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Abstract—We consider the problems of clustering, classification, and

visualization of high-dimensional data when no straightforward euclidean

representation exists. In this paper, we propose using the properties of information

geometry and statistical manifolds in order to define similarities between data sets

using the Fisher information distance. We will show that this metric can be

approximated using entirely nonparametric methods, as the parameterization and

geometry of the manifold is generally unknown. Furthermore, by using

multidimensional scaling methods, we are able to reconstruct the statistical

manifold in a low-dimensional euclidean space; enabling effective learning on the

data. As a whole, we refer to our framework as Fisher Information Nonparametric

Embedding (FINE) and illustrate its uses on practical problems, including a

biomedical application and document classification.

Index Terms—Information geometry, statistical manifold, dimensionality

reduction, multidimensional scaling.
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1 INTRODUCTION

DUE to the ever expanding capabilities of data retrieval, data are
often represented in some high-dimensional fashion, leading to
difficulties in learning tasks due to the curse of dimensionality.
While the problem of learning in an euclidean space has been
thoroughly researched in manifold learning, there are many
problems in which the data cannot be appropriately represented
as a (Riemannian) submanifold of the euclidean space, and the
model parameters are unspecified and must be learned through
the data. In contrast to the ad hoc “solution” of processing the data
as real-valued feature vectors in the euclidean space, we consider
the case that generative models for the data can be represented as
points on a statistical manifold—a manifold of probability density
functions (PDFs). Applications of statistical manifolds have been
presented in the cases of document classification [1], face
recognition [2], texture segmentation [3], image analysis [4], and
clustering [5], all proposing alternatives to using euclidean
geometry for data modeling.

When the parameterization of the statistical manifold is avail-

able, one can project the data onto the manifold to obtain a

corresponding statistical model and the exact geodesic distance can

be computed to measure the distance between PDFs. In many

problems of practical interest, however, the manifold geometry is

unavailable and the calculation of geodesics must be done in a

model-free, nonparametric fashion. In this paper, we present a

framework—deemed Fisher Information Nonparametric Embedding

(FINE)—to deal with such problems. FINE includes characterization

of data sets in terms of a nonparametric statistical model, a geodesic

approximation of the Fisher information distance as a metric for

evaluating similarities between data sets, and a dimension reduc-

tion procedure to obtain a low-dimensional euclidean embedding of

the original high-dimensional data for various learning tasks.

Unlike previous presentations of statistical manifolds, our method

is entirely nonparametric and contains no model assumptions,

yielding a low-dimensional embedding based entirely on the

information geometry of the samples.
This paper is organized as follows: Section 2 gives the

formulation for the problem we wish to solve, while Section 3

develops and outlines the FINE algorithm. We illustrate the results

of using FINE on real data sets in Section 4. Finally, we draw

conclusions and discuss the possibilities for future work in Section 5.

2 PROBLEM FORMULATION

Recent methods of manifold learning and dimensionality reduc-

tion [6], [7], [8] focus on finding a low-dimensional representation

of the data which are restricted to lie on a (Riemannian)

submanifold of an euclidean space. These methods are designed

to optimally reconstruct such a euclidean manifold given only a set

of sample points which lie on said manifold. While each method

implements this optimization differently (i.e., locally, globally,

etc.), all are designed to preserve some measure of the L2 distance

norm between sample points in a given data set.
Rather than focusing on reducing the dimension of a single data

set to reconstruct its euclidean manifold, we extend the problem to

statistical manifolds, or PDFs. In this case, the space in which the

data lie is of no particular interest. Instead, the generative model of

the data is restricted to lie on a statistical manifold, and we wish to

reconstruct the manifold given a collection of sample data sets.
Multidimensional scaling (MDS) [9] and its derivations utilize

pairwise euclidean distances to recreate manifolds and embed

points into a low-dimensional space. However, it has been well

documented that these methods use euclidean distance as a

measure of dissimilarity between elements, and other measures of

dissimilarity may be substituted. Isomap [7], for example,

approximates the geodesic distance between data samples.

