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ABSTRACT

Toward a Coherent Framework for the Control of Planar Biped Locomotion

by

Eric R. Westervelt

Co-Chairs: Jessy W. Grizzle and Daniel E. Koditschek

Planar, underactuated, biped walkers form an important domain of application for hy-

brid dynamical systems.

This dissertation presents the design of controllers that induce exponentially stable dy-

namic walking for general planar biped robots that have one degree of freedom greater than

the number of available actuators during the single support phase. The within-step control

action creates an attracting invariant set—a two-dimensional zero dynamics submanifold

of the full hybrid model—whose restriction dynamics admits a scalar linear time invariant

return map. Exponentially stable periodic orbits of the zero dynamics correspond to expo-

nentially stabilizable orbits of the full model. Thus, walking controllers may be designed

via the two-dimensional zero dynamics. A convenient parameterization of the hybrid zero

dynamics is imposed through the choice of a class of output functions. Parameter optimiza-

tion is used to tune the hybrid zero dynamics in order to achieve closed-loop, exponentially

stable walking with low energy consumption, while meeting natural kinematic and dynamic

constraints. Two additional control features are developed: 1) the ability to compose con-

trollers that induce walking at a fixed average walking rate to obtain walking at several,

discrete average walking rates with guaranteed stability during the transitions; and 2) the

ability to regulate the average walking rate to a continuum of values. The general the-

ory developed in the dissertation is experimentally verified on a five-link prototype walker,

consisting of a torso and two legs with knees.
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H.19 Transitioning: q̇1, ė1, q̇2, and ė2 versus time. . . . . . . . . . . . . . . . . . . 169
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NOTATION

Modeling

N number of robot links; also the dimension of configuration space

Q configuration space

TQ state space

(q, q̇) generalized coordinates on TQ

De, qe, etc. “e” denotes objects related to the extended model

π−1 map from the full to reduced coordinates

x+, q+, etc. “+” denotes objects related to the beginning of the stance phase

x−, q−, etc. “−” denotes objects related to the end of the stance phase

K kinetic energy

V potential energy

L Lagrangian

g0 gravitation constant

∆ impact map relating pre- and post-impact state

R circular matrix representing the coordinate relabeling at impact

S impact surface; also the Poincaré section

(F̂T
2 , F̂N

2 ) impulsive forces on the swing leg end

(FT
1 , FN

1 ) forces on the stance leg end

(ph
H, p

v
H) Cartesian position of the hip

(ph
1 , p

v
1) Cartesian position of the stance leg end

(ph
2 , p

v
2) Cartesian position of the swing leg end

(ph
COM, pv

COM) Cartesian position of the center of mass

xii



Zero dynamics

zero denotes an object related to the zero dynamics

Q̃ subset of Q where the decoupling matrix is invertible

Z zero dynamics manifold

κi ith component of the zero dynamics vector field

ξi ith coordinate on the zero dynamics manifold

θ monotonically increasing functional on TQ

γ functional on TQ such that Lgγ = 0

ν̄ average walking rate

P Poincaré map

ρ Poincaré map restricted to S ∩ Z

σ diffeomorphism from S ∩ Z to R

z∗, ζ∗, etc. “∗” denotes objects related to a fixed point

M Bézier polynomial order

α matrix in R
(N−1)×(M+1) of output function parameters

Additional tools

D domain of attraction of ρ in S ∩ Z

invar denotes an object related to parameters used to ensure invariance

free denotes an object related to parameters that may be freely chosen

ᾱ, Ā, etc. “̄ ” indicates objects related to regular parameters

A space of all α equal to R
(N−1)×(M+1)

π fiber bundle projection, π : A× TQ → A

S fiber bundle of α with the associated Poincaré sections

Z fiber bundle of α with the associated zero dynamics manifolds
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HYPOTHESES

The hypotheses of Chapter 2 and Chapter 3 are reproduced here for convenience.

Robot hypotheses: (page 19) The robot is assumed to be:

RH1) comprised of N rigid links with mass, connected by revolute joints with no closed

kinematic chains;

RH2) planar, with motion constrained to the sagittal plane;

RH3) bipedal, with symmetric legs connected at a common point called the hips;

RH4) actuated at each joint;

RH5) unactuated at the point of contact between the stance leg and ground; and

RH6) (page 37) the model is expressed in N−1 relative angular coordinates, (q1, · · · , qN−1),

plus one absolute angular coordinate, qN .

