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Abstract—We present CosTLO, a system that reduces the
high latency variance associated with cloud storage services
by augmenting GET/PUT requests issued by end-hosts with
redundant requests, so that the earliest response can be con-
sidered. To reduce the cost overhead imposed by redun-
dancy, unlike prior efforts that have used this approach,
CosTLO combines the use of multiple forms of redundancy.
Since this results in a large number of configurations in
which CosTLO can issue redundant requests, we conduct
a comprehensive measurement study on S3 and Azure to
identify the configurations that are viable in practice. In-
formed by this study, we design CosTLO to satisfy any ap-
plication’s goals for latency variance by 1) estimating the
latency variance offered by any particular configuration, 2)
efficiently searching through the configuration space to se-
lect a cost-effective configuration among the ones that can
offer the desired latency variance, and 3) preserving data
consistency despite CosTLO’s use of redundant requests.
We show that, for the median PlanetLab node, CosTLO can
halve the latency variance associated with fetching content
from Amazon S3, with only a 25% increase in cost.

1 Introduction
Minimizing user-perceived latencies is critical for

many applications as even hundreds of milliseconds of
additional delay can significantly lower revenue [19, 10,
35]. Large-scale cloud services aid application providers
in this regard by enabling them to serve every user from
the closest among several geographically distributed data
centers. For example, our measurements from over 120
PlanetLab nodes across the globe show that, when every
node downloads 1 KB-sized objects from the closest Mi-
crosoft Azure data center, the median download latency
is less than 100ms for over 90% of the nodes.

However, on today’s cloud services, both fetching and
storing content are associated with high latency variance.
For example, for over 70% of the same 120 nodes con-
sidered above, the 99th percentile and median download
latencies from the closest Azure data center differ by
100ms or more. These high tail latencies are problem-
atic both for popular applications where even 1% of traf-
fic corresponds to a significant volume of requests [23],
and for applications where a single request issued by an
end-host requires the application to fetch several objects
(e.g., web page loads) and user-perceived latency is con-
strained by the object fetched last. For example, our mea-
surements show that latency variance in S3 more than
doubles the median page load time for 50% of PlanetLab
nodes when fetching a webpage containing 50 objects.

To enable application providers to avail of the cost
benefits enabled by cloud services, without having la-
tency variance degrade user experience, we develop
CosTLO (Cost-effective Tail Latency Optimizer). Since
we observe that the high latency variance is caused pre-
dominantly by isolated latency spikes, CosTLO uses the
well-known approach [38, 22] for reducing variance by
augmenting every GET/PUT request with a set of redun-
dant requests, so that the earliest response can be con-
sidered. We tackle three key challenges in using this
redundancy-based approach in CosTLO.

First, the end-to-end latency when any end-host up-
loads to or downloads from a cloud storage service has
several components: latency over the Internet, latency
over the cloud service’s data center network, and latency
within the storage service. To tackle the variance in all
of these components, CosTLO exploits the fact that re-
dundant requests to cloud storage services can be issued
in a variety of ways, each of which impacts a different
component of end-to-end latency. For example, while is-
suing redundant requests to the same object may elicit an
earlier response due to differences in load across servers
hosting replicas of the object, one can further reduce the
impact of server load by issuing redundant requests to a
set of objects which are all copies of the object being ac-
cessed. Alternatively, to reduce the impact of spikes in
data center network latency, redundant requests can be
issued to different front-ends of the storage service or re-
layed to the same front-end via different virtual machines
(VMs). Furthermore, when a client is accessing an object
stored in a particular data center, redundant requests can
be issued to copies of the object in other data centers in
order to tackle the variance in Internet latencies.

However, not all forms of redundancy have utility in
practice due to the complex architectures of cloud ser-
vices. Therefore, second, we empirically evaluate the
ways in which redundant requests should be issued for
CosTLO’s approach to be viable on Amazon S3 and Mi-
crosoft Azure, the two largest cloud storage services to-
day. For example, when issuing concurrent requests to
multiple data centers, we find that it is essential to lever-
age storage services offered by multiple cloud providers;
utilizing a single cloud provider’s data centers is insuffi-
cient to tame the variance in Internet latencies. Our study
also shows that, due to load balancing within the data
center networks of cloud services, concurrent requests to
the same front-end of a storage service are sufficient to
tackle spikes in data center network latencies, and more
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complex approaches are unnecessary. To the best of our
knowledge, this is the first work that identifies the key
causes for latency variance in cloud storage services and
studies the impact of different forms of redundancy.

Third, the number of configurations in which CosTLO
can implement redundancy is unbounded—not only can
CosTLO combine the use of various forms of redun-
dancy, but it can also vary the number of redundant re-
quests, the probability with which it issues redundant
requests, etc.—and the impact on cost and latencies
varies significantly across configurations. Therefore, for
CosTLO to add redundancy in a manner that satisfies an
application’s goals for latency variance cost-effectively,
it becomes essential that CosTLO be able to 1) esti-
mate, rather than measure, the cost and latencies asso-
ciated with any particular configuration, and 2) search
for a cost-effective configuration, instead of enumerat-
ing through all possible configurations. To address these
challenges, 1) we model the load balancing and replica-
tion within cloud storage services in order to accurately
capture the dependencies between concurrent requests,
and 2) we develop an efficient algorithm to identify a
cost-effective CosTLO configuration that can keep la-
tency variance below a target. Note that no prior work
that uses redundant requests seeks to minimize cost.

We have implemented and deployed CosTLO across
all data centers in S3 and Azure. To evaluate CosTLO,
we use PlanetLab nodes at 120 sites as clients and replay
a trace of Wikipedia’s workload. Our results show that
CosTLO can reduce the spread between 99th percentile
and median GET latencies by 50% for the median Pla-
netLab node, with only a 25% increase in cost.

2 Characterizing Latency Variance
We begin with a measurement study of Amazon S3

and Microsoft Azure. We 1) quantify the latency vari-
ance when using these services, 2) analyze the impact
of latency variance on applications, and 3) identify the
dominant causes of this variance.

Overview of measurements. To analyze client-
perceived latencies when downloading from and upload-
ing to cloud storage services, we gather two types of
measurements for a week. First, we use 120 PlanetLab
nodes across the world as representative end-hosts. Once
every 3 seconds, every node uploaded a new object to
and downloaded a previously stored object from the S3
and Azure data centers to which the node has the lowest
median RTT. Second, from “small instance” VMs in ev-
ery S3 and every Azure data center, we issued one GET
and one PUT per second to the local storage service. In
all cases, every GET from a data center was for a 1 KB
object selected at random from 1M objects of that size
stored at that data center, and every PUT was for a new
1 KB object. To minimize the impact of client-side over-
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Figure 1: (a) Absolute and (b) relative inflation in 99th per-
centile latency with respect to median. Logscale x-axis in (b).

heads, we measure GET and PUT latencies on PlanetLab
nodes as well as on VMs using timings from tcpdump.

