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ABSTRACT

Manybioinformatics problemscanbe tackled froma freshangle offered

by the network perspective. Directly inspired by metabolic network

structural studies, we propose an improved gene clustering approach

for inferringgenesignalingpathways fromgenemicroarray data.Based

on the construction of co-expression networks that consists of both

significantly linear and non-linear gene associations together with con-

trolled biological and statistical significance, our approach tends to

group functionally related genes into tight clusters despite their expres-

sion dissimilarities. We illustrate our approach and compare it to the

traditional clustering approaches on a yeast galactose metabolism

dataset and a retinal gene expression dataset. Our approach greatly

outperforms the traditional approach in rediscovering the relatively well

known galactose metabolism pathway in yeast and in clustering genes

of the photoreceptor differentiation pathway.

Availability: The clustering method has been implemented in an R

package ‘GeneNT’ that is freely available from: http://www.cran.org.

Contact: zhud@umich.edu

1 INTRODUCTION

An important area in microarray data analysis is to infer signaling

pathways. The signaling pathway is a sequence of gene interactions

leading to a specific biological endpoint function. Gene interactions

are typically inferred through calculating the correlation between

gene expression profiles over multiple relevant physiological/

genetical conditions. Gene pairs with high correlation (e.g. >0.6)
are hypothesized to be biologically relevant and to interact directly

in the signaling pathways (Zhou et al., 2002; Stuart et al., 2003; Lee
et al., 2004).
It is typical that only a few genes are experimentally confirmed

to be in a signaling pathway. Gene clustering is a widely used

approach that attempts to group all the genes in the pathway into

a cluster such that functional prediction of unknown genes can be

made based on the functionally known genes. Some of the more

popular clustering methods include: hierarchical clustering (Eisen

et al., 1998), K-means type clustering (Hartigan and Wong, 1979)

and model-based clustering (Yeung et al., 2001). These methods

have been successful in inferring many signaling pathways from

gene microarray data.

The ultimate goal of all gene clustering approaches is to group

genes with similar functions into one single cluster. In practice,

most approaches simply group genes with similar expression

profiles (Eisen et al., 1998; Stuart et al., 2003; Lee et al., 2004),
denoted as ‘traditional clustering’ throughout this paper. However,

many genes in the same functional pathway may not have similar

expression profiles as measured by correlation statistics or other

pairwise expression similarity measure. This is especially true for

pairs of genes that are not in the same region of a signaling pathway.

These genes will not be discoverable using the traditional clustering

methods. Thus, a well-known limitation of the traditional clustering

approaches is that it only groups functional related genes with

similar expression profiles, but misses out on many others with

dissimilar expression profiles.

In a gene co-expression (also called ‘relevance’) network, graph

vertices represent genes, and edges represent gene associations

(Butte and Kohane, 2000; Butte et al., 2000). The traditional meth-

ods of clustering assume that the underlying network is fully

connected, i.e. any biological function is executed through a direct

interaction of a pair of genes (Fig. 1a). Direct pairwise gene inter-

actions, represented by the fully connected subgraph (clique), only

describes a small subset of gene interactions. In many cases, an

endpoint biological function is more commonly executed through a

series of inter-connected gene interactions (Fig. 1c, gene A, B, C, D,

E, F). Consequently, for genes lying in a single pathway traditional

clustering approaches often group these genes into several different

clusters, e.g. each cluster determined by a similarly co-expressed

clique. This breaking of a pathway across several clusters makes it

more difficult for biologists to identify groups of genes having

common functions. Thus approaches that are able to go beyond

pairwise interactions to group the whole pathway into a single tight

cluster are highly desirable.

A more realistic assumption for gene clustering may be that the

underlying relevance network is only partially connected, i.e. the

biological function is executed through either direct interaction

or one or more intermediate genes (Fig. 1c). A gene clustering

algorithm that accounts for such realistic network constraints is

likely to be more powerful (Zhou et al., 2002; Zhou and Gibson,

2004). There are several challenges to developing such an approach:

how to reliably extract the relevance network from microarray data

and how to estimate the distance between two non-adjacent genes

(genes that do not have similar expression profiles) in the network.