Gait hypotheses: (page 19) A simple walking gait satisfies that:

GH1) there are alternating phases of single support and double support;

GH2) during the single support phase, the stance leg acts as a pivot joint, that is, throughout

the contact, it can be guaranteed that the vertical component of the ground reaction force

is positive and that the ratio of the horizontal component to the vertical component does

not exceed the coefficient of static friction;

GH3) the double support phase is instantaneous and can be modeled as a rigid contact

[HM94];
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GH4) at impact, the swing leg neither slips nor rebounds;

GH5) in steady state, successive phases of single support are symmetric with respect to the

two legs;

GH6) walking is from left to right, so that the swing leg starts from behind the stance leg

and is placed strictly in front of the stance leg at impact.

Impact model hypotheses: (page 22) The impact model of [HM94] is used under the

following assumptions:

IH1) the contact of the swing leg with the ground results in no rebound and no slipping of

the swing leg;

IH2) at the moment of impact, the stance leg lifts from the ground without interaction;

IH3) the impact is instantaneous;

IH4) the external forces during the impact can be represented by impulses;

IH5) the impulsive forces may result in an instantaneous change in the velocities, but there

is no instantaneous change in the configuration; and

IH6) the actuators cannot generate impulses and hence can be ignored during impact.

Output function hypotheses: (page 35) A smooth output h is selected so that:

HH1) h is a function of only the configuration coordinates;

HH2) there exists an open set Q̃ ⊂ Q such that for each point q ∈ Q̃, the decoupling matrix

LgLfh(q) is square and invertible (i.e., the dimension of u equals the dimension of y, and

h has vector relative degree (2, . . . , 2)′);

HH3) there exists a smooth real valued function θ(q) such that (h(q)′, θ(q))′ : Q̃ → R
N is a

diffeomorphism onto its image (see Figure 6.6 for an example θ(q));

HH4) there exists at least one point in Q̃ where h vanishes; and
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HH5) (page 42) there exists a unique point q−0 ∈ Q̃ such that (h(q−0 ), p
v
2(q

−
0 )) = (0, 0), ph

2(q
−
0 ) >

0 and the rank of [h′ pv
2]

′ at q−0 equals N .

Controller Hypotheses: (page 50) For the closed-loop chain of double integrators, ÿ =

v(y, ẏ),

CH2) solutions globally exist on R
2N−2, and are unique;

CH3) solutions depend continuously on the initial conditions;

CH4) the origin is globally asymptotically stable, and convergence is achieved in finite time;

CH5) the settling time function1, Tset : R
2N−2 → R by

Tset(y0, ẏ0) := inf{t > 0 | (y(t), ẏ(t)) = (0, 0),

(y(0), ẏ(0)) = (y0, ẏ0)}

depends continuously on the initial condition, (y0, ẏ0).

1That is, the time it takes for a solution initialized at (y0, ẏ0) to converge to the origin. The terminology
is taken from [BB98].
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CHAPTER 1

Introduction

Locomotion, the ability for a body to move from one place to another, is a defining char-

acteristic of animal life. Without it, most animals could not gather food, escape danger,

or mate. In the natural setting, locomotion takes on many forms, whether its in swim-

ming amoebas, flying fruit flies, or walking humans. The diversity of animal locomotion is

truly astounding and surprisingly complex [CCS00]. Yet whether by plasmasol,1 wings, or

legs, locomotion is accomplished through manipulating the body with respect to the envi-

ronment. In each case, the means of locomotion is appropriate for the morphology, scale,

and environment of the organism. The same is true in an artificial setting. Man-made

machines that locomote are designed with their purposes and operating environments in

mind: planes have wings that create lift for flight, tanks have tracks for traversing uneven

terrain, automobiles have wheels for rolling efficiently, etc. In the case of environments with

discontinuous ground support, such as a rocky slope or a flight of stairs, it is arguable that

the most appropriate and versatile means for locomotion is legs. Legs enable the avoidance

of support discontinuities in the environment by stepping over them. Moreover, legs are the

obvious choice for locomotion in environments designed for humans.
1Plasmasol is the fluid state of cytoplasm in an amoeba. Within its body the amoeba moves plasmasol

to change its shape, thereby enabling locomotion [vE01].
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1.1 A brief introduction to legged locomotion

The research into legged locomotion is long and interesting, with the motivations for

research varying from pure scientific inquiry [DFF+00], to advertising [Hon03]. Legged

locomotion was investigated as early as 350 B.C. with Aristotle in his work Progression

of Animals [Bar84] where he asked such questions as, “why are man and bird bipeds, but

fish footless?” Evidence of the study of legged machines can be found as early as the late

nineteenth century with Rygg’s mechanical horse [Ryg93] that used a gear and lever system

to generate a fixed gait actuated by a bicycle-like crank system. Since Aristotle and Rygg,

research on legged locomotion has grown into a multidisciplinary field spanning physiology,

dynamics, computer science, and robotics. Despite such great interest, there are almost no

legged machines in use today, and those in use are for entertainment purposes only. Some

of the industries, other than entertainment, that would benefit from legged machines are

prosthetics, orthotics, defense, mining, agriculture, forestry, nuclear facilities inspection,

and planetary exploration. With such a long list, why is there no proliferation of legged

machines for work, i.e., for purposes other than entertainment?