In addition, we leverage logs exported by S3 [7] and
Azure [9] to break down end-to-end latency minus DNS
resolution time into its two components: 1) latency
within the storage service (i.e., duration between when a
request was received at one of the storage service’s front-
ends and when the response left the storage service), and
2) latency over the network (i.e., for the request to travel
from the end-host/VM to a front-end of the storage ser-
vice and for the response to travel back). We extract stor-
age service latency directly from the storage service logs,
and we can infer network latency by subtracting storage
service latency from end-to-end request latency.

Quantifying latency variance. Figure 1 shows the
distribution across nodes of the spread in latencies; for
every node, we plot the absolute and relative difference
between the 99th percentile and median latencies. In
both Azure and S3, the median PlanetLab node sees an
absolute inflation greater than 200ms (70ms) in the 99th

percentile PUT (GET) latency as compared to the median
latency; the median relative inflation is greater than 2x in
both PUTs and GETs. To show that this high latency
variance is not due to high load or slow access links of
PlanetLab nodes, Figure 1 also plots for every node the
difference between 99th percentile and median latency to
the node closest to it among all PlanetLab nodes.

Impact on applications. To show that high la-
tency variance can significantly degrade application per-
formance, we conduct measurement studies in two appli-
cation scenarios. The first one is a webservice that serves
static webpages containing 50 objects. The second one is
a social network application, where an update from a user
triggers a synchronization mechanism to make all of the
user’s followers fetch that update. In both applications,
one user-level request requires the application to issue
several requests to cloud storage, and user-perceived la-
tency is constrained by the request that finishes last. We
consider a setting in which (1) users only fetch objects
from their closest data centers, (2) every user in the social
network application has 200 followers [1], and (3) users
and their followers have the same closest data centers.
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Figure 2: (a) Absolute and (b) relative inflation in median
user-level request latency with respect to ideal latency. Note
logscale on x-axis in both graphs.
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Figure 3: Breakdown of components of tail latencies.

We setup clients on PlanetLab nodes and applications on
S3, emulate interactions between users and applications
using real world traces [6, 30], and measure the page load
time/sync completion time.

Ideally, with no latency variance, in the webpage ap-
plication, page load time should be the same as the la-
tency of fetching a single object if clients fetch all objects
on the page in parallel, and in the social network appli-
cation, the sync completion time should be the same as
the latency incurred by the farthest follower to fetch a
single object. However, Figure 2 shows that, for over
80% of PlanetLab nodes, latency variance causes at least
50ms latency inflation in the median page load time and
at least 100ms latency inflation in the median sync com-
pletion time. This corresponds to a 2x relative inflation
for more than 50% of users.

Causes for tail latencies. We observe two character-
istics that dictate which solutions can potentially reduce
the tail of these latency distributions.

First, we find that neither are the top 1% of latency
samples clustered together in time nor are they correlated
with time of day. Thus, the tail of the latency distribution
is dominated by isolated spikes, rather than sustained pe-
riods of high latencies. Therefore, a solution that moni-
tors load and reacts to latency spikes will be ineffective.

Second, Figure 3(a) shows that all three components
of end-to-end latency significantly influence tail latency
values. DNS latency, network latency, and latency within
the storage service account for over half the end-to-end
latency on more than 40%, 25%, and 20% of tail latency
samples. Since network latencies as measured from Pla-

netLab nodes conflate latencies over the Internet and
within the cloud service’s data center network, we also
study the composition of tail latencies as seen in our mea-
surements from VMs to the local storage service. In this
case too, Figure 3(b) shows that both components of end-
to-end latency—latency within the storage service, and
latency over the data center network—contribute signif-
icantly to a large fraction of tail latency samples. Thus,
any solution that reduces latency variance will have to
address all of these sources of latency spikes.

3 Overview of CosTLO
Goal. We design CosTLO to meet any application’s

service-level objectives (SLOs) for the extent to which it
seeks to reduce latency variance for its users. To ensure
that CosTLO is broadly applicable across several classes
of applications, we consider the most fundamental SLO
that applications can build upon—SLOs that bound the
variance of the latencies of individual PUT/GET opera-
tions; we discuss CosTLO’s ability to handle more com-
plex application-specific SLOs in Section 6.

Though there are several ways in which such SLOs
can be specified, we do not consider SLOs that bound
the absolute value of, say, 99th percentile GET/PUT la-
tency; due to the non-uniform geographic distribution
of data centers, a single bound on tail latencies for all
end-hosts will not help reduce latency variance for end-
hosts with proximate data centers. Instead, we focus on
SLOs that limit the tail latencies for any end-host relative
to the latency distribution experienced by that end-host.
Specifically, we consider SLOs which bound the differ-
ence, for any end-host, between 99th percentile latency
and its baseline median latency (i.e., the median latency
that it experiences without CosTLO). Every application
specifies such a bound separately for GETs and PUTs.

Approach. Since tail latency samples are dominated
by isolated spikes, our high-level approach is to augment
any GET/PUT request with a set of redundant requests,
so that the first response can be considered. Though this
is a well-known approach for reducing tail latencies [38,
22, 13], CosTLO is unique in exploiting several ways of
issuing redundant requests in combination.

For example, consider downloads from the closest
S3 data center at the PlanetLab node in University of
Kansas. When this client fetches objects by issuing sin-
gle GET requests, the difference between the 99th per-
centile and median latencies is 214ms. The simplest way
to reduce variance is to have the client issue two concur-
rent GET requests to download an object (Figure 4(a)).
This decreases the gap between 99th percentile and base-
line median latency to 110ms, but doubles the cost for
GET operations and network bandwidth. Alternatively,
the client can issue a single GET request to a VM in the
cloud, which can in turn issue two concurrent requests

3



Client

Storage Service

Obj

Client

Storage Service

Obj

VM

(a) (b)

Client

Storage
Service

Obj

Storage
Service

Obj

Client

VMs
VM

Obj'

Storage Service
Obj

(c) (d)
Figure 4: Illustration of various ways in which CosTLO can
concurrently issue requests: (a) to a single object in a storage
service, (b) to a single object via a relay VM, (c) to storage
services in multiple data centers, or (d) via multiple relay VMs.

for the requested object to the local storage service (Fig-
ure 4(b)). While this adds VM costs and the 99th per-
centile latency is now 135ms higher than the baseline
median latency, relaying redundant requests via VMs re-
duces bandwidth costs (since a single copy of the object
leaves the data center). A third option is to have the client
concurrently fetch copies of the object from multiple data
centers (Figure 4(c)), e.g., the two closest S3 data cen-
ters. This strategy—the best of the three options in terms
of reducing variance (inflation in 99th percentile com-
pared to baseline median drops to 34ms)—eliminates the
overhead of VM costs but increases storage costs.

