}

= L0
lm

∑

k

ukvk + L1
lmℜ

{(
∑

k

uke
−jφ(k−1)

)(
∑

k

vke
jφ(k−1)

)}

= L0
lm

∑

k

ukvk + L1
lmℜ

{(
∑

k

∑

n

ukvne
jφ(n−1−k+1)

)}

= L0
lm

∑

k

ukvk + L1
lm

∑

k

∑

n

ukvnℜ
{
ejφ(n−k)

}

= L0
lm

∑

k

ukvk + L1
lm

∑

k

∑

n

ukvn cos(φ(n− k))

(5.133)

This equation simplies further when uk = u or vk = v as is the case for all parameters

except φ. In particular, if uk = u and vk = v, then:

ℜ
{
~uHΛ−1

lm~v
}
= (uv)

(
KL0

lm + L1
lm

∑

k

∑

n

cos(φ(n− k))
)

= (uv)
(
KL0

lm + αφL
1
lm

)
,

(5.134)
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where αφ =
∑

k,n cos(φ(n− k)). In the case where θu 6= φ and θv = φ, we have

ℜ
{
~uHΛ−1

lm~v
}
= L0

lm

(
Gu
∑

k

(k − 1)

)
+ L1

lm

(
Gu
∑

k

∑

n

(n− 1) cos(φ(n− k))
)

= Gu

(
L0
lm

K(K − 1)

2
+ L1

lm

∑

k

∑

n

(n− 1) cos(φ(n− k))
)

= Gu

(
L0
lm

K(K − 1)

2
+ L1

lm(α
n
φ − αφ)

)
,

(5.135)

where

αn
φ =

∑

k

∑

n

n cos(φ(n− k)) (5.136)

Finally, in the case where θu = θv = φ, we have

ℜ
{
~uHΛ−1

lm~v
}
= L0

lm

(
G2
∑

k

(k − 1)2

)

+ L1
lm

(
G2
∑

k

∑

n

(k − 1)(n− 1) cos(φ(n− k))
)

= G2

(
L0
lm

K(K − 1)(2K − 1)

6
+ L1

lm(α
kn
φ − 2αn

φ + αφ)

)
,

(5.137)

where

αkn
φ =

∑

k

∑

n

kn cos(φ(n− k)) (5.138)

In all cases, the summand can be represented as

ℜ
{
~uHΛ−1

lm~v
}
= β0

uvL
0
lm + β0

uvL
1
lm, (5.139)

where the parameters β0
uv, β

1
uv are given in Table 5.14.

5.11.3 Covariance term

We now consider the FIM contribution from the covariance component:

trace

(
Λ−1

lm

∂Λlm

∂θu
Λ−1

lm

∂Λlm

∂θv

)
(5.140)
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Table 5.14: β0
uv, β

1
uv parameters

θu ∈ θv ∈ β0
uv β1

uv{
x0, y0, vx,
vy, G, ψ0

} {
x0, y0, vx,
vy, G, ψ0

}
uvK uvαφ

{
x0, y0, vx,
vy, G, ψ0

}
{φ} GuK(K−1)

2
Gu(αn

φ − αφ)

{φ}
{
x0, y0, vx,
vy, G, ψ0

}
GvK(K−1)

2
Gv(αn

φ − αφ)

{φ} {φ} G2K(K−1)(2K−1)
6

G2(αkn
φ − 2αn

φ + αφ)

In general, it may difficult to determine the effect of the target state parameters

on the noise covariance matrix. In this section, we suppose that within the small

regions where the target signature will appear over a CPI, we can approximate this

dependence with a linear map from spatial coordinates to the parameters ρ, σ2 of

our covariance matrix. In particular

κ2(x, y) = κ20 + xγκx + yγκy ,

λ2(x, y) = λ20 + xγλx + yγλy .

(5.141)

for parameters (κ20, λ
2
0, γ

κ
x , γ

κ
y , γ

λ
x , γ

λ
y , ) that can be fitted from our SAR image model.

In this case, we have

∂Λlm

∂θu
=

∂

∂θu

{
κ2lmIK×K + λ2lm1K1

T
K

}

=
∂κ2lm
∂θu

IK×K +
∂λ2lm
∂θu

1K1
T
K ,

(5.142)

For example, when θu = x0, we have

∂κ2lm
∂x0

= γκx ,
∂λ2lm
∂x0

= γλx . (5.143)

Then we have

Λ−1
lm

∂Λlm

∂θu
=
(
L0
lmIK×K + L1

lm1K1
T
K

)(∂κ2lm
∂θu

IK×K +
∂λ2lm
∂θu

1K1
T
K

)
,

= β̃I
uIK×K + β̃11

u 1K1
T
K ,

(5.144)
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where

β̃I
u = L0

lm

∂κ2lm
∂θu

, (5.145)

