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ABSTRACT
Over the years, the web has evolved from simple text content from
one server to a complex ecosystem with different types of content
from servers spread across several administrative domains. There
is anecdotal evidence of users being frustrated with high page load
times or when obscure scripts cause their browser windows to freeze.
Because page load times are known to directly impact user satisfac-
tion, providers would like to understand if and how the complexity
of their websites affects the user experience.

While there is an extensive literature on measuring web graphs,
website popularity, and the nature of web traffic, there has been
little work in understanding how complex individual websites are,
and how this complexity impacts the clients’ experience. This pa-
per is a first step to address this gap. To this end, we identify a
set of metrics to characterize the complexity of websites both at a
content-level (e.g., number and size of images) and service-level
(e.g., number of servers/origins).

We find that the distributions of these metrics are largely inde-
pendent of a website’s popularity rank. However, some categories
(e.g., News) are more complex than others. More than 60% of web-
sites have content from at least 5 non-origin sources and these con-
tribute more than 35% of the bytes downloaded. In addition, we
analyze which metrics are most critical for predicting page render
and load times and find that the number of objects requested is the
most important factor. With respect to variability in load times,
however, we find that the number of servers is the best indicator.

Categories and Subject Descriptors
D.2.8 [Metrics]: [Complexity measures]; D.4.8 [Performance]:
[Modeling and prediction]

General Terms
Measurement, Human Factors, Performance
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Web page complexity, Page load times
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1. INTRODUCTION
Over the last decade, web pages have become significantly more

complex. Originally used to host text and images, web pages now
include several content types, ranging from videos to scripts exe-
cuted on the client’s device to “rich" media such as Flash and Sil-
verlight. Further, a website today fetches content not only from
servers hosted by its providers but also from a range of third party
services such as advertising agencies, content distribution networks
(CDNs), and analytics services. In combination, rendering a sin-
gle web page today involves fetching several objects with varying
characteristics from multiple servers under different administrative
domains.

On the other hand, the ill-effects of slow websites are well-documented.
Recent surveys suggest two thirds of users encounter slow websites
every week [15] and that 49% of users will abandon a site or switch
to a competitor after experiencing performance issues [9]. While
there is plenty of anecdotal evidence that the increase in web page
complexity is a key factor in slowing down websites, formal studies
on this topic have been limited. Most prior work on web measure-
ment focuses on characterizing the Web graph [19, 16], analyzing
the network footprint of Web traffic [34, 35, 41, 39, 42, 30], or
studying the rate of change of content on the Web [29]. While
these have contributed to a better understanding of web usage, they
do not analyze the websites themselves.

In this paper, we present a comprehensive measurement-driven
study of the complexity of web pages today and its impact on per-
formance. We measure roughly 1700 websites from four geograph-
ically distributed locations over a 7 week period. These websites
are spread across both a wide range of popularity ranks and genre
of website categories. In analyzing website complexity, we focus
on a client-side view of the landing pages of these sites and not on
the dependencies in the back-end server infrastructure—an inter-
esting topic complementary to our efforts.

Understanding the complexity of web pages and its implications
is vital on several fronts. With the increasing diversity of client plat-
forms for accessing the Web, it is important for browser developers
to identify the aspects of web page complexity that impact user-
perceived performance. On the other hand, as website providers
increasingly incorporate third-party services such as advertising,
analytics, and CDNs into their webpages, they need tools and tech-
niques to evaluate the impact of these services on users. Further-
more, beyond the perspective of any given user or web provider,
understanding website complexity is a first step toward solutions
for automatically customizing web pages for varying client plat-
forms to achieve the right balance between performance, usability,
and business interests.

Our study focuses on two broad questions. First, we quantify
the complexity of a web page with a broad spectrum of metrics.



We characterize a web page by the content fetched in rendering
it—the number of objects fetched, the sizes of these objects, and
the types of content. While these features remain largely the same
across different rank ranges of websites, we see a marked difference
across different website categories. For example, News websites
load a significantly higher number of objects than others, whereas
Kids and Teens websites host a higher fraction of Flash content.

In addition to characterizing this content-level complexity, we
study the complexity of web pages with respect to the services they
build upon. We find that non-origin content accounts for a signifi-
cant fraction of the number of objects and number of bytes fetched,
an observation that holds even on low ranked websites. However,
the impact on download time of non-origin content is low—the me-
dian contribution to download time is only 15%. Though the most
popular third-party services are unsurprisingly analytics and adver-
tising providers, emerging services such as social networking plug-
ins and programming frameworks also appear on a sizeable fraction
of websites. A significant difference that we observe in the types of
content served from non-origins in comparison to that from website
providers themselves is that Javascripts account for a much higher
fraction of non-origin objects.

The second focus of our study is to identify the critical complex-
ity metrics that have the most impact on the time to download and
render a web page. We find that rather than the total number of
bytes fetched to render a website, the number of objects fetched is
the most dominant indicator of client-perceived load times. We cor-
roborate this with a linear regression model that predicts page load
times with a normalized mean squared error less than 0.1. We also
determine that, in contrast to actual load times, variability in load
times is better correlated with the number of servers from which
content is fetched.

2. RELATED WORK
There have been many efforts to analyze different aspects of the

Web ecosystem. This includes work to understand web structure,
tools to improve web performance, and measurements of emerging
web applications. We describe these next. Note that most of these
efforts focus either on web traffic or web protocols. There has been
surprisingly little work on quantifying and understanding website
complexity.

Structure and evolution: The literature on modeling the Web
graph and its evolution focus on the interconnecting links between
websites [19, 16] rather than the structure and content of individual
websites. Related efforts have studied how the content of individual
web pages evolves over time [29]. Recent efforts have also tried to
“map” the hosting sites from which content is served [20].