Laplacian eigenmaps [6] simply use euclidean distance as a means

to calculate a weight function. Hence, if an appropriate distance

between PDFs is utilized, these well-respected algorithms could be

used for an entirely new class of problems.
Let P ¼ p1; . . . ; pNf g be a collection of PDFs lying on some

statistical manifoldM. Our goal is to reconstructM using only the

information available in P. Hence, we would like to find a distance

measure between PDFs to calculate the pairwise dissimilarities.

This enables the usage of MDS methods to reconstruct a low-

dimensional embedding of the statistical manifold in euclidean

space. This allows for effective learning on the family of

distributions lying on the manifold.

3 METHODS

3.1 Fisher Information Distance

For a parametric family of probability distributions on a statistical

manifold, it is possible to define a Riemannian metric using the

Fisher information matrix ½Ið�Þ�, which measures the amount of

information a random variable contains in reference to an

unknown parameter �. The Fisher information distance between

two distributions pðx; �1Þ and pðx; �2Þ is
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DF ð�1; �2Þ ¼ min
�ð�Þ:

�ð0Þ¼�1

�ð1Þ¼�2

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�

dt

� �T
Ið�Þ½ � d�

dt

� �s
dt; ð1Þ

where � ¼ �ðtÞ is the parameter path along the manifold [10], [11].
Note that the coordinate system of a statistical manifold is the same
as the parameterization of the PDFs (i.e., �). Essentially, (1)
amounts to finding the length of the shortest path—the geodesic—
on M connecting coordinates �1 and �2.

While the Fisher information distance cannot be exactly
computed without a priori knowledge about the geometry (i.e.,
parameterization) of the manifold, the distance between PDFs p1

and p2 may be approximated with a variety of metrics such as the
Kullback-Leibler (KL) divergence,

KLðp1 k p2Þ ¼
Z
p1ðxÞ log

p1ðxÞ
p2ðxÞ

dx; ð2Þ

the Hellinger distance,

DHðp1; p2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ � ffiffiffiffiffiffiffiffiffiffiffi
p1ðxÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffi
p2ðxÞ

p �2
dx

s
; ð3Þ

and the cosine distance,

DCðp1; p2Þ ¼ 2 arccos

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ðxÞ � p2ðxÞ

p
dx; ð4Þ

all of which converge to the Fisher information distance,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KLðp1 k p2Þ

p
! DF ðp1; p2Þ;

2DHðp1; p2Þ ! DF ðp1; p2Þ;
DCðp1; p2Þ ! DF ðp1; p2Þ;

as p1 ! p2 [10]. These measures allow for the approximation of the
information distance in the absence of the geometry of the
statistical manifold on which the PDFs lie. Note that there exists
a monotonic transformation function relating the Hellinger
distance to the cosine distance,  : DH ! DC . Additionally, while
the KL-divergence is not a symmetric measure, we can add
symmetry by defining, DKLðp1; p2Þ ¼ KLðp1 k p2Þ þKLðp2 k p1Þ,
which maintains the convergence properties. For additional
measures of probabilistic distance, some of which approximate
the Fisher information distance, and a means of calculating them
between data sets, we refer the reader to [12], [13].

It has previously been suggested [3] to use the cosine distance
as a strict approximation of the Fisher information distance. This is
due to the fact that the cosine distance measures a portion of a
great circle on a hypersphere, and in the discrete case, all PDFs can
be considered as multinomial distributions which may be
projected onto a hypersphere manifold. This usage of the cosine
distance is true only in the assumption that the manifold of interest
fills the entire space of the hypersphere. In many cases, the PDFs
are constrained to form a submanifold of interest, and the geodesic
is no longer accurately described as a portion of a great circle on
the hypersphere. This is illustrated in Fig. 1 in which we represent
a ðd� 1Þ-dimensional submanifold which occupies a subspace of
the d-dimensional hypersphere (d ¼ 2 for illustration). The Fisher
information distance is equal to the shortest path along the
submanifold (curvy line) and is not equal to the portion of a great
circle on a hypersphere connecting the two points. Hence, there are
situations in which standard approximations of the information
distance do not converge to the true distance and it is necessary to
approximate the geodesic along the manifold.