β̃11
u = L1

lm

∂κ2lm
∂θu

+
(
L0
lm +KL1

lm

) ∂λ2lm
∂θu

. (5.146)

Finally, we have

trace

(
Λ−1

lm

∂Λlm

∂θu
Λ−1

lm

∂Λlm

∂θv

)

= trace
{(
β̃I
uIK×K + β̃11

u 1K1
T
K

)(
β̃I
vIK×K + β̃11

v 1K1
T
K

)}

= trace
{
β̃I
uβ̃

I
vIK×K +

(
β̃I
uβ̃

11
v + β̃I

vβ̃
11
u +Kβ̃11

u β̃
11
v

)
1K1

T
K

}

= K
(
β̃I
uβ̃

I
v + β̃I

uβ̃
11
v + β̃I

vβ̃
11
u +Kβ̃11

u β̃
11
v

)

(5.147)

This equation may simplify in some cases, though we won’t give all details here.

However, it should be noted that the original derivatives
∂σ2

lm

∂θu
and ∂ρ

∂θu
are non-zero

only for θu ∈ {x0, y0, vx, vy}. Moreover, if either θu or θv does not belong to this set,

then our trace will equal zero. Thus, we only have to compute this term for a subset

of the elements of the FIM.
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Figure 5.3: This figure compares the relative reconstruction error of the target com-

ponent,
‖S−Ŝ‖

2

‖S‖2
, as a function of algorithm, number of passes N , coher-

ence of antennas ρ, and signal-to-clutter-plus-noise ratio (SCNR). From
top-to-bottom, the rows contains the output of the Bayes SAR algo-
rithm, the optimization-based RPCA algorithm, and the Bayes RPCA
algorithm. From left-to-right, the columns show the output for N = 5,
N = 10, and N = 20 passes (with F = 1 frames per pass). The output
is given by the median error over 20 trials on a simulated dataset. It is
seen that in all cases, the Bayes SAR method outperforms the RPCA
algorithms. Moreover, the Bayes SAR algorithm performs better if ei-
ther coherence increases (i.e., better clutter cancellation) or the SCNR
increases. On the other hand, the performance of the RPCA algorithms
does not improve with increased coherence, since these algorithms do not
directly model this relationship.
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(a) L+ S

0.075
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(b) L
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(c) S