Performance and optimization: As the usage scenarios for the
Web have changed, researchers have analyzed inefficiencies in web
protocols and suggested improvements [38, 21, 11]. In parallel,
there are efforts toward developing better browsers [37], tools to
optimize webpages [2, 1, 13], benchmarking tools [27, 12, 24], ser-
vices for customizing web pages for different platforms [40, 10, 8],
and techniques to diagnose performance bottlenecks in backend in-
frastructures [43] and to debug client performance in the wild [32].

Web traffic measurement: This includes work on measuring
CDNs [34], understanding emerging Web 2.0 and AJAX-based ap-
plications [35, 41], measuring the network impact of social network
applications [39, 42], and characterizing end-user behavior within
enterprises [30], and longitudinal studies [31] among many others.
These focus on web traffic as observed at the network-level, and
not on understanding the structure and performance of individual
websites.

Impact of load time on users: Several user experience studies
evaluate how page load times impact user satisfaction [18, 26].
There are also commercial services that measure page load times
in the wild [5]. These highlight the importance of optimizing page
load times. However, there have been few attempts to understand
how different aspects of website complexity impact the time to load
web pages.

Privacy leakage: Krishnamurthy et al. [33] report the prolifera-
tion of third-party services. Our measurement setup is similar to
theirs and we quantify the use of third-party services as well. How-
ever, our end goals are very different. In particular, they focus on
the privacy implications and observe that a small number of admin-
istrative entities (e.g., Google, Microsoft) have broad insights into
web access patterns. Our focus, instead is on using the presence of
third-party services as a metric to characterize website complexity
and on studying their impact on page load times.

Complexity metrics in other domains: Other efforts present met-
rics to quantify the complexity of network protocols [25], network
management [22], and systems more broadly [23]. In a Web con-
text, Zhang et al. [44] present metrics to capture ease of web page
navigation and Levering et al. [36] analyze the document layout
structure of web pages. The high-level motivation in these efforts
is the need for quantitative metrics to measure system complexity
and understand its impact on performance and usability. Our study
follows in the spirit of these prior efforts to quantify website com-
plexity to understand its impact on page load times.

Characterizing webpages: The closest related work appears in
recent industry efforts: HTTP Archive [3] and at Google [6]. While
the data collection steps are similar, we extend their analysis in two
significant ways. First, we consider a more comprehensive set of
complexity metrics and present a breakdown across different rank
ranges and categories. Second, and more importantly, we go a step
further and construct models for correlating and predicting perfor-
mance and variability in performance with respect to the measured
complexity metrics. Furthermore, we view the presence and timing
of these parallel industry efforts as further confirmation that there is
a key gap in understanding website complexity and its performance
implications. Our work is a step toward addressing this gap.

3. MEASUREMENT SETUP
We begin by describing the measurements we gathered that serve

as input for all of our analysis. All our datasets can be downloaded
at http://www.cs.ucr.edu/~harsha/web_complexity/.
We start with around 2000 websites at random from the top-20000
sites in Quantcast’s list of most popular websites.1 We annotate
these sites with content categories obtained from Alexa.2

To faithfully replicate the actions of a web browser when a user
visits a website, we use a browser (Firefox) based measure-
ment infrastructure. We use a “clean” Firefox instance (version
3.6.15) without any ad or pop-up blockers. (We install suitable plu-
gins such as the Adobe Flash player to ensure that websites render
properly.) We use the Firebug extension (version 1.7X.0b1) with
the Net:Export (version 0.8b10) and Firestarter (version
0.1.a5) add-ons to automatically export a log of all the requests and
responses involved in rendering a web page. This extension gen-
erates a report in the HTTP archive record (HAR) format [4] that
provides a detailed record of the actions performed by the browser
in loading the page.

1
http://www.quantcast.com/top-sites

2
http://www.alexa.com/topsites/category



"log":{

"version":"1.1",

"browser":{

"name":"Firefox",

"version":"3.6.11"

},

"pages":[{

"startedDateTime":"18:12:59.702-04:00",

"title":"Wired News",

"pageTimings":{

"onContentLoad":2130,

"onLoad":4630}]

"entries":[{

"startedDateTime":"18:12:59.702-04:00",

"time":9,

"request":{

...

"headers":[{

"name":"Host",

"value":"www.wired.com" },

...}

"response":{

...

"content":{

"size":186013,

"mimeType":"text/html",}},

}]

]

Figure 1: Example snippet showing the different fields in a
HAR file. From this report, we can reconstruct the exact se-
quence of requests and responses, the number and size of re-
quests for objects of different content types, and identify the
server/origin for each request.

Rank range Number of websites
1-400 277
400-1000 298
2000-2500 330
5000-10000 443
10000-20000 400
All 1748

Table 1: Summary of spread across rank ranges of websites in
our measurement dataset.

Figure 1 shows a snippet of a HAR report. It reports two page
load metrics—onContentLoad, which is the time taken to start
rendering content (we call this RenderStart), and onLoad, the time
to completely render all components of the page (we call this Ren-
derEnd).3 Our main field of interest is the array of request-response
entries. Each entry provides a timestamp of when the request was
initiated, the time it took to complete the request, the host to which
the request was sent, and the size and content type of the response.

We gathered measurements from four geographically distributed
vantage points. Three of these vantage points were Amazon EC2
Micro instances running Ubuntu Linux (version 11.04) located in
the US-East, Europe, and Asia Pacific regions of EC2. To discount
any effects specific to EC2, our last vantage point is a personal
desktop at UC Riverside. We choose multiple vantage points to

3There is discussion in the web community on good load time
metrics; suggestions include “above-the-fold” time, time to first
“paint”, time-to-first-byte, etc. [7]. Using a full spectrum of ren-
der metrics is outside the scope of our analysis. We pick the two
standard metrics reported by the browser itself.