Challenges. This example illustrates how various
forms of redundancy differ in the tradeoff between reduc-
ing variance and increasing cost. Choosing from these
various options, so as to satisfy an application’s SLO
cost-effectively, is challenging for several reasons.
• Large configuration space. There exist an unbounded

number of configurations in which CosTLO can issue
redundant requests. This is not only because the de-
gree of parallelism is unbounded, but also because dif-
ferent types of redundancy can be combined with each
other. For example, Figure 4(d) shows a configuration
that both 1) uses multiple relay VMs to route around
latency spikes in the data center network, and 2) issues
requests to different objects that are copies of each
other. This unbounded configuration space makes it
impossible to simply measure the latency distribution
offered by every candidate configuration of CosTLO.

• Complex service architectures. However, predicting
the impact on latencies of any particular approach for
issuing redundant requests is complicated by the fact
that we have little visibility into the architecture of any
cloud storage service. As we describe later, due to cor-
relations between concurrent requests, we cannot esti-

mate the latencies obtained with k concurrent requests
simply by considering the minimum of k independent
samples of a single request’s latency distribution.

• Multi-dimensional pricing policies. Finally, minimiz-
ing CosTLO’s cost overhead is made complex by the
fact that cloud services charge customers based on a
combination of storage, request, VM, and bandwidth
costs. Each of the potential ways in which redundant
requests can be issued impacts a subset of these pric-
ing dimensions, and the extent to which it does so de-
pends on the application’s workload.

4 Characterizing Configuration Space
CosTLO’s approach of issuing redundant requests to

reduce tail latencies can broadly be applied in two ways.
One way is to concurrently issue the same request multi-
ple times in order to implicitly exploit load balancing in
the Internet or inside cloud services. For example, issu-
ing multiple GET requests concurrently to the same ob-
ject may lower latencies either because different requests
take different paths through the Internet to the same data
center, or because different requests may be served by
different storage servers that host replicas of the same
object. An alternate way is to explicitly enforce diversity
by concurrently issuing a set of requests that differ from
each other, yet have the same effect, e.g., by storing mul-
tiple copies of an object and issuing concurrent requests
to different copies, or by issuing concurrent requests to
different front-ends of a storage service.

Here, we empirically evaluate on both S3 and Azure
the efficacy of several approaches for reducing tail la-
tencies in three components of end-to-end latency: In-
ternet latency, data center network latency, and latency
in the storage service. We ignore DNS latency since ap-
plications often do not control how clients perform DNS
lookups and concurrently querying multiple nameservers
to reduce DNS latencies has no impact on cost.

4.1 Internet latencies

To examine the utility of different approaches on re-
ducing Internet tail latencies, we issue pairs of concur-
rent GET requests from each PlanetLab node in three dif-
ferent ways and then compare the measured tail latencies
with those seen with single requests. We use the notation
“nx C[m]” to denote a setting in which every PlanetLab
node issues n concurrent requests to its mth closest data
center in cloud C, where C is either S3, Azure, or the
union of data centers in the two (“S3/Azure”).

Multiple requests to same data center. To account
for spikes in Internet latency, we first consider every end-
host concurrently issuing multiple requests to the storage
service in the data center closest to it. Load balancing in
the Internet [14] may result in concurrent requests tak-
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ing different paths to the same data center.1 However, as
shown by the “2x S3[1]” line in Figure 5, though issuing
two concurrent requests to the same data center does re-
duce the inflation in tail latencies, relative inflation seen
at the median PlanetLab node remains close to 2x; the
“1x S3[1]” line represents the baseline where end-hosts
issue single GET requests to their closest data center.

Requests to multiple data centers. Since path diver-
sity to the same data center is insufficient to tame Inter-
net latency spikes, we next consider issuing concurrent
requests to multiple data centers; in addition to a GET
request to its closest S3 data center, we have every node
issue a GET request in parallel to its second closest S3
data center. The “1x S3[1] + 1x S3[2]” line in Figure 5
shows that this strategy offers little benefit in reducing
latency variance. This is because, for most PlanetLab
nodes, the second closest data center is too far to help
tame latency spikes to the node’s closest data center.

The root cause for this is that any particular cloud ser-
vice provider provisions its data centers in a manner that
maximizes geographical coverage. Hence, any pair of
data centers in the same cloud service are distant from
each other. For example, the “S3[2]” line in Figure 6
shows that RTT to the second closest data center in S3 is
40ms greater than the RTT to the closest S3 data center
for over 80% of PlanetLab nodes.

Leveraging multiple cloud providers. Though a sin-
gle cloud provider’s data centers are distant from each
other, we observe that different cloud providers often
have nearby data centers. For example, Figure 6 shows
that, for over 80% of PlanetLab nodes, RTT to the second
closest data center across S3 and Azure is within 25ms
of the RTT to the closest S3 data center.

Therefore, leveraging the fact that storage services
offered by all cloud providers largely offer the same
PUT/GET interface, every client of an application can
download copies of an object in parallel from 1) the clos-
est data center among the ones on which the applica-
tion is deployed, and 2) the second closest data center
across all storage services that offer a PUT/GET inter-
face. Figure 5 shows that doing so reduces the infla-
tion in 99th percentile GET latency to be less than 1.5x

1Multiple requests may also help in surviving packet losses. How-
ever, loss rates in our measurements are below 0.1%, thus making them
an insignificant factor in causing latency spikes.

the baseline median at 70% of PlanetLab nodes. Note
that the application itself can be deployed across a sin-
gle cloud provider’s data centers. As we describe later
(Section 5.1), CosTLO can maintain copies of objects
without the application’s knowledge.
4.2 Data center network latencies

Next, we consider strategies for tackling latency
spikes within a cloud service’s data center network.

In this case, we first attempt to implicitly exploit path
diversity by issuing the same PUT/GET request multiple
times in parallel from a VM to the local storage service.
Load balancing within the data center network [24] may
cause concurrent requests to take different routes to the
same front-end of the storage service, thus enabling us to
avoid latency spikes that occur on any one path.

Alternatively, we can explicitly exploit path diversity
in two ways. When a VM issues a GET/PUT to the local
storage service, we can either relay each request through
a different VM (Figure 4(d)), or issue each request to
a different front-end of the storage service. While the
latter approach is applicable in S3, all requests issued by
the same tenant are submitted to the same front-end [20]
in Azure. Therefore, we only consider here the former
way of explicitly exploiting path diversity.

