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ABSTRACT

We consider the problem of 20 questions with noise for collabora-
tive players under the minimum entropy criterion [1] in the setting
of stochastic search, with application to target localization. First,
assuming conditionally independent collaborators, we characterize
the structure of the optimal policy for constructing the sequence of
questions. This generalizes the single player probabilistic bisection
method [1, 2] for stochastic search problems. Second, we prove a
separation theorem showing that optimal joint queries achieve the
same performance as a greedy sequential scheme. Third, we estab-
lish convergence rates of the mean-square error (MSE). Fourth, we
derive upper bounds on the MSE of the sequential scheme. This
framework provides a mathematical model for incorporating a hu-
man in the loop for active machine learning systems.

Index Terms— optimal query selection, human-machine inter-
action, target localization, convergence rate, minimum entropy.

1. INTRODUCTION

This paper addresses a problem related to maximizing the value of
adding a human-in-the-loop to an autonomous learning machine,
e.g., an automated target recognition (ATR) sensor. In the ATR set-
ting the objective of the human-machine-interaction is to collabo-
rate on estimating an unknown target location, where the human is
repeatedly queried about target location in order to improve ATR
performance. We propose a 20 questions framework for studying
the value of including the human-in-the-loop and optimizing the se-
quence of queries.

Motivated by the approach of Jedynak et al [1], which was re-
stricted to the single player case, we model the human-machine in-
teraction as a noisy collaborative 20 questions game. In this frame-
work a controller sequentially selects a pair of questions about tar-
get location and uses the noisy responses of the human and the ma-
chine to formulate the next pair of questions. Under the minimum
expected entropy criterion, we show that even under independence
between collaborative players, jointly optimal policies require over-
lapping non-identical queries. We prove that the expected entropy
reduction for the optimal joint design is the same as that of a greedy
sequential design. The greedy sequential design consists of a se-
quence of bisections. This yields a low complexity implementation
that is guaranteed to have the same performance as the optimal query
controller.

As in Jamieson et al [3], we use a simple noisy query-response
model with different reliability functions for the machine and the
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human (called derivative-free optimizers (DFO) in [3]). Under this
model we specify the optimal query policy, establish a separation
theorem, and obtain MSE bounds and convergence rates. Our model
predicts that the value of including the human-in-the-loop, as mea-
sured by the MSE human gain ratio (HGR), initially increases when
localization errors are large, and then slowly decreases over time as
the location errors go below the human’s fine resolution capability.

2. NOISY 20 QUESTIONS WITH COLLABORATIVE
PLAYERS: ENTROPY LOSS

Assume that there is a target with unknown state X∗ ∈ X ⊂ Rd.
Our focus in this paper is the case where the target state is spatial
location, i.e., in d = 2 or 3 dimensions. However, our results are
applicable to higher dimensions also, e.g., where X∗ is a kinematic
state or some other multi-dimensional target feature. Starting with a
prior distribution p0(x) on X∗, the aim is to find an optimal policy
for querying a machine (hereafter referred to as player 1), with the
additional help of humans. The policy’s objective is to minimize the
expected Shannon entropy of the posterior density pn(x) of target
location after n questions.

There areM collaborating players that can be asked questions at
each time instant. The objective of the players is to come up with the
correct answer to a 20 questions game. Let the mth player’s query
at time n be “does X∗ lie in the region A(m)

n ⊂ Rd?”. We denote
this query as the binary variable Z(m)

n = I(X∗ ∈ A(m)
n ) ∈ {0, 1}

to which the player yields provides a noisy response Y (m)
n+1 ∈ {0, 1}.

Define the M -tuples Yn+1 = (Y
(1)
n+1, . . . , Y

(M)
n+1 ) and An =

{A(1)
n , . . . , A

(M)
n }.