Using a graphical model, we may define the path between p1

and p2 as a series of connected segments. The geodesic distance
may then be approximated as the sum of the length of those

segments. Specifically, given the collection of N PDFs P ¼
p1; . . . ; pNf g and using an approximation of the Fisher information

distance D̂F ðp1; p2Þ as p1 ! p2, we can now define an approxima-

tion function G for all pairs of PDFs:

Gðp1; p2;PÞ ¼ min
M;P

XM�1

i¼1

D̂F

�
pðiÞ; pðiþ1Þ

�
; pðiÞ ! pðiþ1Þ 8 i: ð5Þ

Intuitively, this estimate calculates the length of the shortest path

between points in a connected graph on the well-sampled

manifold and, as such, Gðp1; p2;PÞ ! DF ðp1; p2Þ as N !1.

Empirically, (5) may be solved with Dijkstra’s shortest path

algorithm. This is similar to the manner in which Isomap [7]

approximates manifold distances.

3.2 Dimensionality Reduction

Given a matrix of dissimilarities between entities, many MDS

algorithms have been developed to find a low-dimensional

embedding of the original data  :M! IRd. As stated previously,

these techniques enable the reconstruction of manifolds from a

finite sampling. While historically used to reconstruct euclidean

manifolds, we apply the same techniques to reconstruct statistical

manifolds by using the Fisher information distance (or approx-

imation thereof) as a pairwise dissimilarity metric. Hence, we are

able to find a single low-dimensional coordinate representation of

each PDF.
While there are many available MDS methods, in this paper, we

utilize classical MDS (cMDS) [9], Laplacian eigenmaps (LEM) [6],

and classification constrained dimensionality reduction (CCDR)

[14]. It is worth noting that, per our formulation, cMDS operating

on the geodesic distance is the same setting as the Isomap

algorithm (albeit with a different metric).

3.3 FINE Algorithm

In problems of practical interest, the parameterization of the

probability densities is usually unknown. We instead are given

a family of data sets X ¼ fXX1; . . . ; XXNg, in which we may

assume that each data set XXi is a realization of some underlying

PDF to which we do not have knowledge of the parameters.

Given such problems, nonparametric methods of density

estimation such as kernel methods and k-nearest neighbor

(k-NN) methods are appropriate to estimate both the PDFs

and the approximation of the Fisher information distance. For

additional details on both kernel density estimation and
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Fig. 1. Given a one-dimensional submanifold (the curvy dark line) of interest lying
on a two-dimensional sphere manifold, the Fisher information distance is the
shortest path connecting the points A and B along the one-dimensional
submanifold, rather than the length of a portion of the great circle connecting
the points on the sphere.



calculation of information divergences, including the specific

implementation for our methods, we refer the reader to [13].
FINE is presented in Algorithm 1 and combines the presented

methods to find a low-dimensional embedding of a collection of
data sets. If we assume that each data set is a realization of an
underlying PDF and each of these distributions lie on a statistical
manifold with some natural parameterization, then this embed-
ding can be viewed as a reconstruction of the manifold into
euclidean space. Note that in line 5, “mdsðG; dÞ” refers to using any
multidimensional scaling method to embed the dissimilarity
matrix G into a euclidean space with dimension d.

Algorithm 1. Fisher Information Nonparametric Embedding

Input: Collection of data sets X ¼ fXX1; . . . ; XXNg; the desired

embedding dimension d

1: for i ¼ 1 to N do

2: Calculate p̂iðxxÞ, the density estimate of XXi

3: end for

4: Calculate G, where Gði; jÞ is the geodesic approximation of the

Fisher information distance between pi and pj

5: YY ¼ mdsðG; dÞ
Output: d-dimensional embedding of X , into euclidean space

YY 2 IRd�N

At this point, it is worth stressing the benefits of this
framework. Through information geometry, FINE enables the joint
embedding of multiple data sets XXi into a single low-dimensional
euclidean space. By viewing each XXi 2 X as a realization of pi 2 P,
we reduce the numerous samples in XXi to a single point. The
dimensionality of the statistical manifold may be significantly less
than that of the euclidean realizations (e.g., a multivariate
Gaussian). MDS methods reduce the dimensionality of pi from
the euclidean data dimension to the dimension of the statistical
manifold on which it lies. This results in a single low-dimensional
representation of each original data set XXi 2 X .