The lack of legged machines for work is certainly not due to a lack of prototype devel-

opment. In the past 40 years there have been hundreds of prototypes constructed, from

lumbering polypeds to hopping monopeds. To give a sense of the development effort, a

few of the pioneering, non-biped examples will now be highlighted; a more thorough dis-

cussion of biped prototypes will follow later. One of the earliest legged machine success

stories is the quadrupedal General Electric Walking Truck constructed by Mosher [LR68]

in the late 1960s. Weighing in at 1400 kg, it required an external power source to drive its

hydraulic actuation. It carried a single operator who was responsible for controlling each

of the twelve servo loops that controlled the legs. It was capable of a top speed of 2.2 m/s

and could carry a 220 kg payload. In the early 1980s Odetics, Inc. constructed a series of

electro-mechanically powered, autonomous, i.e., untethered, hexapeds serially named the

Odex-1, Odex-2, and Odex-3 Functionoids. The Odex-1 weighed 160 kg and had a top

speed of about 0.5 m/s [Rus83, CB87]. Also constructed in the early 1980s was Raibert’s

dynamically balancing monoped hopper [Rai84, Rai86]. It was capable of a top speed of 1.2
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m/s and weighed 8.6 kg (neglecting the weight of the boom used to constrain the hopper’s

motions to be planar and the weight of the external power source and computation). Raib-

ert also built a very successful three-dimensional version of his monoped hopper, as well as

polypedal versions with two and four legs. Constructed in the mid 1980s and weighing in at

2700 kg, one of the largest legged machines is Ohio State’s hexapedal, hydraulicly actuated

Adaptive Suspension Vehicle (ASV) [SW89]. It operated autonomously with a top speed

of 3.6 m/s and could carry a 220 kg payload. In contrast to Mosher’s Walking Truck, the

ASV utilized digital feedback control to ease the burden on the operator. In addition to this

list of pioneering machines there have been a host of others developed. For more complete

treatments of legged machine history see [Tod85, Rai86, KW89, Ros94, Ber03, VBSS90].

Despite the nearly half-century of design efforts, no legged machines have made their

way into sectors where their utility exceeds their novelty. It is conjectured here that the

main factor contributing to the slow development of usable legged machines is the difficulty

of simultaneously achieving energy efficiency and stability,2 both important attributes for

an autonomous vehicle.

For autonomous vehicles, greater energy efficiency translates into the ability to travel

farther and longer. Energy efficiency may be achieved in two ways: by machine design

and by using (automatic) control to maximize the machine’s potential for efficiency. For

example, consider the modern automobile. In the years since the Model T, both redesign

and control have been used to improve fuel economy. Modern automobiles are lighter, more

aerodynamic, and have more efficient engines. To boost fuel economy modern automobiles

also use control to regulate spark timing, meter fuel, etc. The same idea applies to legged

machines. Legged machines can be made efficient through the use of light materials, efficient

actuators, and improved mechanical design. Through the use of control, a legged machine’s

gait may be designed and tuned to yield efficient locomotion.

Stability is also of great concern. A vehicle that overturns may damage itself and

whatever it falls onto. Of course, any autonomous vehicle will overturn given sufficiently

unfavorable circumstances. The objective of vehicle design and control is to maximize
2Until later in the discussion, “stability” is used to mean that the machine does not overturn. By “more

stable” it is meant that the machine is further, in some sense, from overturning, and by “less stable” it is
meant that the machine is closer, in some sense, to overturning.
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stability, that is, to minimize the chance of overturning.

Again, consider the evolution of the modern automobile. Stability is increased by using

suspensions with designs and components that maintain the wheels in contact with the

driving surface. Also in use are stability control systems that use the braking system to

prevent side-skidding and wheel slippage. In a similar way, legged machines may be de-

signed to have morphologies that enhance stability, for example, feet can be made larger

and the number of legs increased. Control may be used to impose gaits that, under some

assumptions, have guarantees of stability. Typically, this has been accomplished by con-

trolling the machine’s motion to be slow. Slowing the motion minimizes inertial effects so

that quasi-static stability measures may be used.