Gene co-expression networks typically use correlation statistics

as pairwise similarity measures (a decreasing function of the dis-

tance for clustering) between gene expression profiles, followed

by either direct correlation thresholding (Zhou et al., 2002) or a�To whom correspondence should be addressed.
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combination of significance level tests with correlation thresholding

(Lee et al., 2004). While direct thresholding is useful in many cases

it only controls biological significance but not error rate. Combining

correlation thresholding with a level of significance test allows

one to control biological and statistical significance, albeit in an

ad hoc manner. A new network construction approach based on

False Discovery Rate Confidence Interval (FDR-CI) was recently

proposed to control biological and statistical significance simultan-

eously (Zhu et al., 2005). This approach was able to identify both

linearly and nonlinearly co-expressed genes using the Kendall

correlation coefficient combined with the Pearson correlation

coefficient. The employment of nonlinear correlation measures is

important when functionally related gene expression profiles are

non-linearly correlated. Non-linear correlation can occur, for

example, when gene expressions of different subunits of a whole

enzyme are differentially regulated due to different enzyme

efficiencies.

Regarding the estimation of distance between two non-adjacent

genes in the relevance network, the shortest-path distance between

them represents the most natural and parsimonious representation

of biological interaction since genes along the shortest-path are

likely to have similar functions (Zhou et al., 2002). Based on the

new network construction algorithm and the shortest-path distance

measure, we present a new clustering approach, called ‘network

constrained (NC) clustering’ throughout this paper, that is able

to group more functionally related genes into a single tight cluster

even if their expression profiles are dissimilar.

2 METHODS

2.1 Constructing co-expression network

We formulate the network construction problem as a composite hypothesis

test with multiple comparison. The algorithm proceeds as follows (Zhu et al.,

2005).

2.1.1 Measuring the strength of association We use G to denote the

true strength of association between a pair of gene expression profiles. Under

a Gaussian linear hypothesis, the sample Pearson correlation coefficient r̂r is

an appropriate metric (Bickel and Doksum, 2000). A robust distribution-free

alternative is the sample Kendall rank correlation coefficient t̂t (Hollander

and Wolfe, 1999). We define fgpg
G
p¼1 as the indices of G gene probes on

the microarray; fXgpg
G
p¼1 as normalized probe responses (random variables)

and ffxgp nð Þ g
G
p¼1g

N
n¼1 as realizations of fXgpg

G
p¼1 under N i.i.d. microarray

experiments.

2.1.2 Hypothesis testing scheme For G genes on each microarray,

we need to simultaneously test L ¼ G
2

� �
pairs of two-sided hypotheses:

H0 : Ggi‚gj � cormin versus Ha : Ggi‚gj > cormin‚

for gi 6¼ gj‚ and gi‚gj 2 1‚2‚ . . .Gð Þ ð1Þ

where cormin is a Minimum Acceptable Strength (MAS) of correlation. The

sample correlation coefficient ĜG r̂r or t̂tð Þ is used as a decision statistic to

decide on pairwise dependency of two genes in the sample. For N realiza-

tions of any pair of gene probe responses, fxgi nð Þ‚xgj nð ÞgNn¼1, we first calculate

t̂t or r̂r . For large N, the Per Comparison Error Rate (PCER) P-values for

r or t are:

pri‚ j ¼ 2 1�F
tanh�1 r̂r i‚ j

� �
N � 3ð Þ�1=2

0
@

1
A

0
@

1
A ð2Þ

pti‚ j ¼ 2 1�F
K

N N � 1ð Þ 2N þ 5ð Þ=181=2

 ! !
ð3Þ

where F is the cumulative density function of a standard Gaussian random

variable and K ¼
P P

1�n�m�N Knm. The above expressions are based on

asymptotic Gaussian approximations to r̂r i‚ j (Bickel and Doksum, 2000) and

to t̂t i‚ j (Hollander and Wolfe, 1999).

The PCER P-value refers to the probability of Type I error rate incurred in

testing a single pair of hypothesis for a single pair of genes gi, gj. When

considering the L multiple hypotheses for all possible pairs, as in previous

studies, we adopt the False Discovery Rate (FDR) to control statistical

significance of the selected gene pair correlations in our screening procedure

(Reiner et al., 2003). The procedure guanantees that the false discovery rate

associated with testing the hypotheses (1) does not exceed a.