Figure 5.4: This figure provides a sample image used in the simulated dataset for
comparisons to RPCA methods, as well as its decomposition into low-
dimensional background and sparse target components. This low SCNR
image is typical of measured SAR images. Note that the target is ran-
domly placed within the image for each of N passes. In some of these
passes, the target is placed over low-amplitude clutter and can be eas-
ily detected. In other passes, the target is placed over high-amplitude
clutter, which reduces the capability to detect the target.
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Figure 5.5: This figure compares the output of the proposed algorithm as a function
of magnitude and phase for a scene of size 375m by 1200m and coherent
processing interval of 0.5s. The Bayes SAR algorithm takes the origi-
nal SAR images in (a) and (b), estimates the nuisance parameters such
as antenna miscalibrations and clutter covariances, and yields a sparse
output for the target component in (c) and (d). In contrast, the DPCA
and ATI algorithms are very sensitive to the nuisance parameters, which
make finding detection thresholds difficult. In particular, consider the
original interferometric phase image shown in (b). It can be seen that
without proper calibration between antennas, there is strong spatially-
varying antenna gain pattern that makes cancellation of clutter difficult.
Calibration is generally not a trivial process, but to make fair compar-
isons to the DPCA/ATI algorithms, calibration in (f) and (g) is done by
using the estimated coefficients Hf,i from the Bayes SAR algorithm. In
(e) and (f), the outputs of the DPCA algorithm are applied to the original
images (all antennas) and the calibrated images (all antennas), respec-
tively. It should be noted that even with calibration, the DPCA outputs
contain a huge number of false detections in high clutter regions. Never-
theless, proper calibration enables detection of moving targets that are
not easily detected without calibration, as highlighted by the red boxes.
Note that the Bayes SAR algorithm provides an output that is sparse,
yet does not require tuning of thresholds as required by DPCA and/or
ATI.
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Figure 5.6: This figure shows detection performance based on the magnitude of the
target response with comparisons between the proposed Bayes SAR al-
gorithm and displaced phase center array (DPCA) processing. Note that
DCPA declares a detection if the relative magnitude to the brightest pixel
is greater than some threshold. Results are given for two scenes of size
125m x 125m; within each scene, images were formed for two sequential
0.5 second intervals. Scene 1 contains strong clutter in the upper left
region, while Scene 2 has relatively little clutter. The columns of the
figure provide from left-to-right: the magnitude of the original image,
the estimated target component from the proposed algorithm, the prob-
ability of the target occupying a particular pixel, the output of DPCA
with a relative threshold of 15 dB, and the output of DPCA with a rela-
tive threshold of 30 dB. It is seen that DPCA has difficulty in canceling
the clutter in Scene 1 with either threshold. Moreover, in Scene 2 (c-d)
DPCA misses detections of the low-magnitude target in the lower right
for the 15 dB threshold. In both scenes, there are many false alarms
at the 30 dB threshold. On the other hand, the proposed algorithm
provides a sparse solution that detects all of these targets, while simulta-
neously providing a estimate of the probability of detection rather than
an indicator output.
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Figure 5.7: This figure shows detection performance based on the phase of the target
response with comparisons between the proposed algorithm, along-track
interferometry (ATI) and a mixture algorithm between ATI/DPCA. Re-
sults are given for the same two scenes in Figure 5.6. In all cases, we
show results for calibrated imagery where Hf,i are given by the output
of the Bayes SAR algorithm, though this step is not trivial. The columns
of the figure provide from left-to-right: the phase of the image without
thresholding, the estimated target phase component from the proposed
algorithm, the output of ATI with a threshold of 25 degrees, the out-
put of ATI/DPCA with (25 deg, 15 dB) thresholds, and the output of
ATI/DPCA with (25 deg, 30 dB) thresholds. In contrast to Figure 5.6,
the contributions from the strong clutter are not very strong, though
there are still numerous false alarms in the ATI and ATI/DPCA out-
puts. It is seen that the ATI/DPCA combination with 15 dB magnitude
threshold over-sparsifies the solution, missing targets in (b), (c), and (d).
On the other hand, the ATI/DPCA combination with 30 dB magnitude
threshold detects these targets, but also includes false alarms in (a) and
(b).
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Figure 5.8: This figure compares the performance of our proposed method with and
without priors on target signature locations. In this scene, targets are
likely to be stopped at an intersection as shown by the region in (a).
A mission image containing targets is shown in (b) and a reference im-
age without targets is shown in (d). The estimated target probabilities
are shown in (c) for the mission scene where inference was done both
with/without a target motion model (TMM). It can be seen that by in-
cluding the prior information, we are able to detect stationary targets
that cannot be detected from standard SAR moving target indication
algorithms. The estimated target probabilities in the reference scene are
shown in (e), showing little performance differences when prior informa-
tion is included in the inference.
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Figure 5.9: This figure plots the estimated radial velocities (m/s) for two targets
from measured SAR imagery over 18 seconds at 0.25 second increments.
Radial velocity, which is proportional to the interferometric phase of the
pixels from multiple antennas in an along-track SAR system, is estimated
by computing the average phase of pixels within a region specified by the
GPS-given target state (position, velocity). We compare the estimation
of radial velocity from the output of the Bayes SAR algorithm, from
the raw images, from the calibrated images (i.e, using the estimated cal-
ibration coefficients), and from two DPCA/ATI joint algorithms with
phase/magnitude thresholds of (25 deg, 15 dB) and (25 deg, 30 dB) re-
spectively. For best comparisons, the DPCA/ATI thresholds are applied
to the calibrated imagery, though this is a non-trivial step in general. The
black line provides the GPS provided radial velocities. Numerical results
are summarized in Table 5.9. It is seen that the Bayes SAR algorithm
outperforms the others in terms of MSE for both targets. Moreover, the
Bayes SAR algorithm never misses a target detection in this dataset,
which is not the case for the DPCA/ATI algorithms.
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Figure 5.10: This figure shows an example of using the output of the Bayes SAR
algorithm in order to derive detection algorithms for future performance
prediction. In (a) and (d), the estimated signal-to-clutter-plus-noise
ratio (SCNR) and coherence are provided for a scene of size 125m by
125m. Detection probabilities are given in (b), (c), (e), and (f) for
various values of false alarm probability, number of antennas K, and
number of independent pixels useed in the LRT. It is seen that detection
performance is improved by increasing either K or |X |.
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Figure 5.11: This figure provides an example of lower bounds on spatial errors de-
rived from the output of the Bayes SAR algorithm. Results are shown
for a scene of size 375m by 1200m and coherent processing interval
(CPI) of 0.5s. In this specific scene the radar was nearly aligned with
the x−axis. Thus, the lower bounds reflect the fact that it is easier
to locate targets in the radial dimension as shown in (b), compared
with the azimuthal dimension as shown in (c). Note that this would be
alleviated for longer CPIs.