Assumption 1. We assume that the players’ responses are condi-
tionally independent:

P (Yn+1 = y|An, X
∗, pn) =

M∏
m=1

P (Y
(m)
n+1 = y(m)|A(m)

n , X∗, pn)

(1)
where

P (Y
(m)
n+1 = y(m)|A(m)

n , X∗, pn) = f
(m)
1 (y(m)|A(m)

n , pn)I(X∗ ∈ A(m)
n )

+ f
(m)
0 (y(m)|A(m)

n , pn)I(X∗ /∈ A(m)
n ). (2)

Assumption 2. We model the players’ responses as binary symmet-
ric channels (BSC) [4] with crossover probabilities εm ∈ (0, 1/2).
Therefore the conditional p.m.f. f (m)

j = P (Y
(m)
n = j|Am)

n , pn) of
the response of the M -th player can be written:

f
(m)
j (y(m)|A(m)

n , pn) = (1−εm)I(y(m) = j)+εmI(y(m) = 1−j)
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Fig. 1. Joint scheme for M collaborative players responding to binary val-
ued queries about the location X∗ of an unknown target. At time n, the
controller chooses the queries I(X∗ ∈ A

(m)
n ) based on the posterior pn.

Then, the M players yield responses Y (m)
n+1 that are fed into the fusion cen-

ter, where the posterior is updated and fed back to the controller at the next
time instant n + 1. The target location estimate Xn is the median of the
posterior pn.

where m = 1, . . . ,M, j = 0, 1.

2.1. Optimal Joint Query Design

We consider a similar setting as in [1], which applied to the M =
1 player case, but now we have a joint controller that chooses M
queries A(m)

n at time n. The system block diagram is shown in Fig.
1. Define the set of subsets of Rd:

π̃(A(1), . . . , A(M)) =

{
M⋂
m=1

(A(m))im : im ∈ {0, 1}

}

where (A)0 := Ac and (A)1 := A. The cardinality of this set of
subsets is 2M and these subsets partition Rd. The objective is to
localize the target within a subset A(m).

Define the density parameterized by An, pn, i1, . . . , iM :

gi1:iM (y(1), . . . , y(M)|An, pn) :=

M∏
m=1

f
(m)
im

(y(m)|A(m)
n , pn)

where ij ∈ {0, 1}.

Theorem 1. (Joint Optimality Conditions) Under Assumption 1, an
optimal joint policy that minimizes the Shannon entropy of the pos-
terior distribution pn achieving the following entropy loss:

G∗ = sup
A(1),...,A(M)

{
H

 1∑
i1:iM=0

gi1:iMPn
( M⋂
m=1

(A(m)
n )im

)
−

1∑
i1:iM=0

H (gi1:iM )Pn
( M⋂
m=1

(A(m)
n )im

)}
, (3)

where H(f) is the Shannon entropy of the p.m.f. f .

Proof. Using (1) and (2), we have:

P (Yn+1 = y|An, X
∗ = x, pn)

=

1∑
i1:iM=0

gi1:iM (y|An, pn)I

(
x ∈

M⋂
m=1

(A(m)
n )im

)
. (4)
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Fig. 2. Sequential scheme for M collaborative players responding to binary
valued queries about the location X∗ of an unknown target. At time n, the
first controller chooses the query I(X∗ ∈ A(1)

n ) based on the posterior pn.
Then, player 1 yields the response Y (1)

n+1 that is used to update the posterior,

and the second controller chooses the next query I(X∗ ∈ A(2)
n ) for player

2 based on the updated posterior, etc.

By integrating over x ∈ Rd, we have:

P (Yn+1 = y|An, pn) = E[P (Yn+1 = y|An, X
∗, pn)]

=

1∑
i1:iM=0

gi1:iM (y|An, pn)Pn

(
M⋂
m=1

(A(m)
n )im

)
. (5)

The difference between the entropy at time n and the predicted en-
tropy at time n+1 is the mutual information (I(X;Y |A, p) denotes
the conditional mutual information of random variables X and Y
given random variables A and p.):

H(pn)− E[H(pn+1)|An, pn] = I(X∗;Yn+1|An, pn)

= H(Yn+1|An, pn)− E[H(Yn+1)|X∗,An, pn],

which is equal to the argument of the “sup” on the right hand side of
(3). Here we used (5) and (4). Using dynamic programming similar
to Thm. 2 in [1], it follows that optimal queries satisfy (3).