2.1.3 Two-stage screening procedure Select a level a of FDR and a

level cormin of MAS significance levels. We use a modified version of the

two-stage screening procedure applied to gene screening (Hero et al., 2004).
This procedure consists of:

Stage I. Test the simple null hypothesis.

H0 : Ggi‚gj ¼ 0 versus Ha : Ggi‚gj 6¼ 0

at FDR level a. The step-down procedure of Benjamini and Hochberg (1995)

is used.

Stage II. Suppose L1 pairs of genes pass the stage I procedure. In stage II,

we first construct asymptotic PCERConfidence Intervals (PCER-CI’s): Il(a)

for each G(r or t) in subset G1, and convert into FDR Confidence Intervals

(FDR-CI’s) : Ig(L1a/L) (Benjamini and Yekutieli, 2004). A gene pair in

subset G1 is declared to be both statistically significant and biologically

significant if its FDR-CI does not intersect the MAS interval [�cormin,

cormin].
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Fig. 1. Underlying network models and distance matrices for traditional

clustering (a)(b) and network constrained clustering (c)(d). Obtained by

removing some edges of weak correlations (long distances), e.g. distance

longer than 3. The distance between twogenes is a decreasing functionof their

correlation (see Equation 4). (a). Fully connected network; it assumes any two

genes interact with each other directly in the network (connected). (b). Part

of the distance matrix for the network model (a). (c). Partially connected

network; it assumes only two genes with high correlation (e.g. 0.6) directly

interacting with each other (connected). Grey edges represent the shortest-

path from A to D. (d). Part of the distance matrix for the network model (c).
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A relevance network composed of these screened gene pairs can then be

constructedwith the simultaneous control of statistical significancea · 100%
and biological significance cormin.

2.2 Extract the giant connected component

Only gene pairs that are in the same Connected Component (CC) of the

relevance network have finite distances and can be clustered. The largest

connected component, usually of importance to both biological function and

network topology (Ma et al., 2004b; Zhu and Qin, 2005), is called the Giant

Connected Component (GCC) (Fig. 1c, genes A, B, C, D, E, F form a GCC).

The GCC of an undirected graphG¼ (V,E), where V is the set of all vertices

and E is the set of all edges, is the maximal set of vertices U � V such that

every pair of vertices u and v in U are reachable from each other. Our

network constrained clustering method is applied to the GCC. Analogous

to previous studies, we assume that almost all important genes are included

in the GCC. The standard depth first search (DFS) algorithm [Cormem et al.
(1990)] was used to extract the GCC from the gene microarray data.

2.3 Compute ‘network constrained distance matrix’

Let ĜGij be the sample correlation coefficient between gene i and j, e.g.

estimated from a gene microarray sequence by Pearson or Kendall correla-

tion statistic. Let wij be the weight of the edge between gene i and gene j.

Similar to Zhou et al. (2002), the wij is defined as:

wij ¼ 1� abs ĜG ij

� �� �p ð4Þ

The integer p is an exponential tuning parameter used to enhance the dif-

ferences between low and high correlation. We define the matrix W ¼ [wij]

as the ‘Traditional distance matrix’ (e.g. Fig. 1b).

We use the standard Floyd-Warshall algorithm to search among all-pairs

for the shortest-paths within the GCC. Let d
kð Þ
ij be the weight of a shortest-

path from vertex i to vertex j such that all intermediate vertices on the path

(if any) are in set {1,2, . . . , k}. When k ¼ 0, there is no intermediate vertex

between vertices i and j, and we define d
0ð Þ
ij ¼ wij. A recursive definition of

d
kð Þ
ij is given by (Cormem et al., 1990):

d
kð Þ
ij ¼

wij if k ¼ 0‚

min d
k�1ð Þ
ij ‚ d

k�1ð Þ
ik þ d

k�1ð Þ
kj

� �
if k � 1‚

(
ð5Þ

where d
k�1ð Þ
ij is the length of the shortest-path when k is not a vertex on

the path and d
k�1ð Þ
ik þ d

k�1ð Þ
kj is that k is a vertex on the path. We define the

matrix D ¼ [dij] as the ‘Network constrained distance matrix’ (e.g. Fig. 1d).