The slow development of legged machines for work arises because machine and control

design choices that ensure stability tend not to be ones that give energy efficiency, and vice

versa. For example, consider a person walking with snowshoes on fresh, powdery snow. The

snowshoes help prevent tipping over by increasing the snowshoer’s support polygon.3 Also

to prevent tipping over, the snowshoer uses a slower, more laborious gait than he would if

he were walking on a hard surface. By using slower motions and a broader support polygon

he is able to maintain stability by keeping his center of pressure4 (COP) within his support

polygon. The same principles are at work in the General Electric Walking Truck, the Odex

Functionoids, the Adaptive Suspension Vehicle, and many of the bipeds to be described

shortly. Stability is maintained simply by ensuring that the COP is within the support

polygon. In the case of polypeds with four or more legs, the support polygon is usually

large because of sprawled posture and enough legs to maintain a support tripod; however,

as speed increases or the support polygon decreases in size, the COP generally leaves the

support polygon making stability difficult to assess. This is the case with bipeds that walk

with dynamic gaits and the reason, among others, why almost no biped robots currently

walk with such gaits.
3The support polygon is the convex hull of the vehicle’s ground contact points.
4The center of pressure is defined as the point on the ground where the resultant of the ground-reaction

force acts [Gos99]. In the legged robotics literature, the COP is often referred to as the Zero Moment Point
(ZMP) [VBSS90].
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sagittal

frontal

transverse

Figure 1.1: The human planes of section. The sagittal plane is the longitudinal plane that

divides the body into right and left sections. The frontal plane is the plane parallel to the

long axis of the body and perpendicular to the sagittal plane that separates the body into

front and back portions. A transverse plane is a plane perpendicular to sagittal and frontal

plane.

1.2 Robotic biped locomotion

The subject of this dissertation is the design of controllers to regulate dynamic gaits

with a priori known stability properties in a class of biped robots. By “a priori” it is meant

that the closed-loop system’s stability is known—under certain assumptions—before the

control is simulated or implemented. This section will proceed by first establishing some

nomenclature and then by giving an overview of the biped robot prototype and control

development efforts.

Here, a biped is a kinematic chain consisting of two sub-chains called legs and, often,

a sub-chain called the torso, all connected at a common point called the hip. One or both

of the legs may be in contact with the ground. When only one leg is in contact with the

ground, the contacting leg is called the stance leg and the other is called the swing leg. The

end of a leg, whether it has links constituting a foot or not, will often be referred to as a

foot. Single support or swing phase is defined to be the phase of locomotion where only one

5



foot is on the ground. Conversely, double support is the phase where both feet are on the

ground. Walking is then defined as alternating phases of single and double support.

The sagittal plane is the longitudinal plane that divides the body into right and left sec-

tions. The frontal plane is the plane parallel to the long axis of the body and perpendicular

to the sagittal plane that separates the body into front and back portions. A transverse

plane is a plane perpendicular to sagittal and frontal plane. See Figure 1.1 for an illustration

of these planes of section. A planar biped is a biped with motions taking place only in the

sagittal plane. Whereas a three-dimensional walker has motions taking place in both the

sagittal and frontal planes. A statically stable gait is one where the biped’s COM does not

leave the support polygon. A quasi-statically stable gait is one where the biped’s COP does

not leave the support polygon. Loosely, a dynamically stable gait is a periodic gait where

the biped’s COP leaves the support polygon and yet the biped does not overturn.

In recent years, there has been a large effort in the development of biped robot prototypes

and in the control and analysis of biped robot gaits. An overview of the literature on biped

robot prototypes and control and analysis will now be given. The literature may be largely

divided into two categories: the analysis of passive walking—walking where gravity alone

powers the walking motion—and the analysis and control of non-passive walking—walking

that requires an external power source. The presentation will begin with work on passive, or

semi-passive walking, then continue with a presentation on the development of non-passive

walkers and conclude with a presentation of the various control schemes proposed.

The work on passive walking is motivated by the drive for energy efficiency. In passive

walking, dissipation due to impacts or damping is offset by the use of potential energy

supplied by walking down a slope. Research in passive walking appears to have originated

by McGeer in the late 1980s [McG90, McG93]. In his seminal work, McGeer built a four-link

planar passive walker and performed a detailed parameter variation and stability analysis.

McGeer’s mechanism featured locking knees to prevent leg collapse and circular feet to give

a rolling ground contact. It weighed 3.5 kg, was 0.5 m tall, and could stably walk down

a 1.4 degree slope at about 0.4 m/s. Garcia, Chatterjee, and Ruina [GCR00] duplicated

McGeer’s mechanism and performed detailed analysis of its dynamics and the dynamics of

several other passive walkers with similar morphologies. In the late 1990s Goswami, Espiau,
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and Keramane [GEK96] showed that the so-called compass gait walker, a two-link planar

passive walker with prismatic legs, can also exhibit stable gaits. By adding a torque acting

between the legs and adding control to regulate the biped’s total energy, they were able to

increase the passive gait’s basin of attraction. Also for the compass gait walker, Thuilot,

