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1. INTRODUCTION

Estimating gene association networks from gene microar-

ray data is the key to decipher complicated web of func-

tional relationship between genes [1]. However, the process

remains to be challenging due to the relatively few indepen-

dent samples and the large amount of correlation parameters

[2]. In a gene association network, vertices represent genes,

and edges represent biological association between genes.

The network edges are declared to be present if the corre-

sponding correlation parameters are significantly different

from a non-zero threshold [3]. The approach has been very

useful in inferring gene association networks, and facilitat-

ing network based discovery [3]. However, as a Frequentist

approach, it often suffers from the “overfitting” problem es-

pecially for analyzing small sample size data. Approaches

that are able to globally estimate the correlation parameters

with variance regularization followed by the seamless cor-

relation thresholding are highly desirable.

The desirable approaches fall naturally into the frame-

work of Bayesian hierarchical models [4]. We assume the

correlation parameters are exchangeable meaning that the

joint distribution (Eq. 1) is invariant to permutations of the

indexes. Biologically, this represents a lack of knowledge

that could differentiate one pair of biological associations

from the others. We then regularize variances of the cor-

relation estimations by specifying a parent normal distrib-

ution from which marginal correlation parameters are sam-

pled (Fig. 1). The posterior distributions of correlation pa-

rameters provide a seamless combination of the correlation

estimation and strength thresholding.

2. METHODS

We use ρ to denote the true strength of association between

a pair of gene expression profiles. For G gene expression

profiles in a microarray data set, there are Λ =
(
G
2

)
cor-

relation parameters ρ that need to be estimated, denoted as
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ρλ, λ = 1, . . . ,Λ. We define ρ̂λ as the λth sample correla-

tion coefficient, and Γ̂λ as the hyperbolic arc-tangent trans-

formation of ρ̂λ. Then the transformed sample correlation

coefficients Γ̂λ = atanh(ρ̂λ) are asymptotically Gaussian

distributed with means of Γλ and stabilized variance ap-

proximations of σ2
λ = 1/(N − 3). Here N is the sample

size.

Simulation studies show that the variance approxima-

tion works reasonably well even at a relatively small sample

size, e.g. N ≤ 10. We assume known variances to reduce

computational complexity. Furthermore, we don’t have a
prior information about these Γ′s, and assuming indepen-

dency between them in marginal correlation approaches cause

the “overfitting” problem [2]. In the Bayesian hierarchical

model, we assume that these parameters are exchangeable,

and are drawn from a normal distribution with unknown hy-

perparameters (α, β) (Fig. 1):

p(Γ1, . . . ,ΓΛ|α, β) =
Λ∏

λ=1

N(Γλ|α, β2) (1)

In order to generate conditional posterior distributions

p(Γλ|α, β, y) for each parameter Γλ, λ = 1, . . . ,Λ, where

y represents the microarray data, we performed simulation

steps as follows [4]:

1. Assign prior distribution for β, i.e. uniform prior dis-

tribution p(β) ∝ 1.

2. Draw β from posterior distribution p(β|y).

p(β|y) ∝ p(β)
∏Λ

λ=1 N(Γ̂λ|α̂, σ2
λ + β2)

N(α̂|α̂, Vα)
(2)

∝ p(β)V 1/2
α

Λ∏
λ=1

(σ2
λ + β2)

−1/2
exp(− (Γ̂λ − α̂)2

2(σ2
λ + β2)

),(3)

where α̂ and Vα are defined as:

α̂ =

∑Λ
λ=1

1
σ2

λ+β2 Γ̂λ∑Λ
λ=1

1
σ2

λ+β2

, (4)
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and

V −1
α =

Λ∑
λ=1

1
σ2

λ + β2
. (5)

3. Draw α from p(α|β, y). Combining the data with the

uniform prior density p(α|β) yields,

p(α|β, y) ∼ N(α̂, Vα). (6)

where α̂ is a precision-weighted average of the Γ̂’s

and Vα is the total precision. Note, we define preci-

sion as inverse of variance.

4. Draw Γλ from p(Γλ|α, β, y)

p(Γλ|α, β, y) ∼ N(Θ̂λ, Vλ), (7)

where Θ̂λ, Vλ are defined as:

Θ̂λ =
1

σ2
λ
Γ̂λ + 1

β2 α

1
σ2

λ
+ 1

β2

, (8)

and

Vλ =
1

1
σ2

λ
+ 1

β2

. (9)

5. Take hyperbolic tangent transformation of Γ̂λ, i.e.

ρ̂λ = tanh(Γ̂λ), (10)

and the sampling distribution ρ̂λ is the desired poste-

rior distribution.

3. SIMULATIONS

We evaluated the performance of the full Bayesian estima-

tion by comparing with the marginal estimation in terms

of Mean Squared Error (MSE) and variance. Fig. 2 plots

MSE’s and variances of the Bayesian correlation estima-

tion and the marginal correlation estimation over 500 sim-

ulations. It is evident in Fig. 2 that the MSE of Bayesian

estimation is about three-fold smaller than that of the mar-

ginal estimation. A much dramatic contrast was observed at

the small sample size that clearly shows the advantages of

the Bayesian estimations for the small sample size problem.

Comparison of variances follows the same trend (Fig. 2).

4. ESTIMATING CO-EXPRESSION NETWORK
FROM GALACTOSE METABOLISM DATA

We also demonstrated the application of our Bayesian ap-

proach and compared it with the previous Frequentist ap-

proach [3] using a yeast galactose metabolism two-color mi-

croarray data [5]. Following the procedure in method sec-

tion, we simulated the empirical posterior distribution for

Fig. 1. Bayesian hierarchical model structure.
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Fig. 2. Mean Squared Errors (MSE’s) and Variances of the
Bayesian estimations versus the simple estimations over 500 runs
of simulations.

each correlation parameter Γ. Similar to the previous analy-

sis, we used 0.6 as the correlation cutoff value, and declared

the statistical association to be biologically relevant when

their (1 − q) × 100% posterior confidence intervals do not

intersect with [-0.6, 0.6] at the significant level q. Com-

parison of the networks inferred from Bayesian hierarchical

model and from the previous approach in terms of top hub

nodes shows much agreement with certain discrepancies.
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