(a) By rank

(b) By category

Figure 2: Total number of objects loaded on the base web page
of websites across rank ranges and categories.

ensure that our choice of measurement site does not introduce any
bias.

At each vantage point, we run a measurement agent that period-
ically (every 60 seconds) selects a website at random from the list
of 2000 sites, launches a Firefox instance that loads the base URL
(i.e., www.foo.com) for the website, generates the log report in
the HAR format, and subsequently terminates the Firefox process.
We repeat this for a period of 9 weeks (between May and August
2011) and gather roughly 30 measurements per website on average.
Our primary focus is on the root or landing pages of these sites; we
present a preliminary study of non-landing pages in Section 6.

We perform the following pre-processing on our data. We dis-
card individual HAR files if they have recorded the number of bytes
fetched or the page load time as zero, specify the HTTP status code
as not 200, or are malformed. We discard measurements from all
websites for which we observe consecutive HAR files spaced less
than 60 seconds apart. These correspond to corner cases where the
Firebug add-on to Firefox had trouble exporting a HAR file for the
web page it loaded. These steps for cleaning the dataset leave us
with measurements from 1748 websites. Table 1 summarizes the
spread of the websites that remain across five rank-ranges.

For each website, we compute the median value for various fea-
tures, such as number of objects loaded or number of servers con-
tacted, across multiple measurements of the website. We use these
median values of features for most of our analysis, though we do



Complexity metric Key result(s)
Content complexity

No. of objects Across all rank ranges, median web page requests over 40 objects and 20% request over 100 objects
News websites load a significantly greater number of objects than others

MIME type
Contribution of various content types is similar across rank ranges
Images dominate in fraction of objects, but to a lesser extent with respect to fraction of bytes
Kids and Teens websites have a significantly greater fraction of Flash content than others

Service complexity

No. of servers 25–55% of websites load content from at least 10 servers
News websites fetch content from significantly more servers than others

Non-origin contribution

60% of websites fetch content from more than 5 non-origins
Non-origins make significant contributions to content—30% of objects and 35% of bytes in the median case
Contribution of non-origins to page load time is low (80th percentile is 35%) due to browser optimizations
Images dominant object type served from origins, but Javascript accounts for sizeable fraction of non-origin objects
Advertising and analytics services account for most non-origin objects, but CDNs account for most bytes

Table 2: Summary of key takeaways from our analysis with respect to various web page complexity metrics.

consider variation across samples when studying how complexity
impacts variability in page load times.

4. CHARACTERIZING COMPLEXITY
Our analysis of our measurement dataset is two-pronged. First,

in this section, we analyze web pages with respect to various com-
plexity metrics. Next, in Section 5, we analyze the impact of these
metrics on performance. Note that our focus is on capturing the
complexity of web pages as visible to browsers on client devices;
we do not intend to capture the complexity of server-side infras-
tructure of websites [43].

We consider two high-level notions of web page complexity.
Content complexity metrics capture the number and size of objects
fetched to load the web page and also the different MIME types
(e.g., image, javascript, CSS, text) across which these objects are
spread. Now, loading www.foo.com may require fetching con-
tent not only from other internal servers such as images.foo.com
and news.foo.com, but also involve third-party services such as
CDNs (e.g., Akamai), analytics providers (e.g., Google analytics),
and social network plugins (e.g., Facebook). Service complexity
metrics capture the number and contributions of the various servers
and administrative origins involved in loading a web page.

We begin with the content-level metrics before moving on to
service-level metrics. In each case, we present a breakdown of the
metrics across different popularity rank ranges (e.g., top 1–1000
vs. 10000–20000) and across different categories of websites (e.g.,
Shopping vs. News). Here, we only show results for one of the
vantage points as the results are (expectedly) similar across van-
tage points. Table 2 summarizes our key findings for the various
complexity metrics.

4.1 Content complexity
Number of objects: We begin by looking, in Figure 2, at the total
number of object requests required, i.e., number of HTTP GETs
issued, to load a web page. Across all the rank ranges in Fig-
ure 2(a), loading the base web page requires more than 40 objects
to be fetched in the median case. We also see that a non-trivial
fraction (20%) of websites request more than 100–125 objects on
their landing web page, across the rank ranges. While the top 1–
400 sites load more objects, the distributions for the different rank
ranges are qualitatively and quantitatively similar; even the lower
rank websites have a large number of requests.

Next, we divide the sites by their Alexa categories. For clarity,
we only focus on the top-two-level categories from Alexa. To en-
sure that our results are statistically meaningful, we consider only

Figure 3: Median number of requests for objects of different
MIME-types across different rank ranges.

the categories that have at least 50 websites in our dataset. The
breakdown across the categories in Figure 2(b) shows a pronounced
difference between categories; the median number of objects re-
quested on News sites is nearly 3× the median for Business sites.
We suspect that this is an artifact of News sites tending to cram in
more content on their landing pages compared to other sites to give
readers quick snippets of information across different news topics.

Types of objects: Having considered the total number of object re-
quests, we next consider their breakdown by content MIME types.
For brevity, Figure 3 shows only the median number of requests
for the four most popular content types across websites of different
rank ranges. The first order observation again is that the differ-
ent rank ranges are qualitatively similar in their distribution, with
higher ranked websites having only slightly more objects of each
type.

However, we find several interesting patterns in the prevalence
of different types of content. While it should not come as a surprise
that many websites use these different content types, the magnitude
of these fractions is surprising. For example, we see that, across all
rank ranges, more than 50% of sites fetch at least 6 Javascript ob-



Figure 4: Median number of requests for objects of different
MIME-types for different categories.

jects. Similarly, more than 50% of the sites have at least 2 CSS
objects. The median value for Flash is small; many websites keep
their landing pages simple and avoid rich Flash content. These
results are roughly consistent with recent independent measure-
ments [31].