It can be used as input to many distance matrix based clustering software

packages such as: hierarchical clustering (Eisen et al., 1998) and K-medoids

(Hartigan and Wong, 1979). The calculation of matrix D can be easily

extended to higher Eukaryote since the algorithm runs in polynomial time,

i.e. O(V3 + V + E).

3 RESULTS

3.1 Sensitivity analysis

The FDR, MAS and exponential tuning parameter p are three para-

meters involved in calculating the network constrained distance

matrix. It would be interesting to investigate the sensitivity of the

results to variance in these parameters. The biological significance

level MAS¼ 0.6 has been widely adopted as a correlation cut-off in

the literature, e.g. Zhou et al., 2002, 2005. The selection of the FDR
statistical significance level is intimately associated with the sample

size and the underlying biological mechanism. Our selection of

FDR¼ 5% imposes the stringent statistical criterion that on average

only 5% of the genes discovered and included in the network will be

false positives.

The parameter p in Equation (4) is an exponential tuning factor

used to enhance the differences between expression similarity and

dissimilarity. As pointed out by Zhou et al. (2002), for a fixed

correlation threshold, as p is increased more transitive genes will

be revealed at the expense of a higher false discovery rate. In

Figure 2 we present results of an empirical study of the influence

of p on clustering performance for a yeast galactose metabolism

dataset (Ideker et al., 2000).
The galactose metabolism dataset represents approximately 6200

yeast gene expression levels on two-color cDNA microarrays over

20 physiological/genetic conditions (nine mutants and one wild type

strains incubated in either GAL-inducing or non-inducing media)

(http://www.sciencemag.org/cgi/content/full/292/5518/929/DC1).

A subset of 205 gene expression profiles whose Gene Ontology

(GO) annotation (Ashburner et al., 2000) falls into four functional

classes were used (Yeung et al., 2003). We investigate the effect of

p by examining how closely the clusters reproduce these functional

classes as p varies. We used both the RAND index (Rand, 1971) and

the adjusted RAND index (Hubert, 1985) as measures of consist-

ency between the clustering results and GO annotations. Figure 2

shows that the network constrained clustering best conforms to the

GO annotations when p ¼ 6. Note that Zhou et al. (2002) also

suggested using p ¼ 6 to define the edge weight in their analysis.

3.2 Yeast galactose metabolism data

3.2.1 Data processing and network construction We empirically

evaluated the performance of the proposed clustering approach by

applying it to a relatively well-known yeast galactose metabolism

signaling pathway and comparing it with the traditional clustering

approaches. We used a subset of 997 genes that were identified by

Ideker et al. (2000) using a standard generalized likelihood ratio

testing procedure. Genes having a likelihood statistic l � 45 were

selected as differentially expressed and whose mRNA levels dif-

fered significantly from reference under one or more perturbations.
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By measuring the pairwise gene correlations using both Pearson

and Kendall correlation coefficients, we applied a two-stage algo-

rithm to screen gene pairs with FDR �5% and MAS ¼ 0.6 (Zhu

et al., 2005). The resulting network is a mixed network within which

edges are discovered with Pearson and Kendall correlation statist-

ics. Our network construction algorithm and the screening criteria

ensure false discovery of no more than 5% of the edges having

strength of association >0.6 (Zhu et al., 2005).

3.2.2 Network constrained clustering We extracted the GCC

from the co-expression network using a DFS type algorithm (see

Methods). The GCC contains 772 genes within which almost all

known structural genes in the pathway are included. This confirms

the notion that GCC of the network has not only structural but also

functional significance (Ma et al., 2004; Ma and Zeng, 2003; Zhu

and Qin, 2005). The network constrained distance matrix for GCC

was computed according to Equations (4) and (5) using GCC selec-

ted genes (see Methods) while the distance matrix for the traditional

clustering method was computed according to Equation (4) only.