In one of Azure’s data centers, Figure 7 compares the
distribution of tail latencies over the network in three sce-
narios for how a VM downloads objects from the local
storage service: 1) a single request is issued, 2) concur-
rent requests are issued directly to the same front-end,
and 3) concurrent requests are relayed via different VMs.
In the latter two cases, we experiment with different lev-
els of parallelism. We see that both implicit and explicit
exploitation of path diversity significantly reduce tail la-
tencies, with higher levels of parallelism offering greater
reduction. However, using VMs as relays adds some
overhead, likely due to requests traversing longer routes.
4.3 Storage service latencies

Finally, we evaluate two approaches for reducing la-
tency spikes within the storage service, i.e., latency be-
tween when a request is received at a front-end and when
it sends back the response. When issuing n concurrent
requests to a storage service, we either issue all n re-
quests for the same object or to n different objects. The
former attempts to implicitly leverage the replication of
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Figure 8: Impact on storage service tail latency inflation when
issuing concurrent requests to (a) the same object, and (b) to
different objects. Note logscale on y-axis.

objects within the storage service, whereas the latter ex-
plicitly creates and utilizes copies of objects. In either
case, if concurrent requests are served by different stor-
age servers, latency spikes at any one server can be over-
ridden by other servers that are lightly loaded.

At one data center each in Azure and S3, Figure 8
shows that both approaches for issuing concurrent re-
quests significantly reduce tail GET and PUT latencies.
However, the takeaways differ between Azure and S3.
On S3, irrespective of whether we issue multiple requests
to the same object or to different objects, the reduction
in 99th percentile latency tails off with increasing paral-
lelism. As seen later in Section 5, this is because, in S3,
concurrent requests from a VM incur the same latency
over the network, which becomes the bottleneck in the
tail. In contrast, on Azure, 99th percentile GET laten-
cies do not reduce further when more than 2 concurrent
requests are issued to the same object, but tail GET laten-
cies continue to drop significantly with increasing paral-
lelism when concurrent requests are issued to different
objects. In the case of PUTs, the benefits of redundancy
tail off at parallelism levels greater than 2 due to Azure’s
serialization of PUTs issued by the same tenant [20].

4.4 Takeaways

In summary, our measurement study highlights the fol-
lowing viable options for CosTLO to reduce latency vari-
ance via redundancy. First, CosTLO can tackle spikes
in Internet latencies by issuing multiple requests to a
client’s closest data center. If greater reduction in Inter-
net tail latencies is desired, CosTLO must concurrently
issue requests to the two closest data centers to the client
from the union of data centers in multiple cloud services.
Second, for latency spikes in a data center’s network, it
suffices to issue multiple requests to the storage service
in that data center. While explicitly relaying requests via
VMs may help reduce bandwidth costs (as seen in our ex-
ample earlier in Section 3), they do not offer additional
benefits in reducing latencies. Finally, for latency spikes
within the storage service, CosTLO can issue multiple
requests either to the same object or to different objects
that are all copies of the object being accessed.

5 Cost-effective Support for SLOs
Next, we describe how CosTLO combines the use of

the above-mentioned viable redundancy options in order
to satisfy an application’s SLO cost-effectively.
5.1 System architecture

Application interface. As shown in Figure 9(a), ap-
plication code on end-hosts links to CosTLO’s client li-
brary and uses the GET operation2 in this library to fetch
data from cloud storage. The client library issues a set
of GET requests to download an object and returns the
object’s data to the application as soon as any one GET
completes. Unlike downloads, we let client-side applica-
tion code upload data to its own VMs, because the ap-
plication may need to update application-specific meta-
data before writing user-uploaded data to cloud storage.
The application code in these VMs links to CosTLO’s
VM library and invokes the PUT operation in this library
to write data to the local storage service. The VM li-
brary in turn issues a set of PUT requests to the local
storage service, and informs the application that the PUT
operation is complete once any one of the PUT requests
finish. CosTLO offers the same consistency semantics
as S3 [3]: read-after-write consistency for PUTs of new
objects and eventual consistency for overwrite PUTs;
we discuss how CosTLO can support strong consistency
later in Section 7.

Configuration selection. CosTLO’s central ConfSe-
lector selects the configuration in which its client library
and VM library should serve PUTs and GETs. ConfSe-
lector divides time into epochs, and at the start of every
epoch, it selects a new configuration separately for every
IP prefix, since Internet latencies to any particular data
center are similar from all end-hosts in a prefix [31]. To
exploit weekly stability in workloads [12], we set epoch
durations to one week; we do not consider exploiting di-
urnal workload patterns because we observe good cost-
efficiency even when only leveraging weekly workloads
stability. At the start of every epoch, the CosTLO library
on every end-host and instances of CosTLO’s VM library
in every data center fetch the configurations that are rel-
evant to them. Since all objects accessed by a client are
replicated as per the configuration associated with the
client’s prefix, no per-object metadata is necessary. If
a client loses its state, it simply re-fetches the configura-
tion in the current epoch for its prefix from ConfSelector.

In the rest of this section, we address three questions:
1) how does ConfSelector identify a cost-effective con-
figuration of CosTLO that can satisfy the application’s
SLO?, 2) while searching for this cost-effective configu-
ration, how does ConfSelector estimate the tail latencies

2When ambiguous, we refer to applications invoking CosTLO’s
GET/PUT operations, and CosTLO issuing GET/PUT requests to stor-
age services.
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the tuples for data centers D1 and D2 are (Copies=1, ReqPerCopy=2, VM=False) and (Copies=3, ReqPerCopy=1, VM=True). All
edges are annotated with the name of the object for which GET requests are issued when the client requests object Obj.

for any configuration, given that is impractical to mea-
sure the latencies offered by every configuration?, and 3)
how does CosTLO preserve data consistency?
5.2 Selecting cost-effective configuration

Characterization of workload and cloud ser-
vices. To estimate the cost overhead and latency vari-
ance associated with any CosTLO configuration, ConfS-
elector 1) takes as input the pricing policies at every data
center, 2) uses logs exported by cloud providers to char-
acterize the workload imposed by clients in every prefix,
and 3) employs a measurement agent at every data cen-
ter. Every agent gathers three types of measurements: 1)
pings to a representative end-host in every prefix, 2) pairs
of concurrent GETs and pairs of concurrent PUTs to the
local storage service, and 3) the rates at which VMs can
relay PUTs and GETs between end-hosts and the local
storage service without any queueing. We ignore the im-
pact of VM failures on tail latency since cloud providers
guarantee over 99.95% of uptime for VMs [2, 8].

Representation of configurations. To search
through the configuration space, ConfSelector represents
every candidate configuration for a prefix as follows.
First, a configuration’s representation includes two three-
tuples, which specify the manner in which end-hosts in
the prefix should execute GETs. One three-tuple is for
the data center from which the application serves the pre-
fix and another for the data center closest to the prefix
among all other data centers on which CosTLO is de-
ployed. Either tuple specifies 1) number of copies of the
object stored in that data center, 2) number of requests
issued to each copy, and 3) whether all of these requests
are relayed via a VM.3 Figure 9(b) depicts an example.