4 APPLICATIONS

We now present practical applications for the FINE framework
which are based around visualization and classification. In each
application, the densities are unknown, but we assume that they lie
on a manifold with some natural parameterization.

4.1 Flow Cytometry

In clinical flow cytometry, pathologists gather readings of

fluorescent markers and light scatter off of individual blood cells

from a patient sample, leading to a characteristic multidimensional

distribution that, depending on the panel of markers selected, may
be distinct for a specific disease entity. Clinical pathologists
generally interpret results in the form of two-dimensional scatter
plots in which the axes each represent one of the many cell
characteristics analyzed; the multidimensional nature of flow
cytometry is routinely underutilized in practice.

An example of the difficulty in analysis of two-dimensional
scatter plots is illustrated in Fig. 2. Two distinct but immunophe-
notypically similar forms of lymphoid leukemia are shown—
mantle cell lymphoma (MCL) and chronic lymphocytic leukemia
(CLL). These diseases display similar characteristics with respect
to many expressed surface antigens, but are generally distinct in
their patterns of expression of two common B lymphocyte antigens
CD23 and FMC7. The significant similarity and overlapping nature
in the marginal plots illustrates the difficulty in traditional two-
dimensional flow cytometry analysis.

While the expression of various markers may be highly variable
over different patients, the general characterization of the multi-
variate PDF underlying each patient sample is much less variable.
Hence, each distribution exists on some statistical manifold with a
much lower dimensional parameterization, and this application is
appropriate for FINE [15], [16]. Specifically, let X ¼ fXX1; . . . ; XXNg,
where XXi is the data set corresponding to the flow cytometer
output of the ith patient. Each patient’s blood is analyzed for five
parameters: forward and side light scatter, and three fluorescent
markers (CD45, CD23, and FMC7). Hence, each data set XXi is five-
dimensional with ni elements corresponding to individual blood
cells. Given that X is comprised both patients with CLL and
patients with MCL, we wish to analyze the performance of FINE
for the visualization of cytometric data.

The data set1 consists of 23 patients with CLL and 20 patients
with MCL, and the set XXi for each patient is on the order of ni �
5;000 cells. Densities were approximated with a Gaussian kernel
KDE, using the maximal smoothing principal [17] for bandwidth
selection. Fig. 3 shows the two-dimensional embedding with FINE,
using cMDS and the symmetric KL-divergence set as a local
approximation of the Fisher information distance. Each point in the
plot represents an entire patient data set. It should be noted that
there exists a natural separation between the classes, as the
implementation was entirely unsupervised.

An important byproduct of this natural clustering is the ability to
visualize the cytometric data in a manner which allows compar-
isons between patients. The circled points in Fig. 3 correspond to the
patients illustrated in Fig. 2, which were difficult to differentiate by
using a scatter plot of the most discerning marker combination as
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Fig. 2. Two-dimensional plot of patients in disease classes CLL and MCL, in which

each point represents a unique blood cell.

1. Data and clinical diagnosis for each patient was provided by the
Department of Pathology at the University of Michigan.

Fig. 3. Two-dimensional embedding of CLL (�) and MCL (þ) patients using FINE.

The circled points correspond to the CLL and MCL cases illustrated in Fig. 2.



deemed by pathologists. In the space defined by FINE, the patients
are easily differentiated and lie well within the clusters of each
disease type. By using the embedding created with FINE, pathol-
ogists are able to visually determine similarities between patients,
which gives them a quick and easy means of determining which
data sets may need further investigation (e.g., for possible
misdiagnosis). For further usages of FINE for flow cytometry
analysis, we encourage the reader to view [15], [16].