CHAPTER VI

Conclusions and Future Work

In this thesis, adaptive sensing and sensor management was studied in the con-

text of detecting and estimating moving targets using limited resources. This thesis

studied adaptive sensing and sensor management from three main directions: (a)

development of a framework for adaptive allocation of limited resources in order to

detect and estimate moving targets, (b) derivation of bounds on fundamental perfor-

mance limits for stable tracking of multiple targets, and (c) application of adaptive

sensor management to the specific application of detection/tracking with synthetic

aperture radar (SAR) imagery.

This thesis provided a general framework for adaptive search for targets that

exhibit dynamic behavior such as moving targets, target birth/death, and vary-

ing target amplitudes. A cost function was provided that generalizes well to many

target and state models, and oracle allocations were derived that provide bounds

on achievable performance. A non-myopic policy was provided that can be found

through nested optimization that grows as O(T 2), where T is the number of stages.

In contrast, a heuristic policy based on the idea that resources should be saved for

future exploitation was also provided with complexity O(T ). Finally, a functional

approximation to the heuristic policy was given with complexity O(1). All of these
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policies were examined through empirical analysis, showing excellent performance in

many cases, including asymptotic consistency, significant performance gains over an

exhaustive search alternative, and increased robustness to model mismatch of myopic

policies.

Future work in this area includes consideration of constraints on the number of

measurements, which may include coarse-scale or compressed sensing measurements.

Moreover, we are interested in deriving analytical results such as convergence rates

(in comparison to exhaustive search) and/or minimum detectable amplitudes. We

would also like to consider online policies that are computed as measurements are

observed - this could improve performance dramatically in many cases, including

cases where targets will be obscured in the near future. Moreover, we are interested

in studying cases in which the number of stages T is a random variable, so that no

additional measurements of the scene are required once ‘sufficient’ signal quality has

been reached, at least in the case of static targets.

In the next of the direction of this thesis, a conservative approach to sensor

management was proposed for multiple target tracking subject to computational

constraints. The approach requires finding solutions to load balance equations that

guarantee system stability. These solutions yield the minimal system requirements

for provisioning radars. The solutions guarantee stable tracking with prescribed

level of statistical confidence. The provisioning results given here are conservative

and specify the system requirements, steady state occupancy, revisit times, and track

entropy in terms of the PLQ sensor scheduling policy. The PLQ policy will always

perform at least as well as the performance predictions we provide. One can expect

considerably better performance of the system than these predictions for typical

scenarios, although there exists a scenario (namely, all targets are equally difficult
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to track) where the predictions are exact. Less stringent provisioning requirements

might be explored using a stochastic optimization.

Future work will consider and compare policies other than the PLQ policy. Of

particular interest are policies using a random allocation that can be used as a

baseline comparison, as well as policies that may have a class-dependent allocation.

Additionally, we may consider optimizing a scheduling policy (in terms of τ ∗) among

multiple alternative policies. Furthermore, in this thesis we have considered tasks in

the load margin separately from the target tracking task. However, if we consider

multiple epochs, tasks such as Kalman filtering and/or target classification may sig-

nificantly improve the capability to track targets stably over time. Future work plans

to develop a framework for scheduling in the multiple-epoch scenario and analyze the

tradeoffs in load margin vs. non-myopic improvements to our performance bounds.

In the last direction of this thesis, research in decomposing high-dimensional sig-

nals/images into low-rank and sparse components in the presence of noise by Wright

et al. [93], Lin et al. [63] and Candes et al. [19] was extended to the case of separat-

ing target signatures from a low-dimensional clutter subspace in SAR imagery. In

particular, we combine our understanding of the physical, kinematic, and statistical

properties of SAR imagery into a single unified Bayesian structure that simultane-

ously (a) estimates the nuisance parameters such as clutter distributions and antenna

miscalibrations and (b) extracts a sparse component containing the target signatures

required for detection and estimation of the target state. Similar to work by Ding

et al. [33], this algorithm requires few tuning parameters since most quantities of

interest are inferred directly from the data - this allows the algorithm to be robust

to a large collection of operating conditions.

The performance of the proposed approach is analyzed over both simulated and
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measured datasets, demonstrating competing or better performance than the robust

PCA algorithms and ATI/DPCA.

Moreover, it is shown that the outputs of the Bayesian inference can be used for

future performance prediction through examples of derived likelihood ratio tests and

Cramér-Rao Lower Bounds for spatial errors.

Other work will include the development of algorithms that exploit the use of

a posterior distributions for improved performance in a signal processing task, e.g.

detection, tracking or classification. In particular, we are interested in using algo-

rithms for simultaneously detecting and estimating targets over a sparse scene with

resource constraints, similar to work by Bashan et al. [10,11], as well as determining

the fundamental performance limits of a SAR target tracking system. Furthermore,

we would also like to consider other generalizations to the SAR image model, such

as complex target maneuvers, multiple target classes, and explicit tracking of the

target phase.
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