Second, the configuration includes one two-tuple for
the manner in which CosTLO’s VM library should serve
PUTs from the prefix. We use only one tuple in this case,
since PUTs from an end-host are served solely at the data
center closest to it, and we use a two-tuple, since the VM
library does not relay PUTs through other VMs.

3If necessary, these three-tuples can be extended to include other
dimensions, e.g., whether each request is issued to a different front-end.
The dimensions we use here are based on the techniques that we found
to be viable in reducing tail latencies on Azure and S3 (Section 4).

Third, to reduce the cost overhead associated with re-
dundant requests, the client/VM library initially issues
a single request when serving a GET/PUT. If no re-
sponse is received for a period, the client/VM library
times out and probabilistically issues redundant requests
concurrently as specified by the tuples described above.
The timeout period ensures that CosTLO’s redundancy
is focused on requests that incur a high latency, whereas
probabilistically issuing redundant requests offers finer-
grained control over latency variance. For both PUTs
and GETs, the configuration representation specifies the
values of the timeout period and probability parameters.
Considering the same example from Figure 9(b) but with
70% probability and 50ms timeout period to issue redun-
dant requests, the configuration would be [(1, 2, False),
(3, 1, True), 50ms, 70%] (the PUT tuple is ignored here).

Configuration search. Given this representation of
the configuration space, ConfSelector identifies a cost-
effective configuration of CosTLO for any particular pre-
fix as follows. It initializes the configuration for a pre-
fix to reflect the manner in which an application serves
its clients when not using CosTLO—by always issuing
only a single request to the data center closest to a client.
CosTLO imposes no cost overhead in this configuration.

Thereafter, our structured representation of the config-
uration space enables ConfSelector to step through con-
figurations in the increasing order of cost. For this, Con-
fSelector maintains a pool of candidate configurations,
from which it considers the minimum cost configuration
in every step. ConfSelector computes the cost associ-
ated with a configuration as the sum of expected costs
for storage, VMs, requests, and bandwidth based on the
workload for the prefix and the manner in which the con-
figuration mandates that GET/PUT operations be served.
If the lowest cost configuration in the current pool does
not satisfy the SLO, ConfSelector discards this configu-
ration and inserts all neighbors of this configuration into
the pool of candidates. Two configurations are neigh-
bors if they differ in the value of exactly one parameter
in the configuration representation. For example, con-
figurations [(1, 2, False), 50ms, 70%] and [(2, 2, False),
50ms, 70%] are neighbors (we only show one GET tuple
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Figure 10: Scatter plot of first vs. second request GET latency
when issuing two concurrent requests to a storage service.

here for simplicity). This process terminates once Conf-
Selector finds a configuration that satisfies the SLO.

5.3 Estimating latency distribution

To identify when it has found a configuration that will
satisfy the application’s SLO, for any particular configu-
ration for a prefix, ConfSelector must be able to estimate
the latency distribution that clients in that prefix will ex-
perience when served in that configuration. For brevity,
we present here ConfSelector’s estimation of latencies
only for GETs, which it computes in four steps. First,
for either data center used in the configuration, we es-
timate the latency distribution when a VM in that data
center concurrently issues requests to the local storage
service, where the number of requests is specified by
the data center’s tuple in the configuration representa-
tion. Second, we estimate the latency distribution for
either data center’s tuple by adding the distribution com-
puted above with the latency distribution measured to the
prefix from a VM in that data center. Simply adding
these distributions works when objects are smaller than
1 KB, and in Section 7, we discuss how to extrapo-
late this distribution for larger objects. Third, we esti-
mate the client-perceived latency distribution by inde-
pendently sampling the latency distributions associated
with either tuple in the configuration and considering the
minimum. Finally, we adjust this distribution to account
for the timeout and probability parameters.

The primary challenge here is the first step: estimat-
ing the latency distribution when a VM issues concur-
rent requests to the local storage service. This turns out

to be hard due to the dependencies between concurrent
requests. While Figure 10 shows the correlation in la-
tencies between two concurrent GET requests to an ob-
ject at one of Azure’s and one of S3’s data centers, we
also see similar correlations for PUTs and even when the
concurrent requests are for different objects. Attempt-
ing to model these correlations between concurrent re-
quests by treating the cloud service as a black box did not
work well. Therefore, we explicitly model the sources of
correlations: concurrent requests may incur the same la-
tency within the storage service if they are served by the
same storage server, or incur the same data center net-
work latency if they traverse the same network path.

Modeling replication in storage service. First, at ev-
ery data center, we use CosTLO’s measurements to infer
the number of replicas across which the storage service
spreads requests to an object. For every pair of concur-
rent requests issued during CosTLO’s measurements, we
compute the difference in service latency (i.e., latency
within the storage service) between the two requests. We
then consider the distribution of this difference across
all pairs of concurrent requests to infer the number of
replicas in use per object. For example, if the storage
service load balances GET requests to an object across
2 replicas, there should be a 50% chance that two con-
current GETs fetch from the same replica, therefore the
service latency difference is expected to be 0 half the
time. We compare this measured distribution with the
expected distribution when the storage service spreads
requests across n replicas, where we vary the value of
n. We infer the number of replicas used by the service
as the value of n for which the estimated and measured
distributions most closely match. For example, though
both Azure [5] and S3 [4] are known to store 3 replicas
of every object, Figures 11(a) and 11(b) show that the
measured service latency difference distributions closely
match GETs being served from 1 replica on Azure and
from 2 replicas on S3.

On the other hand, for concurrent GETs or PUTs is-
sued to different objects, on both Azure and S3, we see
that the latency within the storage service is uncorre-
lated across requests. This is likely because cloud stor-
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age services store every object on a randomly chosen
server (e.g., by hashing the object’s name for load bal-
ancing [23]), and hence, requests to different objects are
likely to be served by different storage servers.

Modeling load balancing in network. Next, we
identify whether concurrent requests issued to the stor-
age service incur the same latency over the data center
network, or are their network latencies independent of
each other. At any data center, we compute the distri-
bution obtained from the minimum of two independent
samples of the measured data center network latency dis-
tribution for a single request. We then compare this dis-
tribution to the measured value of the minimum data cen-
ter network latency seen across two concurrent requests.

Figure 11(c) shows that, on Azure, the distribution
obtained by independent sampling closely matches the
measured distribution, thus showing that network laten-
cies for concurrent requests are uncorrelated. Whereas,
on S3, Figure 11(d) shows that the measured distribution
for the minimum across two requests is almost identi-
cal to the data center network latency component of any
single request; this shows that concurrent requests on S3
incur the same network latency.