Goswami, and Espiau [TGE97] showed that this model can exhibit gait bifurcations and

apparent chaos under certain conditions. For a model similar to the compass gait walker

but with circular feet and fixed damping and adjustable compliance in series with the

stance leg, van der Linde [van98] showed that by actively adjusting the leg compliance, the

magnitude of the velocity discontinuities which occur upon swing leg touchdown may be

reduced. Howell and Baillieul [HB98] investigated a planar, semi-passive three-link model

with two legs and a torso. With a single actuator to hold the torso parallel to the ground,

they found that this model can also exhibit gait bifurcations. As an approximation to

walking in three-dimensions, Smith and Berkemeier [SB98] studied a three-dimensional,

spoked, rimless wheel of finite width rolling down a slope. They showed that this tinker

toy-like model is capable of an asymptotically stable rolling motion. At the end of the

1990s, Collins built a three-dimensional version of McGeer’s passive walker. Collin’s walker

weighed 4.8 kg and measured 0.85 m in height [CWR01]. With carefully designed feet and

pendular arms, it was able to walk down a 3.1 degree slope at about 0.5 m/s. Most recently,

Adolfsson, Dankowicz and Nordmark [ADN01] studied a passive, three-dimensional model

by beginning with McGeer’s planar model and gradually transforming the model into a ten-

DOF, three-dimensional model. In this way, stable gaits of the three-dimensional model

were found. Gait stability under parameter variations was also investigated. Though it is

important and interesting to investigate the properties of passive bipeds and their gaits,

any practical biped will require energy input.

In recent years, there has been a large effort in the development of non-passive biped

robot prototypes lead by the Japanese. Some of the more noteworthy walkers reported in

the literature will now be highlighted in rough chronological order. The first reported biped

capable of walking is the WL-5, a three-dimensional, 11-DOF walker constructed by Kato

and Tsuiki at Waseda University in Japan in 1972 [KT72]. By the mid-1980s, the same

group developed the WL-10RD, a three-dimensional, a 12-DOF walker weighing 80 kg and

7



capable of walking at about 0.1 m/s [TIYK85]. In the mid-1980s, Miura and Shimoyama

[MS84] constructed a series of bipeds, Biper-1 through Biper-5, that—at least some of

which—were capable of walking. The bipeds ranged in complexity from planar walkers,

Biper-1 and Biper-2, to a three-dimensional walker with all computational facilities on

board, Biper-5. Both Biper-3 and Biper-4 weighed about 3 kg and were 0.3 m in height;

presumably the rest of the bipeds, which were not documented, were about the same scale.

Also in the mid-1980s, Furusho and Masubuchi [FM86] constructed Kenkyaku, a planar,

five-link biped weighing about 23 kg and measuring 0.7 m in height. Kenkyaku had four

actuators, at the hip and knees, with no actuation provided between the ground and the

biped. It was reported to be able to walk at 0.8 m/s. In the late 1980s, Furusho and Sano

constructed BLR-G2, a nine-link, three-dimensional biped [FS90, SF90]. It weighted 25 kg

and was 0.97 m in height. It was capable of walking at 0.18 m/s. Early in the 1990s, Kajita

and Tani built Meltran II, a planar, four-DOF biped weighing 4.7 kg and 0.45 m in height

[KYK92, KT96]. It was capable of walking successfully over small obstacles at a speed of 0.2

m/s. In the late 1990s, Pratt, at the MIT Leg Lab, built a planar, seven-link walker with feet

named Spring Flamingo. It weighed 14 kg and measured 1.2 m in height [PCT+01, Pra00].

Spring Flamingo was capable of walking at 1.2 m/s, traversing a sloped terrain and featured

series elasticity purposefully included in between the actuator and load [PW95]. Also in

the late 1990s, the Technical University of Munich began development of Johnnie, a 23-

DOF, three-dimensional walker weighing 40 kg and measuring 1.8 m in height [GLP00,

PLG02]. To date, Johnnie has been able to walk at approximately 0.4 m/s. Beginning in

the mid-1990s, a French group at INRIA constructed BIP, a 15-DOF, three-dimensional

walker weighing about 100 kg and measuring 1.7 m in height [Esp97]. Currently, BIP is

unable to walk. In the late-1990s, the CNRS and the French National Research Council

constructed RABBIT, a five-DOF, planar walker weighing 32 kg and measuring 1.2 m in

height [CAA+02]. RABBIT’s stated purpose is to serve as a test bed for the study of control

issues related to biped walking and running: impacts, limit cycles, and hybrid systems.