Figure 4 shows the corresponding breakdown for the number
of objects requested of various content types across different cat-
egories of websites. Again, we see the News category being dom-
inant across different content types. As previously seen in Fig-
ure 2(b), News sites load a larger number of objects overall com-
pared to other site categories. Hence, a natural follow-up question
is whether News sites issue requests for a proportionately higher
number of objects across all content types. Therefore, for each
website, we normalize the number of objects of each content type
by the total number of objects for that site. The distribution of the
median values of the normalized fraction of objects of various con-
tent types (not shown) presents a slightly different picture than that
seen with absolute counts. Most categories have a very similar nor-
malized contribution from all content types in terms of the median
value. The only significant difference we observe is in the case
of Flash objects. Figure 5 shows that Kids and Teens sites have
a significantly greater fraction of Flash objects than sites in other
categories.

Bytes downloaded: The above results show the number of ob-
jects requested across different content types, but do not tell us
the contribution of these content types to the total number of bytes
downloaded. Again, for brevity, we summarize the full distribution
with the median values for different website categories in Figure 6.
Surprisingly, we find that Javascript objects contribute a sizeable
fraction of the total number of bytes downloaded (the median frac-
tion of bytes is over 25% across all categories). Less surprising
is that images contribute a similar fraction as well. For websites
in the Kids and Teens category, like in the case of number of ob-
jects, the contribution of Flash is significantly greater than in other
categories. As in the case of the number of objects, we see no sig-
nificant difference across different rank ranges.

Figure 5: Fraction of objects accounted for by Flash objects,
normalized per category.

4.2 Service complexity
Anecdotal evidence suggests that the seemingly simple task of

loading a webpage today requires the client-side browser to con-
nect to multiple servers distributed across several administrative
domains. However, there is no systematic understanding of how
many different services are involved and what they contribute to
the overall task. To this end, we introduce several service complex-
ity metrics.

Number of distinct servers: Figure 7 shows the distribution across
websites of the number of distinct webservers that a client contacts
to render the base web page of each website. We identify a server
by its fully qualified domain name, e.g., bar.foo.com. Across
all five rank ranges, close to 25–55% of the websites require a client
to contact at least 10 distinct servers. Thus, even loading simple
content like the base page of websites requires a client to open
multiple HTTP/TCP connections to many distinct servers. Also,
Figure 7(b) mirrors the earlier result from Figure 2(b); News sites
have the most number of distinct servers as well.

Number of non-origin services: Not all the servers contacted in
loading a web page may be under the web page provider’s con-
trol. For example, a typical website today uses content distribution
networks (e.g., Akamai, Limelight) to distribute static content, an-
alytics services (e.g., google-analytics) to track user activity, and
advertisement services (e.g., doubleclick) to monetize visits.

Identifying non-origins, however, is slightly tricky. The subtle is-
sue at hand is that some providers use multiple origins to serve con-
tent. For example, yahoo.com also owns yimg.com and uses
both domains to serve content. Even though their top-level domains
are different, we do not want to count yimg.com as a non-origin
for yahoo.com because they are owned by the same entity. To
this end, we use the following heuristic. We start by using the two-
level domain identifier to identify an origin; e.g., x.foo.com and
y.foo.com are clustered to the same logical origin foo.com.
Next, we consider all two-level domains involved in loading the
base page of www.foo.com, and identify all potential non-origin
domains (i.e., two-level domain not equal to foo.com). We then
do an additional check and mark domains as belonging to different
origins only if the authoritative name servers of the two domains do
not match [33]. Because yimg.com and yahoo.com share the
same authoritative name servers, we avoid classifying yimg.com
as having a different origin from yahoo.com.



Figure 6: Median normalized contribution of different MIME
types to total bytes downloaded.

Figure 8 shows that across the different rank ranges and cate-
gories, clients need to contact servers in at least 10 different origins
for 20–40% of websites. The presence of non-origin content is
even more pronounced on News sites; more than 40% of News sites
serve content from over 20 non-origin providers. On further in-
spection, we find that because the landing pages of News sites have
to provide content that spans multiple user interests (e.g., sports,
weather) they provide links to non-origin affiliates that serve such
content as well.

Contribution of non-origin services: The previous result simply
counts the number of distinct domains contacted. Next, we quantify
the contribution of the non-origin domains along three dimensions:
fraction of objects, fraction of bytes, and fractional contribution to
total page load time.

Figure 9 shows that, in the median case, over 30% of the to-
tal number of objects and over 35% of the total number of bytes
downloaded are from non-origin services. At the same time, we
see that the distribution is pretty heavy-tailed; for 20% of websites,
non-origin services account for roughly 80% of the objects and to-
tal bytes.

The total number of objects or bytes may, however, not directly
translate into download time because modern browsers can paral-
lelize requests to multiple servers. Now, parallelization also makes
it inherently difficult to exactly determine the time contribution of
non-origins. In light of this, we use three alternative ways to mea-
sure the non-origin contribution to total page load time: (1) the
“wall-clock” time where the browser is retrieving content from at
least one non-origin (labeled “Time: At Least 1 Non-Origin”), (2)
the ratio of the sum of all time spent in downloading non-origin
content to the total time spent downloading all content (labeled
“Time: Total Cycle Contribution”), and (3) emulating the act of
loading the page by disabling all non-origin content using custom
Adblock filters (labeled “Time: Block Non-Origin”). We see in
Figure 9 that in the median case, content from non-origins con-
tributes to only 15% of the page load time in terms of the At Least
1 Non-Origin and around 25% for the Total Cycle Contribution.
These results suggest that though non-origin services play a signif-

(a) By rank

(b) By category

Figure 7: Number of distinct servers contacted to load the base
webpage for websites across different rank ranges and cate-
gories.

icant part of the web ecosystem in terms of the fraction of content
they contribute, browser optimizations (e.g., pipelining and paral-
lelizing requests to distinct servers) lower their impact on page load
times.