Estimating VM-to-service latency. Given these
models for replication and load balancing, we estimate
the end-to-end latency distribution as follows when a VM
issues k concurrent requests to the local storage service.
If concurrent requests are known to have the same la-
tency over the service’s data center network, we sam-
ple the measured data center network latency distribution
once and use this value for all requests; if not, we inde-
pendently sample once for each request. If all k requests
are to the same object, then we randomly assign every re-
quest to one of the replicas of the object, where the num-
ber of replicas is identified as described above. If the k
requests are for k different objects, then we assume that
no two requests are served from the same storage server.
In either case, for each storage server, we independently
choose a sample from the service latency distribution for
a single request and assign that to be the service latency
for all requests assigned to that server. Finally, for each
of the k requests, we sum up their assigned data center
network latency and service latency values, and estimate
the end-to-end latency at the VM as the minimum of this
sum across the k requests.

Note that our latency estimation models may poten-
tially break down at high storage service load. But, we
have not seen any evidence of this so far, since we see
the same latency distribution irrespective of whether we
issue requests once every 3 seconds or once every 200ms.
5.4 Ensuring data consistency

CosTLO can afford to inform the application that
a PUT operation is complete as soon as any of the
PUT requests that it issues to serve the operation fin-
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Figure 12: Illustration of CosTLO’s execution of PUTs.

ish, because the underlying cloud services guarantee that
the data written by a completed PUT request will be
durable [5, 4]. However, this design decision makes it
challenging for CosTLO to ensure that, eventually, all
GETs for an object will consistently return the same data.
First, if the application issues back-to-back or concurrent
PUT operations on the same object, redundant PUT re-
quests that are still pending from a completed PUT oper-
ation may potentially overwrite updates written by sub-
sequent PUT operations. Second, if an application VM
restarts after only a subset of the PUT requests issued to
serve a PUT operation complete, the VM library will not
realize if some of the remaining PUT requests fail, thus
causing some of the copies of the object to potentially
not reflect the latest update to the object.

Figure 12 illustrates the execution of PUTs in CosTLO
accounting for these concerns. In every data center,
CosTLO maintains a set of VMs that store in memory
(with a persistent backup) the latest version number and
the status of two locks LS

o and LA
o for every object o

stored in that data center. We use LS
o for synchronous

PUTs to local storage service and LA
o for asynchronous

PUTs to remote storage services. When serving a PUT
operation on object o, the VM library first queries the
local cluster of CosTLO’s VMs to obtain lock LS

o and
learn o’s current version. Once it acquires the lock, the
library appends to a persistent log (maintained locally on
the VM) the update that needs to be written to o and all
the PUT requests that the library needs to issue as per the
configuration for the client issuing this PUT operation.
By appending the status of every response to the log,
the library ensures that it knows which PUTs to re-issue,
even across VM restarts. Once all PUT requests com-
plete, the library releases lock LS

o , updating o’s version
in the process. At some point later, the library attempts
to acquire lock LA

o , and if o’s version has not changed
by then, it updates the remaining copies of o and sub-
sequently releases the lock. If o’s version has changed,
the library just needs to release the lock, since there ex-
ists a newer PUT operation on this key and that PUT’s
asynchronous propagation will suffice to update the re-
maining copies of o.

Note that, since the application is unaware of the repli-
cation of objects across data centers, all PUT operations
on an object will be issued by the application’s VMs in
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Figure 13: Verification of CosTLO’s ability to satisfy SLOs.

the same data center. Hence, the VM library needs to
acquire locks only from CosTLO’s VMs within the lo-
cal data center, thus ensuring that locking operations add
negligible latency. Also note that, when an application
issues back-to-back PUT operations, execution of the lat-
ter PUT has to wait for the lock LS

o (for the object o being
updated) to be released. This can potentially increase4

tail latencies if multiple PUT requests need to complete
before LS

o is released. Therefore, in the rare case when
an application often issues back-to-back or concurrent
PUTs for the same object, the application should choose
an SLO that offers no improvement in PUT latency vari-
ance; this will ensure that CosTLO executes any PUT
operation by issuing a single PUT request.

6 Evaluation
We evaluate CosTLO from three perspectives: 1) its

ability to satisfy latency SLOs, 2) its cost-effectiveness
in doing so, and 3) its efficiency in various respects. We
perform our evaluation from the perspective of an ap-
plication deployed across all of Amazon’s data centers.
We deploy CosTLO across Azure’s and S3’s data cen-
ters, and use PlanetLab nodes at 120 sites as clients.
6.1 Ability to satisfy SLOs

SLOs on individual operations. To verify CosTLO’s
ability to satisfy latency SLOs, we mimic a deployment
of Wikipedia using server-side logs of objects requested
from the English version of Wikipedia [6]. We randomly
select a 1% sample from the datasets for two consecutive
weeks. We provide the workload from the first week to
ConfSelector as input, and have it select cost-effective
configurations for 120 PlanetLab nodes. We then run
CosTLO with every node configured in the manner se-
lected by ConfSelector. We replay the workload from
the second week, with every GET request assigned to a
random PlanetLab node. We repeat this experiment for
four SLO values—30ms, 40ms, 50ms, and 60ms. In all
cases, since we issue GETs/PUTs to S3 and Azure, our
measurements are affected by Internet congestion and by
contention with S3’s and Azure’s customers.

Figure 13 shows the distribution of the measured dif-
ference between the 99th percentile and baseline median

4Note that we can reduce the extent of this increase in inflation by
having CosTLO maintain a lock LS

o,c for every copy c of object o, but
we do not present such a design here to keep the discussion simple.
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Figure 14: CosTLO’s ability to satisfy application-specific
SLOs for (a) webpage and (b) social network applications.

latencies at every PlanetLab node. For all SLOs, the la-
tency variance delivered by CosTLO is within the input
SLO on most nodes; without CosTLO, the difference be-
tween 99th percentile and baseline median GET laten-
cies is greater than 60ms for 75% of PlanetLab nodes
(Figure 1(a)). Latency variance with CosTLO is, in fact,
well below the SLO in many cases; due to discontinu-
ous drops in the latency distribution across neighboring
configurations, as ConfSelector steps through the config-
uration space, it often directly transitions from a config-
uration that violates the SLO to one that exceeds it.

Note that, though we only demonstrate CosTLO’s
ability to satisfy GET latency SLOs here (because the
trace from Wikipedia only contains GETs), CosTLO can
also reduce the latency variance for PUTs as described
earlier. In contrast, in-memory caching of data can only
reduce tail latencies for GETs, but not for PUTs.