RABBIT is the prototype on which the experiments in Chapter 6 were performed. Following

in the series of prototypes that began with the WL-5, the Humanoid Robotics Institute

formed at Waseda University in 2000 has most recently developed WABIAN [HNK+98,
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Figure 1.2: Block diagram of a trajectory tracking controller. The controller Γ forces the

error e = y−yd to zero so that output y tracks the desired trajectory yd(t). The dashed line

indicates that the trajectories yd(t) may be modified through some heuristic based upon

the robot’s state.

TTN+99, YSIT99]. WABIAN is a three-dimensional biped weighing 107 kg and measuring

1.84 m in height. It has 52-DOF and is capable of walking at 0.21 m/s. By far the most

impressive biped to date is ASIMO (standing for Advanced Step in Innovation MObility)

developed by the Honda Corporation [Hon03, HHHT98]. ASIMO is an autonomous three-

dimensional walker with 26-DOF weighing 43 kg and measuring 1.2 m in height and is

capable of walking at 0.3 m/s on level ground and climbing and descending stairs. ASIMO’s

development began in the mid-1980s and continues to the present day. The development

has involved ten generations of prototypes, named E0 through E6 and P1 through P3, and

has cost tens of millions of dollars. Following Honda’s success, the Japanese government

began the Humanoid Robot Project (HRP) in an attempt to grow Japan’s service robot

sector. Most recently, the HRP project has produced HRP-2, a three-dimensional, 30-DOF

biped weighing 54.1 kg and measuring 1.55 m in height [KKK+02b, KKK+02a]. With the

recent flurry of activity in Europe and Japan, it will be exciting to see what the prototype

development effort produces.

An integral but unseen component of each non-passive biped is its control. From the

literature, several categories of control algorithms appear. They fall into two groups: time-

dependent and time-invariant algorithms. By far, the most popular algorithms are time-

dependent and involve the tracking of pre-computed trajectories, see Figure 1.2. To control

dynamic walking in Biper-3, Miura and Shimoyama [MS84] approximated the biped as

a linearized inverted pendulum and used trajectory tracking. The dynamic walking this
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approach produced might best be described as a shuffle. Katoh and Mori [KM84] demon-

strated numerically that using PID control to track refence trajectories generated by a van

der Pol’s oscillator induced walking in a model of BIPMAN, a planar, four-DOF biped

with prismatic legs. Upon implementation, BIPMAN is reported to have only successfully

taken one step. Using PID control, Furusho and Masubuchi [FM86] were able to control

walking in Kenkyaku by tracking piecewise linear joint reference trajectories. Furusho and

Sano [FS90, SF90] were able to control walking in the three-dimensional BLR-G2 by using

decoupled control for the frontal and sagittal planes. In the frontal, plane PID control was

used to stabilize the upright configuration. In the sagittal plane, joint trajectory tracking

was used regulate the robot’s angular momentum to be that of an inverted pendulum. To

control walking in Meltran II, Kajita et al. [KYK92, KT96] used PID control to track tra-

jectories generated by a length varying inverted pendulum. The pendulum’s length was

varied to maintain the biped’s COM a constant height above the walking surface. To con-

trol walking in a three-link, three-DOF planar biped with telescoping legs, Grishin et al.

[GFLZ94] used PID control to track pre-computed trajectories that were modified online.

To control walking in a planar, five-DOF biped, Mitobe et al. [MMAN95] used computed

torque to regulate the biped’s COM and swing leg end position. To control walking in a

planar, five-DOF biped, Raibert, Tzafestas, and Tzafestas [RTT93] compared in simulation

the performance of 1) PID, 2) computed torque, and 2) sliding mode control in the tracking

of piecewise linear joint trajectories. In simulation, Fujimoto [FOK98, FK98] used trajec-

tory tracking augmented with foot force control to control walking in a three-dimensional,

20 axis biped. In simulation, to control walking in a three-dimensional biped, Park and

Kim [PK98] used computed torque with gravity compensation to track reference trajecto-

ries generated by a length varying inverted pendulum. In a similar scheme, Kajita et al.

[KKK+01, KKK+02a] tracked trajectories generated by an inverted pendulum to control

walking in HRP-2. To simplify the analysis, the pendulum height was constrained to be

constant. One of the most pervasive schemes used to augment trajectory tracking con-

trollers or to analyze their stability is the so-called Zero Moment Point (ZMP) criterium

[VBSS90]. The ZMP is defined to be the point on the ground where the resultant of the

ground-reaction force acts and is, consequently, always contained in the robot’s support
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Figure 1.3: Block diagram of a time invariant controller. The controller Γ forces the signal

y = h0(q)− hd ◦ θ(q) to zero so that the signal h0(q) tracks the function hd ◦ θ(q).

polygon [Gos99]. The ZMP criterium states that when the ZMP is contained within the

interior of the support polygon, the robot is stable, i.e., will not topple. The ZMP criterium

has been used to augment trajectory tracking in WABIAN [LYT00, YSIT99] and ASIMO

[HHHT98]. The ZMP criteria has also been used to analyze the stability of the control

algorithms of [KKK+01, KKK+02a, PK98].