The yeast galactose metabolism pathway consists of at least three

types of genes including transporter genes (GAL2, HXT1-10,

the roles of other HXT genes are not entirely clear), enzyme

genes (GAL1, GAL7, GAL10 etc.) and transcription factor genes

(GAL3, GAL4, GAL80 etc.) (Wieczorke et al., 1999). Transcription
factor genes are not discoverable from this microarray experiment

as their expressions are typically time shifted and only one time

sample was included. Since the pathway has been relatively well

studied, we sought to compare our network constrained clustering

approach with the traditional clustering approach through redis-

covering the 14 important genes in the structural module (GAL2,

HXT1-10, and enzyme genes: GAL1, GAL7, GAL10) of the yeast

galactose metabolism pathway.

For comparison with a widespread clustering algorithm we used

agglomerative hierarchical clustering [implemented in R function

hclust()]. We expect that other traditional clustering methods such

as K-means or K-medoids would give similar results. For calculat-

ing distance between clusters, we implemented a ‘complete’ method

in which the longest geodesics between genes in the two clusters are

used as distance between clusters. As empirically demonstrated in

(Speed, 2003), the ‘complete’ method gives rise to better cluster

separation.

Figure 3 shows the traditional clustering approach using all 997

genes and Figure 4 shows the traditional clustering approach using

the 772 genes in the GCC. In both cases, the 14 structural genes are

separated into three subclusters (Figs 3 and 4). In Figure 3, all GAL

genes are nicely grouped in a cluster, but not the HXT genes, In

Figure 4, all HXT genes are grouped into a single cluster, but the

algorithm fails to combine GAL gene clusters with HXT gene

clusters. Figures 3 and 4 show that the GCC gene selection process

has some desirable effects on clustering by removing a few unre-

lated genes (Tseng and Wong, 2005) that are not relevant to the

biological pathway. However, using the GCC gene selection pro-

cedure alone does not significantly improve clustering performance.

We think that this undesirable separation of genes in the pathway

is due to the presence of gene expression dissimilarity between

subclusters and gene expression similarity within subclusters. To

test this hypothesis, we plotted the correlation matrix of 14 genes in

the structural module and did hierarchical clustering (Fig. 5). The

color intensities in Figure 5 correspond to the levels of correlations

(increasing correlations are represented from yellow to red). It is

evident from Figure 5 that expression correlations within GAL

genes and HXT genes are much higher than the correlations between

the two groups. This explains the separation of these two gene

clusters in the associated clustering dendrogram (Figs 3 and 4).

Among the HXT gene clusters, HXT3, HXT6 and HXT7 are highly

correlated [red (dark) zone in Fig. 5]. It explains the actual separa-

tion of these three genes from the remaining HXT genes shown

in the clustering dendrogram (Fig. 3). Figs 3, 4 and 5 show that
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traditional clustering methods failed to group functionally related

genes with dissimilar expression profiles (low correlations) into one

cluster.

Figure 6 presents results of applying our network constrained

clustering algorithm to the 772 genes selected by GCC extraction.

Note that all 14 structural genes that failed to be clustered together

by the traditional approach (Fig. 3) are grouped into a single tight

cluster by the network constrained clustering approach. As has been

shown, the GCC selection process contributes only moderately

to the apparent success. This demonstrates that employment of

the network constrained distance matrix can lead to significant

improvement in clustering performance.

3.3 Retinal gene expression data

The aim of the retinal gene expression experiment is to investigate

the gene pathway of photoreception differentiation during

retinal development and to discover unknown genes related to

this pathway. The retinal data represent a total of 45 101 gene

expression profiles over five time points measured in both

wide type and Nrl (Swaroop et al., 1992) (the Maf-family transcrip-

tion factor, the key regulator of photoreceptor differentiation in

mammals) knockout mice: submitted. The data will soon be

available for download through the NCBI Gene Expression

Omnibus (GEO).

The data were preprocessed using the ‘rma’ method (Bolstad

et al., 2003), and it was subjected to an initial screening using

the two-stage screening method proposed by Hero et al. (2004)
in which the top 1000 genes ranked by FDR and Fold Change

are kept for further analysis. We constructed a co-expression net-

work similar to the yeast analysis (FDR�5% andMAS¼ 0.6) in the

last subsection. A GCC of size 790 genes was extracted. These

790 genes were used in our NC clustering algorithm according

to Equations (4) and (5) while the total 1000 genes were used

in the traditional hierarchical clustering algorithm according to

Equation (4) only.