Thm. 1 generalizes the bisection policy [1, 2] to multiple players.
The fusion rule is a posterior update and by Bayes rule:

pn+1(x) ∝ P (Yn+1 = yn+1|An, X
∗ = x, pn)× pn(x)

where yn+1 ∈ {0, 1}M are the observations at time n.

2.2. Greedy Sequential Query Design

As an alternative, we consider the following greedy sequential
coordinate-by-coordinate design: ask an optimal query to the first
player, then update posterior density and ask an optimal query to the
second player, and so on (see Fig. 2). In [1], the optimal query of a
single player was given as a bisection rule. We show that this greedy
sequential scheme achieves the same expected entropy loss as the
optimal joint design of Thm. 1.



Fig. 3. Jointly optimal queries under uniform prior for two dimensional
target search. The target X∗ is indicated by a black square. The one-player
bisection rule (left) satisfies the optimality condition (7) with optimal query
A(1) = [0, 1√

2
] × [0, 1√

2
]. The two-player bisection rule (right) satisfies

(7) with optimal queries A(1) = [0, 3
4

]× [0, 1
2

] ∪ [ 1
4
, 3

4
]× [ 1

2
, 3

4
], A(2) =

[ 1
4
, 1]× [ 1

2
, 1]∪ [ 1

4
, 3

4
]× [ 1

4
, 1

2
]. We note that using the policy on the left, if

player 1 responds that X∗ ∈ [0, 1√
2

]× [0, 1√
2

], with high probability, then
the posterior will concentrate on that region. When using the policy on the
right, if player 1 and 2 respond thatX∗ ∈ A(1)∩A(2) with high probability,
then the posterior will concentrate more on the intersection of the queries,
thus better localizing the target as compared with the single player policy.

Theorem 2. (Separation) Under Assumptions 1 and 2:

1. The expected entropy loss under an optimal joint query design
is the same as the greedy sequential query design. This loss is
given by:

C =

M∑
m=1

C(εm) =

M∑
m=1

(1− hb(εm)) (6)

where hb(·) is the binary entropy function [4].

2. All jointly optimal control laws satisfy:∫
R

pn(x)dx = 2−M ,∀R ∈ π̃(An). (7)

Proof. Let Gseq denote the expected entropy loss after querying M
players sequentially. The bisection policy yields an expected entropy
loss of C(εm) = 1 − hb(εm) 1 after querying the mth player [1].
Thus, Gseq =

∑M
m=1 C(εm). Since the joint controller is the opti-

mal controller, we have Gseq ≤ G∗. To finish the proof, we show
Gseq ≥ G∗. From Thm. 1,

G∗ = sup
A(1),...,A(M)

{
H

 1∑
i1:iM=0

gi1:iMPn
( M⋂
m=1

(A(m)
n )im

)
−

1∑
i1:iM=0

H (gi1:iM )Pn
( M⋂
m=1

(A(m)
n )im

)}
≤ sup

p
{H(pT g)− pTH(g) : p � 0, 1Tp = 1} (8)

= Gseq

where the last equality follows by the symmetry of BSC. The supre-
mum in the strictly concave problem (8) is achieved by the uniform
distribution.

1This is the channel capacity of themth BSC [1, 4].

Thm. 2 shows that the optimal policy can be determined and
implemented using the simpler greedy sequential query design.
Note that, despite the fact that all players are conditionally inde-
pendent, the joint policy does not decouple into separate single
player optimal policies. This is analogous to the non-separability of
the optimal vector-quantizer in source coding even for independent
sources [5]. In addition, the optimal queries must be overlapping-
i.e.,

⋂M
m=1 A

(m)
n 6= ∅, but not identical. Finally, we remark that the

optimal query An is not unique, so it is possible that there exists an
even simpler control law than the sequential greedy policy.