Application-specific SLOs. CosTLO’s design is eas-
ily extensible to handle application-specific SLOs, rather
than the SLOs for the latencies of individual PUT/GET
operations. Here, we show the results of using CosTLO
to reduce user-perceived latencies in the two applications
from Section 2. In the webpage application, we modify
ConfSelector so that it uses the models in Section 5.3 to
estimate the distribution for the latency incurred when
the client library fetches 50 objects in parallel and waits
for at least one GET to each of these objects to com-
plete. In the social network application, since we need
to estimate latencies from multiple users, we extend the
configuration representation in ConfSelector such that it
contains the configuration tuples of all of a user’s fol-
lowers. The sync completion time is determined when
all followers have at least one GET completed. We use
this modified version of ConfSelector to select configu-
rations for all PlanetLab nodes and run CosTLO’s client
library on every node as per these configurations. Fig-
ure 14 shows that CosTLO is able to satisfy application-
specific SLOs in both applications.
6.2 Accuracy of estimating latency distributions

CosTLO is able to meet latency SLOs due to its accu-
rate estimation of the end-to-end latency distributions in
any configuration. Our simple approaches of considering
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Figure 15: Accuracy of estimating GET latency distribution
for 8 concurrent GET requests from VM to local storage ser-
vice. (a and b) Comparison of latency distributions in one S3
region. (c) Comparison across all S3 regions of 99th percentile
latencies. Note logscale on y-axis of all three graphs.

the minimum of the latency distributions across data cen-
ters and of adding VM-to-prefix and VM-to-service la-
tency distributions work reasonably well; in either case,
CosTLO’s estimates show less than 15% error for 90%
of PlanetLab nodes. Therefore, here we focus on demon-
strating the accuracy of our estimation of the latency dis-
tribution when a VM concurrently issues a set of requests
to the local storage service. Recall that CosTLO only
gathers measurements when issuing pairs of concurrent
requests. We evaluate its ability to estimate the latency
distribution for higher levels of parallelism.

Figures 15(a) and 15(b) compare the measured and es-
timated latency distributions when issuing 8 concurrent
GETs from a VM to the local storage service; all con-
current requests are for the same object in the former
and to different objects in the latter. In both cases, our
estimated latency distribution closely matches the mea-
sured distribution, even in the tail. In contrast, if we
estimate the latency distribution for 8 concurrent GETs
by independently sampling the latency distribution for a
single request 8 times and considering the minimum, we
significantly under-estimate the tail of the distribution.
Additionally, Figure 15(c) shows that the relative error
between the measured and estimated values of the 99th

percentile GET latency is less than 5% in the median S3
region; latencies are higher for S3’s Virginia data center
because it is the most widely used data center in S3.
6.3 Cost-effectiveness

An application that uses CosTLO incurs additional
costs for storing copies of objects, for operations and
bandwidth due to redundant requests, and for VMs used
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Figure 17: (a) Utility of CosTLO’s components in reducing
cost and meeting SLO = 30ms. (b) Cost inflation when not
using timeout and probability parameters.

either as relays or to manage locks and version numbers.
We again use Wikipedia’s workload to quantify this over-
head on an application provider’s costs.

Figure 16 shows the relative cost overhead as a func-
tion of the latency SLO, with the cost split into its four
components. At the higher end of the examined range
of SLO values, CosTLO caps tail latency inflation at
70ms—which is less than the inflation observed at the
median node when not using CosTLO—with less than
8% increase in cost. As the SLO decreases, i.e., as lower
variance is desired, cost increases initially due to an in-
crease in the number of redundant requests. Thereafter,
as the SLO further decreases, CosTLO begins to use
more relay VMs so that only one copy of any requested
object leaves the data center, thus decreasing bandwidth
costs at the expense of VM costs. As the SLO decreases
further, CosTLO begins concurrently issuing requests to
multiple data centers, thus again increasing bandwidth
costs. Storage costs and cost for VMs that manage locks
and version numbers remain low for all SLO values, be-
cause 1) on both Amazon’s and Microsoft’s cloud ser-
vices, storage is significantly cheaper than GET/PUT re-
quests, VMs, and network transfers, and 2) lock status
and version numbers for all 70M objects in the English
version of Wikipedia fit into the memory of a small in-
stance VM, which costs less than $20 per month on EC2.
6.4 Utility of CosTLO’s components

CosTLO’s ability to satisfy SLOs cost-effectively cru-
cially depends on its combined use of various forms of
issuing redundancy. We illustrate this in Figure 17(a) by
comparing CosTLO with several strategies that each use
a subset of the dimensions in CosTLO’s configuration
space. For each strategy, we compute the fraction of Pla-
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netLab nodes for which it is able to satisfy an SLO of
30ms, and across the nodes on which the strategy does
meet the SLO, we compare its cost with CosTLO’s.

First, the simplest strategy S1, which only issues re-
dundant requests to a single copy of any object in the data
center closest to any client, can meet the SLO on only a
little over 10% of nodes. Adding the use of relay VMs
(S2) reduces cost inflation compared to CosTLO from
over 200% to less than 150%, but the ability to meet the
SLO remains unchanged. We can improve the ability to
satisfy the SLO by adding the option of issuing redun-
dant requests either to multiple copies of every object in
the closest data center or to multiple data centers. How-
ever, the fraction of nodes on which the SLO can be met
remains below 60% if we use one of these two options.
Only by combining the use of relay VMs, multiple copies
of objects, and multiple data centers is CosTLO able to
meet the SLO at all nodes, at significantly lower cost.

In addition, we illustrate the utility of CosTLO waiting
for a timeout period before issuing redundant requests
and issuing redundant requests probabilistically. For ev-
ery SLO in the range 30ms to 70ms, Figure 17(b) com-
pares CosTLO’s cost overhead when it uses the timeout
and probability parameters versus when it does not. The
cost overhead of not using the timeout and probability
parameters is low when the SLO is extremely low or ex-
tremely high. In the former case, most PlanetLab nodes
need to issue redundant requests at all times without any
timeout in order to meet the SLO, whereas in the latter
case, the SLO is satisfied for most PlanetLab nodes even
without redundant requests. However, for many inter-
mediate SLO values—that are neither too loose nor too
stringent—not using the timeout and probability param-
eters increases cost significantly, by as much as 48%.
6.5 Efficiency

Measurement cost. The cost associated with
CosTLO’s measurements depends on the number of la-
tency samples necessary to accurately sample latency
distributions. To quantify the stationarity in latencies, we
consider a dataset of 200K latency measurements gath-
ered over a week from VMs in every S3 and Azure data
center. We then consider subsets of these datasets, vary-
ing the number of samples considered. In all datasets,
we find that 10K samples are sufficient to obtain a rea-
sonably accurate value of the 99th percentile latency. In
the ping, GET, and PUT latency measurements, the 99th

percentile from a subset of 10K samples was off from the
99th percentile in the entire dataset by only 2.9%, 3.8%,
and 2.2% on average.