4.3 What do non-origins offer?
A natural question is what types of content and services do non-

origins provide. Beyond a basic curiosity of what non-origin con-
tent includes, this also has important performance implications. For
example, if most non-origin objects constitute content essential for
the user experience, then it might be difficult for website providers
to directly optimize their delivery or client-side blocking of non-
origin content would adversely affect user experience. But, if most
non-origin objects are from services for displaying ads or tracking
users, they could potentially be consolidated or optimized. There-
fore, in this section, we do a more in-depth analysis of the MIME-
types of objects served by non-origins, how they differ from objects
served from origins, and also identify the class of services that these
non-origins provide.

Content type breakdown: As a first step, we want to understand
what types of content are served by non-origins across different
websites. Figure 10 shows the breakdown of the different content
types served by non-origins, both in terms of the number of objects
and their size in bytes. This breakdown is shown for the median



(a) By rank

(b) By category

Figure 8: Number of distinct origins needed to load the base
web page for websites across different rank ranges and cate-
gories.

website, i.e., the website that loads the median number of objects
(or median number of bytes) for each content type. Interestingly,
we find that while the vast fraction of the number of objects served
by non-origins are images, the relative fraction in terms of number
of bytes served is much lower. This is at odds with the normal
expectation that the contribution of images to bytes fetched will be
larger than their contribution to the number of objects, since images
are typically larger than Javascript and CSS objects. Investigating
this further, we find that this discrepancy is an artifact of the use
of small gifs fetched from non-origins for analytics services [14].
We illustrate this point in Figure 11, which shows the distribution
of the number of objects and object size for each MIME-type. We
see that though images are the most common type of content, the
median size of an image is less than 2 KB—more than an order of
magnitude smaller than the median size of a Flash object.

Origin vs. non-origin content: Next, we proceed to analyze if the
content served by non-origins differs significantly from that served
by the origin sites themselves. Figure 12 shows the contribution
of different MIME-types to the number of objects fetched from
origins and non-origins on the median website. The most notice-
able difference is that non-origins serve a much higher fraction of
Javascript objects while origins serve a greater fraction of images
than non-origins.

Figure 9: Contribution of non-origin services with respect to
number of objects, number of bytes, and download time.

Classifying non-origins: Beyond types of content, we analyze
the types of services offered by non-origins. For this study, we
rank non-origin domains based on the number of websites in which
they occur. Then, for the 200 most popular non-origins, we identify
the services they offer by combining three sources of information.
First, we lookup each non-origin domain in Alexa’s categorization
of web domains. Second, we use information from CrunchBase4 to
identify the type of company that runs the non-origin service. Last,
we manually classify the remaining non-origins based on informa-
tion gleaned from their website or keyword-based heuristics on the
objects being fetched from them.

Table 3 presents a breakdown of the types of services these top
200 non-origins offer and the number of origins in which each cat-
egory appears. Here, we only consider the 669 origins, in which all
the non-origin objects belong to one of these top 200 non-origins.
Unsurprisingly, the top two categories of non-origin services are
Analytics (e.g., google-analytics and quantserve) and Advertising
(e.g., doubleclick and googleadservices). However, even beyond
these two service types, we see that each of the non-origin service
types are seen on a significant fraction of the 669 origins.

To give an example of the types of non-origin services we en-
counter, Table 4 shows the top 10 non-origins with the type of
service they provide and the fraction of sites on which they ap-
pear. While many of these are very recognizable ad and analyt-
ics providers, we were surprised by some of the less recognized
names appearing in a significant fraction of websites. For exam-
ple, among the top 20, we found other lesser known services like
bluekai.com, invitemedia.com, and imrworldwide.com, that each
appeared in more than 5% of the websites (not shown).

Finally, we examine the contribution of these non-origin service
types on a typical web page. For this analysis, we only consider the
669 websites where all non-origins on their base web page belong
to the top 200 non-origins. On each of these 669 websites, we com-
pute the fraction of the number of objects and bytes fetched from
non-origins that are attributable to each service type. Figure 10(b)
plots these fractions for the median website. In keeping with the
relative popularity of non-origin services of different types in the
top 200 non-origins, Analytics and Advertising account for most
non-origin objects. However, content fetched from CDNs domi-
nate with respect to the number of bytes.

4
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(a) By MIME-type

(b) By service type

Figure 10: Normalized contribution of objects from non-origin
services in the median case.

Type of service Number Found in
no. of origins

Analytics 65 593
Advertising 64 233

Tracking Cookies 23 137
Services/Widgets 21 142

CDN 18 218
Social Networking 5 98
Programming API 4 96

Total 200 669

Table 3: Breakdown of the types of services provided by top
200 non-origins.

4.4 Summary of main observations
In summary, our main observations in this section are as follows:

• A website’s rank is not a significant indicator of the content
complexity, at least within the top 20K websites.

• However, a website’s category does matter; News sites load
significantly more content than others from a lot more servers
and origins, while Kids and Teens sites have significantly
more Flash content than others.

• Most websites load a surprisingly large number of CSS and
Javascript objects.

• Content from non-origins represents a significant fraction of
objects and bytes on most web pages, but their impact on
download time is relatively low.

5. IMPACT ON CLIENT PERFORMANCE
In the previous section, we measured a range of content-complexity

and service-complexity metrics. In this section, we tackle the natu-
ral follow-up question: which of these metrics have the most impact
on performance.