3. LOWER BOUNDS ON MSE VIA ENTROPY LOSS

Thm. 2 yields the value of the 20 questions game in terms of ex-
pected entropy reduction, which is the sum of the “capacities” 2 of
all the players. This value function is used next to provide a lower
bound on the MSE of the sequential Bayesian estimator.

Theorem 3. Let Assumptions 1,2 hold. Assume H(p0) is finite.
Then, the MSE of the joint or sequential query policies in Thm 1
and 2 satisfies:

K

2πe
de−2nC/d ≤ E[‖ X∗ −Xn ‖22] (9)

where K = e2H(p0), C is the entropy loss given in (6) and Xn is
the posterior median.

Observe that the bound in (9) is uniform over all policies π.
The bound is met with equality if the optimal policy is used,
the estimation error is Gaussian with covariance Kn, the tar-
get estimate is taken as the conditional mean, Eπ[H(pn)] =

log((2πe)d det(Eπ[Kn])) and det(Eπ[Kn]) = (Eπ [tr(Kn)]
d

)d. We
finally note the MSE bound behaves exponentially as a function of
the number of queries n. The proof is given in [6].

4. UPPER BOUNDS ON MSE

The performance analysis of the bisection method is difficult primar-
ily due to the continuous nature of the posterior [2]. A discretized
version of the probabilistic bisection method was proposed in [7],
using the Burnashev-Zingagirov (BZ) algorithm, which imposes a
piecewise constant structure on the posterior. A description of the
BZ algorithm and its convergence rate is given in [2] (also see App.
A in [8]). For simplicity of discussion, we assume the target loca-
tion is constrained to the unit interval X = [0, 1]. A step size ∆ > 0
is defined such that ∆−1 ∈ N and the posterior after j iterations is
pj : X → R, given by

pj(x) =
1

∆

∆−1∑
i=1

ai(j)I(x ∈ Ii)

where I1 = [0,∆], Ii = ((i − 1)∆, i∆] for i = 2, . . . ,∆−1. The
initial posterior is ai(0) = ∆. The posterior is characterized com-
pletely by the pseudo-posterior a(j) = [a1(j), . . . , a∆−1(j)] which
is updated at each iteration via Bayes rule [8].

Convergence rates were derived for the one-dimensional case in
[2] for the bounded noise case (i.e., constant error probability) and

2The “capacity” of each player is the channel capacity of each BSC [4].



for the unbounded noise case (i.e., error probability depends on dis-
tance from target X∗ and converges to 1/2 as the estimate reaches
the target) in [9]. A modified version of this algorithm that is proven
to handle unbounded noise was shown in [9]. Thm. 4 derives upper
bounds on MSE using ideas from [9]. The proof is given in [6].

Theorem 4. Consider the sequential bisection algorithm for M
players in one-dimension, where each bisection is implemented us-
ing the BZ algorithm. Then, we have:

P (|X∗ − X̂n| > ∆) ≤ (
1

∆
− 1) exp

(
−nC̄

)
E[(X∗ − X̂n)2] ≤ (2−2/3 + 21/3) exp

(
−2

3
nC̄

)
(10)

where C̄ =
∑M
m=1 C̄(εm), C̄(ε) = 1/2−

√
ε(1− ε).

The combination of the lower bound (Thm. 3) and the upper
bound (Thm. 4) imply that the MSE of the BZ algorithm goes to
zero at an exponential rate with rate constant between 2C and 2/3C̄.