4.2 Document Classification

Recent work has shown interest in using dimension reduction for
the purposes of document classification [18] and visualization [19].
Typically, documents are represented as very high-dimensional
PDFs, and learning algorithms suffer from the curse of dimension-
ality. Dimension reduction not only alleviates these concerns, but
also reduces the computational complexity of learning algorithms
due to the resultant low-dimensional space. As such, the problem of
document classification is an interesting application for FINE [20].

Given a collection of documents of known class, we wish to best
classify a document of unknown class. A document can be viewed
as a realization of some overriding probability distribution on a
“bag of words,” in which different distributions will generate
different documents. In this setting, we defined the PDFs as the
term frequency representation of each document. Specifically, let xi
be the number of times term i appears in a specific document. The
PDF of that document can then be characterized as the multinomial
distribution of normalized word counts, with the maximum
likelihood estimate provided as

p̂ðxxÞ ¼ x1P
i xi

; . . . ;
xnP
i xi

� �
; ð6Þ

where n is the number of words in dictionary xx.
For illustration, we will utilize the well-known 20 Newsgroups

data set,2 which contains word counts for 18,774 postings on
20 newsgroups and recommends specific indexes for training and
test sets. We choose to restrict our simulation to the four domains
with the largest number of subdomains (comp.�, rec.�, sci.�, and
talk.�), and classify each posting by its highest level domain.
Specifically, we are given P ¼ p1; . . . ; pNf g where each pi corre-
sponds to a single newsgroup posting and is estimated with (6).
We note that the data were preprocessed to remove all words that
occur in five or less documents.3

4.2.1 Unsupervised FINE

First, we utilize unsupervised methods to see if a natural

separating geometry exists between domains. Using Laplacian

eigenmaps on the dissimilarities calculated with the Hellinger

distance, we found an embedding P ! IR2. Fig. 4a shows the

natural geometric clustering between the different document

classes, while a principal component analysis (PCA) embedding

(Fig. 4b) does not demonstrate the same effect. PCA is often used

as a means to lower the dimension of data for learning problems

due to its optimality for euclidean data. However, the PCA

embedding of the 20 Newsgroups corpus does not exhibit any

natural class separation due to the noneuclidean nature of the data.
Extending to document classification, dimensionality reduction

is important as the natural dimension (i.e., number of words) for

the corpus is 26,214. After embedding P ! IRd in the range

d 2 ½5; 50�, we apply a linear kernel support vector machine (SVM)

to classify the data in an “all-versus-all” setting (i.e., classify each

test sample as one of four different potential classes). The training

and test sets were separated according to the recommended

indexes, and each set was randomly subsampled for computa-

tional purposes, keeping the number of training and test samples

constant (400 and 200, respectively). Note that both the FINE and

PCA jointly embedded the training and test sets in an unsuper-

vised manner, while the SVM was trained on the embedded space

using only the training data.
Fig. 5 illustrates that the embedding calculated with FINE

outperforms using PCA as a means of dimension reduction. The

classification rates are shown with a one standard deviation

confidence interval, and FINE with a dimension as low as d ¼ 10

generates results comparable to those of a PCA embedding with

d ¼ 50. To ease any concerns that LEM is simply a better method

for embedding these multinomial PDFs, we calculated an embed-

ding with LEM in which each PDF was viewed as an euclidean

vector with the L2-distance used as a dissimilarity metric. This

embedding performed much worse than FINE using the same

form of dimension reduction and the same linear kernel SVM,

while comparable to PCA only in very low dimensions.

4.2.2 Supervised FINE

Allowing FINE to use supervised methods for embedding can

improve classification performance. By embedding with CCDR

[14], which is essentially LEM with an additional tuning parameter

defining the emphasis on class labels in the embedding, we now

compare FINE to the diffusion kernels method developed by
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Fig. 4. Two-dimensional embeddings of 20 Newsgroups data. The data display some natural clustering in the information-based embedding, while the PCA embedding
does not distinguish between classes. (a) FINE. (b) PCA.