(a) No. of objects

(b) Object size

Figure 11: Distributions across content types of the number of
objects and median object size from non-origins.

We consider two performance measures to characterize page load
times. RenderStart measures the time at which the browser has
completed parsing the HTML and has fetched sufficient content to
begin rendering the page, while RenderEnd measures the total time
to fetch and render all content on the web page. For each measure,
we are interested in both the typical load time for each website and
the variability in load time across different samples.

To put our analysis in perspective, Figure 13 shows the distri-
bution of the median and 90th percentile of the RenderEnd values
for each site across several measurements from one of our vantage
points. Rather surprisingly, more than 50% of sites have a median
RenderEnd higher than 2 seconds. (We also validated these seem-
ingly high page load times from independent measurements from
the HTTP Archive project [3].) User studies and industry surveys
show that users are likely to be frustrated beyond this two second
threshold [28]. Thus, it is critical to systematically understand what
are the key factors affecting page load times.

We use correlation and regression based analysis to identify the
key complexity metrics that are the best indicators of page load
times and the variability in them. In this analysis, we use a range
of complexity metrics from the previous section—the {absolute
value or fraction} of {objects, bytes, servers, origins, non-origins}
characterized by {content MIME-type, service type}, and whether
loaded from {origin, non-origin, either}. We also use other aggre-



Figure 12: Comparison of types of content served from origin
and non-origin servers on the median website.

Rank Name Fraction Type
of sites

1 google-analytics.com 0.58 Analytics
2 doubleclick.net 0.45 Ads
3 quantserve.com 0.30 Analytics
4 scorecardresearch.com 0.27 Analytics
5 2mdn.net 0.24 Ads
6 googleadservices.com 0.18 Ads
7 facebook.com 0.17 Social net
8 yieldmanager.com 0.16 Ads
9 atdmt.com 0.14 Analytics
10 googleapis.com 0.12 Prog. API

Table 4: Classification of the services provided by the top-10
non-origin service providers.

gate metrics such as the size of the maximum object fetched. For
brevity, we only present results for metrics that turned out to be
the most dominant indicators of either absolute load times or their
variability.

5.1 Load times
Correlation: First, we analyze the correlation between RenderEnd
(RenderStart) and various complexity metrics. For this analysis, we
compute for each website the median values of RenderEnd (Ren-
derStart) across multiple measurements of that website and the me-
dian value of various complexity metrics. Then, across all websites
in our dataset, we compute the Pearson and Spearman rank corre-
lation coefficients between the two load time measures and various
complexity metrics. Since the results are similar for RenderStart
and RenderEnd, we present only the results for RenderEnd. Also,
the results are similar for both Pearson and Spearman correlations;
hence, for brevity, we only show the Spearman values. To ensure
that the correlations we observe are not artifacts of a particular mea-
surement site, we consider each of the 4 vantage points separately.
Figure 14 shows the Spearman correlation coefficients with respect
to various complexity metrics in decreasing order of the median
value across the different measurement sites. Across all 4 mea-
surement sites, we see that the five most correlated metrics are the
total number of objects loaded, the number of these objects that are
Javascripts, the total webpage size, the number of servers, and the
number of origins contacted in loading the page.

Figure 15 further visually confirms the strong correlation be-
tween RenderEnd and the number of objects requested. Here, we
bin websites based on the number of objects on their base web
page. Then, for each bin, we construct a box-and-whiskers plot
showing the median, 25th percentile, and 75th percentile plot in
the “box” and the min/max values for the whiskers. Further, tying

Figure 13: Distribution of RenderEnd times across all websites.

the fact that number of object requests is the most dominant indi-
cator of load times with our observation from Section 4 that News
sites fetch a significantly larger number of objects than other sites,
Figure 16 shows that the page load times for News sites are indeed
much higher than for other sites.

Regression: The correlation analysis tells us which metrics are
good indicators of page load times. Next, we attempt to identify a
minimal set of metrics to estimate load times. For this, we augment
the above correlation analysis by building a linear regression model
using the LASSO technique [17]. Each feature in this model rep-
resents one of the various complexity metrics presented in the pre-
vious section. We use LASSO instead of simple linear regression
because it produces a sparser model; thus, models with LASSO are
more robust. To further avoid overfitting, we use a k×2 cross vali-
dation technique. Here, in each run, we partition the set of websites
into two halves—a training set and a testing set. For each run, we
run the LASSO procedure and record the coefficients for each fea-
ture. Then, we build an aggregate model using the average values
of the individual coefficients across all runs.

Figure 17 shows the normalized root mean-squared error (NRMSE),5

as a function of the top k selected features. In this figure, we sort the
features based on the magnitude of their weights in the model after
the cross-validation procedure described above.6 Then, we emu-
late the effects of using a model that uses only the top k features.
As a point of comparison, we also considered a naive estimator
that simply predicts the mean value of RenderStart and RenderEnd;
its NRMSE was around 50% worse than the LASSO estimate (not
shown).

We see two key results here. First, the set of top k features
roughly mirrors the correlation result we saw earlier. One notable
exception is that the total size is relegated down the list. We spec-

5If X̂ is a vector representing estimates of page load times, and X

contains the true values, then NRMSE =
√

E[(X̂−X)2]
max(X)−min(X)

6One obvious concern is whether the magnitude of the weights are
meaningful if the different features and the load time are in differ-
ent “scales”. A pre-processing step in LASSO re-scales all features
to have zero mean/unit variance and also normalizes the load met-
ric to have zero mean. Thus, the magnitude measures the relative
importance of the metric and avoids these scale-related concerns.