As above we used GO annotation as the objective criteria to

compare the two clustering approaches. GO is a set of standard

hierarchical vocabularies to describe the biological process,

molecular function and cellular component of genes. It is conveni-

ently represented as a graph where nodes represent standard vocabu-

laries and edges represent the relationship (either ‘is-a’ or ‘part of’)

between vocabularies. A child node is the more specific vocabulary

than its parent node(s). A list of probesets obtained from any clus-

tering method can be mapped to a GO graph (e.g. biological process

graph), the appearance counts of all nodes of the GO graph as well

as their P-values of chi-square statistics can be calculated. The

most significant node(s)[corresponding to the smallest P-value(s)]
usually describe(s) the biological functions of the probeset list.

Specifically, all genes having GO annotation ‘visual perception

[GO:0007601]’ are expected to belong to the photoreceptor differ-

entiation pathway.

We thoroughly compared the two clustering results with respect

to three criteria (appearance counts, separation and P-values of the
GO category: visual perception) at each cluster number ranging

from 1 to 20. Only the largest 20 clusters were investigated as the

remaining clusters contained fewer than 5 genes. The first two

clustering criteria measure stability of the ‘visual perception’ cluster

as a function of cluster numbers, and the third criterion measures

the enrichment of the interested GO vocabulary as a function of

cluster numbers. Figures 7 and 8 demonstrate that the ‘visual per-

ception’ cluster acquired by NC clustering is quite stable over

different cluster numbers but not that acquired by traditional clus-

tering. Figure 9 demonstrates that the interested GO vocabulary

‘visual perception’ is much more enriched by NC clustering over

different cluster numbers. In Figure 7, the initial (cluster number¼ 1)

... FAR1 , FKS , GAL1 , GAL10 , GAL2 , GAL7 , GCY1 , HIS7 , HXT1 , HXT10 ,
HXT12 , HXT2 , HXT3 , HXT4 , HXT5 , HXT6 , HXT7 , HXT8 , HXT9 ...

Fig. 6. Network constrained clustering: agglomerative hierarchical cluster-

ing using network constrained distance matrix calculated from relevance

network [Equation (5)].
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count difference (28 versus 30) is due to the GCC gene selection

criterion.

4 DISCUSSION

Estimating signaling pathways from gene expression data is one

of the most active research areas in microarray data analysis. Co-

expression analysis is one of the most popular approaches. While at

this stage many functional predictions made through co-expression

analysis are based on the assumption of ‘Guilt-by-Association,’

there are still fewmethods for functional predictions from dissimilar

expression profiles. Transitive co-expression analysis (Zhou et al.,
2002) is a systematic method to accomplish functional prediction

from dissimilar gene expression profiles (Zhou and Gibson, 2004;

Zhou et al., 2005).
Systematic network analysis approaches have been widely

applied to many biological networks such as metabolic networks

e.g. Gagneur et al. (2003). Many theoretical approaches have been

implemented to analyze metabolic networks including network

decomposition and isomorphism methods. For example, Ma et al.
(2004) presented a network decomposition approach to analyze

metabolic pathways, by considering the global network structure

rather than local marginal connectivity. They showed that chemical

reactions in the same cluster are indeed functionally related. Our

approach extends this to gene co-expression networks extracted

from microarray data. Our network constrained clustering differs

significantly from the traditional clustering approach in at least two

aspects: (1) it uses GCC selected genes instead of all differentially

expressed genes for clustering; (2) it uses a hybrid distance matrix

that is composed of both direct distances and shortest-path distances

for clustering instead of the traditional distance matrix that is com-

posed of only direct distance matrix. The latter has been shown to

lead to clustering improvements.

Gene co-expression networks differ from metabolic networks and

Protein–protein interaction networks in that the edges are inferred

from hypothetical rather than physical interactions. Statistical meth-

ods are more useful in dealing with inherent uncertainties. The

method we adopted constructs the co-expression network by sim-

ultaneously controlling biological and statistical significance. Our

network constrained clustering method has the following features:

(1) it tends to group functionally related genes into a tight cluster

disregarding whether these genes have similar expression profiles;

(2) it is sufficiently flexible because the calculated network con-

strained distance matrix can be fitted into many popular distance-

based clustering software packages and (3) the algorithm runs in

polynomial time.
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