5. HUMAN-IN-THE-LOOP

In this section, we consider a particular 2-player case where player
1 (the machine) has a constant error probability ε1 ∈ (0, 1/2) and
player 2 (the human) has error probability depending on the target
localization error after the most recent query:

P (Y
(2)
n+1 = y(2)|Z(2)

n = 1−y(2)) =
1

2
−min(δ0, µ|X∗−Xn|κ−1)

(11)
where κ > 1, 0 < δ0 < µ < 1/2 is a reliability parameter to param-
eterize the human 3. This is a popular model used for human-based
optimization [3] and has also appeared in the unbounded noise case
[9] for binary classification. From the nature of the error probabil-
ity (11), we expect that the answers provided by the human will be
helpful in the beginning iterations but their value will go to zero as
the number of iterations grows to infinity. This is because the human
propensity for error becomes larger as the questions become more
highly resolved.

Using a similar technique as in the proof of Thm. 4, and
using the modified BZ algorithm [9], from Lemma 1 in [9], we
have the following. For κ ≥ 2 with α1 =

√
ε1√

ε1+
√

1−ε1
, α2 =

0.09µ(3∆/4)κ−1:

P (|X∗−X̂n| > ∆) ≤ ∆−1 exp

(
−n
[
C̄(ε1) +

µ2

50
(
3∆

4
)2κ−2

])
.

This leads to the MSE upper bound dependent on ∆:

E[(X∗−X̂n)2] ≤ ∆2+∆−1 exp

(
−n
[
C̄(ε1) +

µ2

50
(
3∆

4
)2κ−2

])
.

(12)
With the choice ∆ = 2−1/3e−nC̄(ε1)/3,

E[(X∗ − X̂n)2] ≤ exp

(
−2

3
nC̄(ε1)

)
×
[
2−2/3 + 21/3 exp

(
−µ

2

50

(3 · 2−1/3

4

)2κ−2

ne−nC̄(ε1) 2κ−2
3

)]
(13)

3The parameter κ controls the “resolution” of the human. It becomes increasingly
difficult for the human to decide between close hypotheses as κ goes to infinity.

which is no greater than the “player 1” MSE bound (compare (13)
with (10)). Asymptotically as n → ∞, the two bounds both con-
verge to zero at the same rate.

We define the human gain ratio (HGR) as the ratio of MSE upper
bounds associated with “player 1” alone and “player 1 + human”,
respectively, given by

Rn(κ) =
2−2/3 + 21/3

2−2/3 + 21/3 exp
(
−µ2

50
( 3·2−1/3

4
)2κ−2ne−nC̄(ε1) 2κ−2

3

)
(14)

The HGR is plotted in Fig. 4 as a function of κ. This analysis quan-
tifies the value of including the human-in-the-loop for a sequential
target localization task. We note that the larger ε1 is, the larger is the
HGR. Also, as κ decreases to 1, the ratio increases, meaning that the
value of including the human in the loop increases.
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Fig. 4. Human gain ratio (see Eq. (14)) as a function of κ. The human
provides the largest gain in the beginning few question iterations and the
additional contribution of the human decreases as n → ∞. The circles are
the predicted curves according to (13), while the solid lines are the optimized
versions of the bound (12) as a function of ∆ for each n. The predictions
match well the optimized bounds predicted by the theory in Section 5.

Monte Carlo simulation experiments are given in [6], where it
is observed that employing a human in the loop reduces the MSE
relative to only having player 1. It is also noted that the gap between
the MSE curves associated with “player 1” and “player 1 + human”
initially increases to a maximum and then diminishes to zero. This
could be used to motivate a stopping rule for including the human
when the cost of using the human is increasing over time or human
fatigue prevents repeated querying; a worthwhile subject of future
work.

6. CONCLUSION

We studied the problem of collaborative 20 questions with noise for
the multiplayer case. We derived a separation theorem that shows
the jointly optimal design is equivalent to a greedy sequential de-
sign that can be more easily implemented. Using this framework,
we obtained bounds for the performance of human-in-the-loop tar-
get localization systems. Future work includes integration of a noisy
continuous valued sensor and controlling the human query rate.
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