Figure 14: Correlation between RenderEnd and various com-
plexity metrics.

ulate that because the base web pages of websites are typically not
that large, page load times are dominated by the number of RTTs
rather than the number of bytes transferred. Thus, having chosen
the number of requests and number of scripts as the top 2 fea-
tures, the marginal contribution of total size is low. Second, we
find that the prediction error flattens after the first 4-5 features are
selected. In other words, we see a natural diminishing returns ef-
fect of adding other features. Identifying a small, but predictive set
of features is a critical result for both website designers and perfor-
mance optimization tools.

Figure 18 visually confirms the goodness-of-fit. The X-axis rep-
resents the actual page load time (RenderEnd), and the Y-axis rep-
resents the load time predicted by the regression model. One in-
teresting artifact is a horizontal cluster near the origin, where the
model predicts the same value of RenderEnd for around 30 sites.
On further investigation, we discovered that these websites have
very sparse landing pages that have little to no content. Thus, the
values of the top 5 metrics were zero and the prediction model out-
puts a constant value.

Having determined the top k complexity metrics for the entire
population of websites in our study, we next analyze if there is a
significant difference across website categories. We repeat the re-
gression analysis for each category separately. Table 5 shows the
top 2 metrics identified by the regression for each category. It also
shows the cardinality of the set intersection between the top 5 met-
rics for each category and the top 5 metrics from the aggregate
regression model across all websites (from Figure 17).

First, we see that the top 2 metrics are quite diverse across the
different categories. For example, the number of images and re-
quests are most critical for News sites, but the total size of Javascript
objects and the number of servers are most critical for Games sites.
Second, there is a significant overlap in the top 5 metrics between
the per-category models and the overall model. In fact, for most
categories, the metrics in the intersection are the number of ob-
jects, the number of servers, and the number of Javascript objects,
which are the top 3 metrics in Figure 17. This suggests that while
there is some value in customizing the prediction model to identify

Figure 15: Box-and-whiskers plot confirming the correlation
between RenderEnd and number of objects.

Figure 16: Page load times for websites of different categories.

the critical metrics, the aggregate model is a very useful starting
point in itself.

We also experimented with an enhanced regression model where
we added nonlinear terms, e.g., log(X) and X2, for each feature
X . Adding these nonlinear terms does not improve the prediction
error and does not change the stability of the top k feature set. We
do not present these results given space limitations.

5.2 Variability in load times
So far, we studied the impact of various complexity metrics on

median page load times. Next, we analyze if the same set of factors
impact how load times vary, or if a different set of metrics are crit-
ical for predicting variability. Here, we restrict our analysis to only
focus on websites where the complexity metrics such as page size
and number of object requests do not change significantly across
measurements. That is, the variability in RenderEnd cannot be at-
tributed simply to a change in the content of the page across our
measurements.

As a starting point, we measure variability in load times for any
particular website as the difference between the 75th and 25th per-



Figure 17: Normalized mean-squared error as a function of top
k coefficients.

Category Top 2 Top 5 Intersection
Business # objects, # images 3
Technology # js, # origins 3
Games # servers, size js 3
Kids and Teens # js, # objects 3
News # images, # objects 3
Shopping size css, # js 3

Table 5: Highest-impact complexity metrics in the regression
model for different website categories, and their intersection
with aggregate regression model.

centile values of RenderEnd across different measurements for that
website; we consider the difference between the 75th and 25th per-
centiles instead of between the maximum and minimum values to
discount for any client-side effects. Then, we correlate the absolute
and normalized (by the median) value of this variability versus the
various complexity metrics. As seen in Figure 19, in comparison
to the earlier correlation result, we find two differences. First, the
correlations are weaker in general (e.g., the highest value is 0.65).
Second, the number of servers is the most dominant factor in this
case, instead of the number of objects, which was the dominant
indicator of absolute load times.

5.3 Summary of main observations
The key takeaways from our analysis of load times are:

• The top five complexity metrics that determine RenderStart
and RenderEnd are the total number of objects loaded, the
number of these objects that are Javascripts, the total web-
page size, and the number of servers and origins contacted in
loading objects on the page.

• We can build a sparse model for predicting page load times
with a normalized mean squared error less than 0.1.

• Variability of load times is less correlated with our complex-
ity metrics, but number of servers is its most dominant indi-
cator rather than the number of objects.

Figure 18: Scatter plot of page load times predicted by the re-
gression model that uses the top 5 features versus the actual
page load times.

6. DISCUSSION

The previous sections provide a good first-order understanding
of how website complexity affects the user experience. We ac-
knowledge that there are likely to be a much wider range of fac-
tors that can affect a user’s web experience: “deeper” non-landing
pages, diversity in client-side platforms, use of client and provider
tools for customizing websites, and other forms of personalization
(e.g., services that require a login). In this section, we present a
preliminary discussion of such factors.

Landing vs. non-landing pages: Our study focused on the land-
ing pages of websites. As a preliminary study to evaluate how
“deeper” non-landing pages might differ, we consider a random
sample of 100 sites. For each such site, we follow other links to
pages within the same domain (e.g., www.foo.com has a link
to www.foo.com/bar or x.foo.com/bar) and compute the
various complexity metrics for each such non-landing page. For
each site and metric, we then look at the difference between the
base site and the median across these landing pages, and normalize
this difference by the value for the base site. Figure 20 shows the
distribution across sites of these normalized differences for five key
metrics: number of requests, number of servers, fraction of non-
origin objects, page size, and download time. We see that other
than from the perspective of the fraction of non-origin objects met-
ric, websites on which non-landing pages are less complex than the
base site far outweigh the sites on which the opposite is true. We
do, however, see a long negative tail with the non-landing pages of
some sites being up to 2× more complex than the base site.