In addition to the various time-dependent trajectory tracking algorithms, there have

been several other time-invariant control schemes proposed, see Figure 1.3 for an example.

In simulation, Hürmüzlü [Hür93a, Hür93b] constrained the motion of a planar, five-link

biped by imposing various constraints parameterized by the robot’s state. This permitted a

detailed study of the resulting gait and its stability properties. To control dynamic walking

in Spring Flamingo, Pratt et al. [PCT+01] used what they termed “virtual model control.”

Virtual model control uses intuitive constraints designed ad hoc that are switched according

to a state machine driven by the robot’s state. The results of this approach are impressive,

but it is unclear how stability is achieved or how to improve robustness or energy efficiency.

For the compass gait walker, Spong [Spo99] used a potential energy shaping, passivity-

based feedback to render passive gaits slope invariant. Spong and Bullo [Spo99, SB02]

then extended the result to a class of three-dimensional walkers of arbitrary DOF. Ono,

Takahashi, and Shimada [OTS01] successfully controlled dynamic walking in a four-link,

planar biped with locking knees by using the single actuator at the hip to slave the crotch
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angle (the angle between the legs) to be a function of the swing leg tibia angle (see also

[OYI01] where this idea is applied to the Acrobot). Using this algorithm, the 0.8 m biped

walked at a 0.29 m/s. In simulation, Chevallereau [Che03b] controlled walking in RABBIT

by using essentially a trajectory tracking scheme but with the important difference that the

feedback’s dependence on time was removed by time-scaling the pre-computed trajectories.

In pursuit of analytical rigor, Grizzle, Abba, and Plestan [GAP01] controlled walking in a

planar, three-link five-DOF model with no feet and no actuation between the biped and

ground by imposing holonomic constraints on the robot’s configuration parameterized by

a monotonically increasing function of the robot’s state. In doing so, the stability analysis

problem was reduced from a 5-dimensional to a scalar Poincaré return map. This disserta-

tion generalizes and extends this approach. Finally, note that nearly all the time-dependent

trajectory tracking algorithms that were successfully applied to prototypes induce quasi-

statically stable walking, while the two time-invariant schemes [GAP01, PCT+01, OTS01]

induce dynamic walking.

Comparing the relatively slow development of algorithms that control dynamic walk-

ing with the rapid development of sophisticated prototypes makes one wonder why this

discrepancy exists when control is an integral aspect of a functioning biped. Given the

sophistication of prototypes like ASIMO and HRP-2, it would seem appropriate to expect a

coherent framework for the control of dynamic walking which is able to balance the tradeoff

between stability and energy efficiency. It is conjectured here that this has not happened

for five reasons that are inherent to dynamic biped walking. The five difficulties are divided

into two groups. The first three difficulties are common to all aspects of biped walking

while the final two are common only to dynamic biped walking.

The first difficulty is limb coordination. Bipeds are typically high DOF mechanisms but

the task of biped walking is inherently a low DOF task. That is, bipeds typically have many

links and joints that must be coordinated to achieve locomotion—the moving of the robot’s

COM from one point to another. The second difficulty is effective underactuation during the

phase of single support. Unlike traditional robotic manipulators which are securely fastened

to the environment, bipeds are designed to move with respect to the environment. Unilateral

constrains severely limit the amount of torque that may be supplied at the stance leg ankle
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Figure 1.4: A higher DOF planar robot model. Cartesian coordinates are indicated at the

hip and the leg ends.

joint; because of finite foot size, too large a torque supplied at the angle joint results in foot

roll-over. This has been recognized in [FS90, HKK+99, KT96, Gos99]. The third difficulty

is hybrid dynamics. The presence of impacts and changing dynamic constraints during the

walking cycle due to foot touchdown and lift-off necessarily lead to models that are hybrid.

The final two difficulties are common only to dynamic biped walking. The first is static

instability of the biped during portions of the walking cycle. That is, in dynamic walking the

projection of the biped’s COM—and usually the COP—onto the walking surface is outside

of the biped’s polygon of support during portions of the walking cycle. This prohibits the

use of the popular ZMP criterium to ensure stability. The second, and final, difficulty is

the design of limit cycles. Dynamically stable walking corresponds to the existence of limit

cycles in the biped’s state space. The design of controllers that induce limit cycles, while

a challenge in its own right, is made significantly more difficult by the first four difficulties

and by the need for energy efficiency.