Thus, at every data center, CosTLO’s weekly mea-
surement costs include: 1) 20K GETs and PUTs (since
CosTLO gathers data with pairs of concurrent requests),
2) 10K pings to every end-host prefix, and 3) one “small
instance” VM (which is sufficient to support this scale
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Figure 18: (a) CosTLO’s utility in reducing latency variance
when offering strong consistency; 1 PUT request per copy. (b)
latency breakdown for objects of different sizes.

of measurements). Accounting for the roughly 120K IP
prefixes at the Internet’s edge [27], 8 S3 data centers, and
13 Azure data centers, these measurements translate to a
total cost of $392 per week. These minimal measurement
costs are shared across all applications that use CosTLO.

Configuration selection runtime. We run ConfSelec-
tor to select the configurations for 120 PlanetLab nodes,
and we compute the average runtime per node. We re-
peat this for SLO values ranging from 20ms to 100ms.
Extrapolating the average runtime per node, we estimate
that, for all SLO values, ConfSelector needs less than a
day to select the configuration for all 120K edge prefixes
on a server with 16 cores. Hence, ConfSelector can iden-
tify the configurations for a particular week during the
last day of the previous week. Moreover, since ConfS-
elector independently selects configurations for different
prefixes, this runtime is easily reduced by parallelizing
ConfSelector’s execution across a cluster of servers.

7 Discussion
Strong consistency. Many applications (e.g., Google

Docs) require their underlying storage to offer strong
consistency. For such applications, CosTLO uses only
strongly consistent storage services, e.g., it can use
Azure but not S3. In addition, two modifications are nec-
essary in the execution of a PUT operation on any object
o. First, to ensure linearizability of PUTs, the VM library
synchronously updates all copies of o before releasing
lock LS

o . Second, instead of the library informing the ap-
plication when any one PUT request completes, the ap-
plication registers for two callbacks—1) quorumPUTs-
Done, for when at least one PUT request each completes
on a quorum of o’s copies, and 2) allPUTsDone, when all
PUTs finish. The quorumPUTsDone callback indicates
to the application that subsequent GET operations on o
will fetch the latest version, if the client library waits for
responses from a quorum of copies when serving GETs.

After these changes, Figure 18(a) shows the PUT la-
tency variance offered by CosTLO when every object ac-
cessed by a PlanetLab node has one copy and two copies,
respectively, in the closest Azure data center and the sec-
ond closest data center across S3 and Azure; for this anal-
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ysis, we ignore that S3 does not offer strong consistency.
Despite having to wait for PUT requests on a quorum of
copies to complete, and though a quorum of every ob-
ject’s copies are stored in a different data center than the
application VMs that issue PUT operations on the object,
CosTLO more than halves the PUT latency inflation for
the median node. This again highlights the utility of re-
dundant copies and requests, and of CosTLO’s use of
multiple cloud services.

Latency estimation for larger objects. One can po-
tentially extend CosTLO’s approach for estimating la-
tency variance to larger objects as follows. We conduct
measurements on objects from 1 KB to 256 KB when is-
suing one GET request at a time to each object from a
local VM, and Figure 18(b) shows the results from one
data center. We see that network latency is proportional
to object size, and storage service latency is a step func-
tion of object size. Although different data centers may
have different step functions (we observe that some data
centers have the same storage service latency distribution
for all sizes in the 256 KB range), the smallest range that
has a fixed storage service latency distribution is until 64
KB, which is a typical block size in distributed storage
systems [21]. Therefore, to estimate latencies for objects
of different sizes, we can leverage the fact that objects
with the same number of blocks have the same storage
service latency distribution.

Scale of adoption. CosTLO’s approach of issuing
redundant requests makes it unviable if all applications
adopt it. However, we believe that increasing adoption
of CosTLO will emphasize the demand for latency SLOs
and spur cloud providers to suitably modify their ser-
vices. In the interim, CosTLO minimizes the cost over-
head incurred by application providers who seek to im-
prove predictability in user-perceived latencies without
having to wait for any changes to cloud services. More-
over, cloud service providers have little control over re-
ducing variance in the latency on the Internet path be-
tween end-hosts and their data centers.

8 Related Work
Redesigning cloud services. Several recent proposals

redesign storage systems and data centers to improve tail
latency performance [36], to offer bandwidth guarantees
to tenants [15, 33, 16, 37], or to ensure predictable com-
pletion times for TCP flows [42, 26, 40]. However, all of
these proposals require modifications to a cloud service’s
infrastructure. It is unclear when, and if, cloud services
will revamp their infrastructure to these more complex
architectures. CosTLO instead satisfies latency SLOs
for applications deployed on the cloud without having
to wait for any modifications to cloud services.

Reducing tail latencies. The approach of issuing re-
dundant requests to reduce tail latencies has been consid-

ered previously [22, 38], but the focus has primarily been
on understanding the implications of redundancy on sys-
tem load. In contrast, our work demonstrates how the
approach of using redundant requests should be applied
in the context of cloud storage services, in order to meet
latency SLOs while minimizing cost overhead.

Some application providers such as Facebook use in-
memory caching of data to reduce tail latencies [32].
However, caching cannot reduce tail latencies associated
with PUT requests. Moreover, caching at a single data
center cannot tackle latency spikes on Internet paths, and
not all application providers will be able to afford caches
at multiple data centers that can accommodate enough
data to reduce 99th percentile GET latencies.

Cloud measurement studies. Prior studies have
compared the performance offered by different cloud
providers [29], reverse-engineered cloud service inter-
nals [34], and studied application deployments on the
cloud [25]. Our measurement study of Azure and S3 is
the first to quantify the latency variance on these storage
services and to characterize the impact of different forms
of redundancy. Moreover, unlike Bodik et al. [18], who
focused on characterizing and modeling spikes in appli-
cation workloads, our measurements show that an appli-
cation using cloud storage can suffer latency spikes even
when there is no spike in that application’s workload.

Combining cloud providers. Others have combined
the use of multiple cloud providers to improve availabil-
ity [11, 28], to offer more secure storage [17], and to re-
duce cost [39, 41]. CosTLO uses cloud storage services
offered by multiple providers because 1) the combination
offers more data center pairs that are close to each other,
and 2) latency spikes on the Internet paths to data centers
in different cloud services are uncorrelated.

9 Conclusions
Our measurements of the Azure and S3 storage ser-

vices highlight the high variance in latencies offered by
these services. To enable applications to improve pre-
dictability, without having to wait for these services to
modify their infrastructure, we have designed and im-
plemented CosTLO, a framework that requires minimal
changes to applications. Based on several insights about
the causes for latency variance on cloud storage services
that we glean from our measurements, our design of
CosTLO judiciously combines several instantiations of
the approach of issuing redundant requests. Our results
show that, despite the unbounded configuration space
and opaque cloud service architectures, CosTLO cost-
effectively enables applications to meet latency SLOs.
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