2. http://people.csail.mit.edu/jrennie/20Newsgroups/.
3. http://www.cs.uiuc.edu/homes/dengcai2/Data/TextData.html.



Lafferty and Lebanon [1] for the purpose of document classifica-

tion. This method uses the full term frequency representation of

the data and does not utilize any dimensionality reduction. We

stress this difference to determine whether or not using FINE for

dimension reduction can generate comparable results.
We now illustrate the classification performance in a “one-

versus-all” setting, in which all samples from a single class were

given a positive label (i.e., 1) and all remaining samples were

labeled negatively (i.e., �1). In the FINE setting, we first

subsampled from the recommended training and test indexes,

using a test set size of 200, then used CCDR to embed the

combined sets into IRd, with d 2 ½5; 95� chosen to maximize

classification performance with a linear kernel SVM. For the

diffusion kernels setting, the kernel used was

KðX;Y Þ ¼ ð4�tÞ�
n
2 exp � 1

t
arccos2

� ffiffiffiffiffi
X
p
�
ffiffiffiffi
Y
p �� �

;

where we chose parameter value t which optimized the classifica-

tion performance at each iteration. The experimental results of

performance versus training set size, over a 20-fold cross

validation, are shown in Table 1, where the highest performance

at each range is emphasized.
Analysis shows that FINE can significantly improve upon the

deficiencies of the diffusion kernels method in the low sample size

region. By viewing each document as a coarse approximation of

the overriding class PDF, it is easy to see that for low sample sizes,

the estimate of the within class PDF generated by the diffusion

kernels will be highly variable, which leads to poor performance.

By reducing the dimension with FINE, the variance is limited to

significantly fewer dimensions, yielding better classification

performance than using the entire multinomial distribution. As

the number of training samples increases, the approximation of the

geodesic improves, yielding improved classification performance

with FINE. However, the negative effect of dimensionality is also

reduced, which allows the diffusion kernels method to better

approximate the multinomial PDF representative of each class.

This reduction in variance across all dimensions ensures that a few

anomalous documents will not have the same drastic effect as they

would in the low sample size region. As such, in some instances,

the performance gain surpasses that of FINE, due to the fact that

the curse of dimensionality was alleviated by the increase in sample

size. We note, however, that in all cases, FINE performs

competitively with a leading document classification method

which utilizes the full dimensional data.

5 CONCLUSIONS

The assumption that high-dimensional data lie on a Riemannian

manifold in euclidean space is based on the ease of implementation

due to the wealth of knowledge and methods based on euclidean

geometry. This assumption is not viable in many practical

problems, as there is often no straightforward and meaningful

euclidean representation of the data. In these situations, it is more

appropriate to assume that the data are a realization of some PDF

which lies on a statistical manifold. Using information geometry,

we have shown the ability to find a low-dimensional embedding of

the manifold, which allows us to reconstruct it in a low-

dimensional euclidean space.

We have illustrated FINE’s ability to be used in a variety of

learning tasks such as visualization and classification, on a

multitude of problems which may seem to have little to nothing

in common, such as flow cytometry and document classification.

The only commonality between the problems is that each are based

around data which have no straightforward euclidean representa-

tion, which is the only setting needed to utilize FINE. In future

work, we plan to utilize different classification methods (such as

k-NN and using different SVM kernels) to maximize our document

classification performance. This includes constraining our dimen-

sionality reduction to a sphere, which will allow the use of

diffusion kernels in a low-dimensional space. We also plan to

study the effect of using out-of-sample extension, rather than

jointly embedding the training and test sets. Lastly, we will

continue to find applications which benefit from FINE, such as

Internet anomaly detection, spam analysis, and object recognition.
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Fig. 5. Classification rates for low-dimensional embedding using different methods

for dimension reduction. One standard deviation confidence intervals shown over

20-fold cross validation.

TABLE 1
Results on 20 Newsgroups Corpus,

Comparing FINE to the Diffusion Kernel Method

Performance (classification rate in percent) is reported for different training set
sizes L, over a 20-fold cross validation.
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