Choice of browser: The choice of browser does not affect our
complexity analysis in Section 4. However, browsers may vary
in the specific strategies in how they parallelize requests, optimize
scripts and so on; this could affect the load time analysis in Sec-
tion 5. One additional concern when comparing load time results
across browsers is that the semantics of onLoad might vary [7].
(This is not a concern for our paper because all our measurements
use the same version of Firefox.) We leave for future work the task
of understanding these effects.



Figure 19: Correlation coefficients between the different met-
rics and the variability in RenderEnd.

Personalized web services: Some services present different land-
ing pages to users who have subscribed or logged in. For example,
facebook.com and igoogle.com have content that is person-
alized to the specific user logged in. The key to understanding these
effects is to emulate user profiles that are representative of a broad
spectrum of browsing habits (e.g., casual vs. expert users). While
this is relevant to our broader theme, it is outside the scope of this
paper.

Interaction with client-side plugins: Users today deploy a wide
range of client-side browser extensions to customize their own web
browsing experience. For example, two popular Firefox extensions
block advertisements (Adblock) and scripts (NoScript). We
conducted a preliminary study spanning 120 randomly chosen web-
sites from our overall list on how these extensions impact the com-
plexity metrics. We avoid page load time here because these ex-
tensions alter the user experience (i.e., it is not showing the same
content) and it is unfair to compare the time in this case.

Figure 21 compares two separate browser instances—one with
the extension enabled, and the other with the browser instance from
our previous measurements. Here, we install each extension with
its default configuration. We only show the complexity metrics
that were dominant indicators of page load time and variability in
load time: number of objects and number of servers. The median
number of objects requested reduces from 60 on the vanilla browser
to 45 with Adblock and 35 with NoScript. The reduction in the
number of servers is even more marked—the median value drops
from 8 to 4 with Adblock and to 3 with NoScript. NoScript’s
effect is more pronounced than that of Adblock because disabling
scripts can in turn filter out objects that would have been fetched as
a consequence of the script’s execution.

It is unclear though if the reduction in complexity caused by
these client-side controls is entirely good, even though it likely im-
proves page load times. We do not know how this affects the user
experience that the website provider intended for the user (e.g., is
some useful content being blocked?) and how these may affect the
provider’s business interests (e.g., ad click/conversion rates).

Figure 20: Preliminary result showing that non-landing pages
are less complex than landing pages for most sites.

Customization for client platform: In parallel to the evolution of
web pages, the diversity of client platforms (e.g., mobile phones,
tablet computers, and even televisions) used for web access has
also increased. These platforms vary in their connectivity, display
attributes, and user interface. Consequently, providers are inter-
ested in customizing the web experience for these platforms.

We considered 120 randomly chosen websites that offer cus-
tomized web pages for mobile phones. We visited these sites once
with the default browser setting and once with the browser instru-
mented to emulate an iPhone (by spoofing the UserAgent string).
Figure 22 shows that the phone-specific customization dramatically
reduces the number of objects fetched and the number of servers
contacted. Again, we focus only on complexity metrics and not the
page load time because it does not represent a reasonable compari-
son (e.g., time on actual mobile phones would be different than on
a spoofing browser). However, as in the case of client-side con-
trols, it is not clear if this customization affects the user experience
compared to a desktop-based experience (e.g., was some content
dropped).

Optimizations for improving performance: Many tools like Page-
Speed from Google [2] suggest optimizations such as compressing
images, combining requests for small images and CSS files, and
“minify-ing” Javascript objects to improve website performance.
Based on some sample websites, we found that minify js appears as
a “high priority” suggestion for several websites.7

To analyze how this optimization would help websites in the
wild, we emulate the effect of running it on each website in our
dataset. Figure 23 shows the savings this optimization could pro-
vide in terms of the fraction of total bytes of Javascript and the frac-
tion of the total size of the web page downloaded. We see that for
the vast majority of websites, the potential savings is quite small.
While this result is preliminary and does not explore all possible
optimizations, it does hint that optimizations that are broadly per-
ceived as high-priority may not yield high gains for all websites.
Thus, we need to explore more systematic tools and new avenues
to improve page load times.

7This is a code compacting tool that removes unnecessary white
spaces, and comment lines to reduce the size of Javascript objects.



(a) No. of objects

(b) Total no. of servers contacted

Figure 21: Reduction in number of objects and servers con-
tacted with client-side filtering.

7. CONCLUSIONS AND FUTURE WORK
The increasing complexity of web pages and its impact on per-

formance has been anecdotally well-recognized, but there have been
no rigorous studies of the same. In this paper, we presented a first
attempt at characterizing web page complexity and quantifying its
implications. We characterized the complexity of web pages both
based on the content they include and the services they offer. We
find that a website’s popularity is a poor indicator of its complex-
ity, whereas its category does matter. For example, News sites
load significantly more objects from many more servers and ori-
gins than other categories. Also, we found that though a significant
fraction of objects and bytes are fetched from non-origins on most
websites, the contribution of non-origins to page load time is mini-
mal in comparison. Our correlation- and regression-based analysis
showed that number of objects and number of servers are the domi-
nant indicators of page load time and variability in page load times,
respectively.

Our preliminary results also show that reducing this complexity
and improving client performance is not straightforward. Though
client-side filtering of particular content types may reduce page
load times, it can adversely impact user experience and compro-
mise revenue for web providers. On the other hand, website providers
need to understand the impact that non-origin content on their web

(a) No. of objects

(b) No. of servers

Figure 22: Reduction in number of objects and servers with
phone-specific customization.

pages has on their users in order to customize for different client
platforms.

As future work, we are continuing our efforts in several directions—
deeper analyses of non-landing pages, studying the dependency be-
tween the various objects on a page, finding better indicators of
performance and variability by focusing on websites within cer-
tain rank ranges and certain categories, and designing strategies to
systematically balance the tradeoff between performance, user ex-
perience, and the provider’s business interests.
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