Following Grizzle, Abba, and Plestan [GAP01], the approach of this dissertation has

been to study a class of bipeds robots whose model is only as complex as required to capture

these inherent difficulties. The class of bipeds are planar bipeds consisting of a rigid, N -

link open kinematic chain and thus have N -DOF during the stance phase (see Figure 1.4).

13



Restricting attention to the sagittal plane is reasonable since the sagittal plane dynamics

are almost decoupled from those in the frontal plane in the sense that stability in the frontal

plane can be achieved with only frontal plane control actions, such as step width control

[FS90, Kuo99, BK00]. Therefore, it seems reasonable to expect that a control algorithm to

stabilize walking in the sagittal plane may be coupled with an algorithm to stabilize motions

in the frontal plane to achieve stable three-dimensional walking. The class of robots studied

here are assumed to have point feet with no actuation between the stance leg end and the

ground, and actuation at all internal joints is assumed. By this assumption, static, or quasi-

static walking is nearly impossible5 thus requiring any walking to be dynamic. The model

for the swing phase of walking is therefore that of an underactuated mechanical system and

is not locally controllable. Developing controllers to regulate walking in a robot without feet

is interesting since a controller designed in this way may be used as an inner control loop

for a robot with feet. An outer control loop can then be designed to exploit the additional

torque available at the ankle to improve the robustness properties of the overall closed-loop

system. Finally, the phase of double support is assumed to be instantaneous and modeled

by a rigid contact model [HM94].

1.3 Contributions

This dissertation introduces an important improvement over the work of Grizzle, Abba,

and Plestan [GAP01] by giving a common framework for stability analysis and perfor-

mance enhancement. The framework provides systematic design of feedback controllers

that achieve exponentially stable walking motions in the class of planar biped models de-

scribed above while affording adjustment of additional figures of merit—for example, energy

consumption—as well. Specifically, a within-step controller is devised whose closed loop in-

corporates a two-dimensional submanifold—the zero set of an appropriately parameterized

output map—that is an attracting invariant set with respect to the full hybrid model. The

selection of this zero dynamics through the choice of output map parameters enables the
5The only class of gaits where static walking would be possible are ones where the biped’s COP is over

the stance leg end for the entire phase of single support and the double support phase is assumed to be of
finite duration, i.e., non-instantaneous.
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choice of practicable kinematic, torque, and power ranges, all while respecting the guarantee

of an exponentially stable step. Two additional features are developed: 1) the ability to

compose the above controllers to obtain walking at several discrete average walking rates

with guaranteed stability during the transitions, and 2) use of an event-based PI controller

that acts step-to-step giving the ability to regulate the robot’s average walking rate to a

continuum of values and to reject disturbances.

In the broader spectrum of dynamically dexterous machines, this work builds on the

ideas of Koditschek et al. [NFK00, BKK90, KB91, RK96] where the goal is not to pre-

scribe the dynamics of systems via reference trajectories—as is often done in the control of

legged locomotion—but rather to encode the dynamic task via a lower dimensional target,

itself represented by a set of differential equations. Given the demonstrated appearance

of internal dynamical models in the animal nervous system [Kaw99], and the emerging

evidence that these models incorporate a state-event based (as opposed to explicit time-

dependent) representations of the plant [CMI99], it seems plausible to hypothesize that

task encoding via internal target dynamics may also play a significant role in animal motor

control [FK99]. Previous work on legged locomotion has attempted to encode the task

of walking via internal target dynamics without clearly articulating or exploiting its full

potential. Sano and Furusho [SF90] regulated angular momentum as a means of inducing

locomotion; Goswami, Espiau, and Keramane [GEK96] regulated total energy; and Kajita

and Tani [KT96] approximated the robot as an inverted pendulum, regulating its center

of mass. Ono, Takahashi, and Shimada [OTS01] slave the control to one of the states of

the system, instead of time. Pratt et al. [PCT+01, PP98] achieved a reduction in com-

plexity through their virtual model control. Although in that work, the “target” is first

order (gradient) dynamics, the leg transitions are imposed by event-driven logic, and it

is unclear over what range of initial conditions and perturbations the physical second or-

der hybrid closed loop system may ultimately succeed in maintaining a stable gait. In

all such approaches, mechanisms comparable to those developed here impose kinematic or

dynamic constraints, enforcing, over the Lagrangian (i.e., away from impact conditions)

portion of the state space, low dimensional attracting submanifolds. Here, in contrast, as in

[BKK90, RK96, NFK00], the attracting submanifold is also designed to be an invariant set

15



of the Lagrangian portion of the closed-loop system whose restriction dynamics (the zero

dynamics in this dissertation) emerge from the robot’s motion itself. However, unlike any

previous work, in this dissertation, the full hybrid zero dynamics (i.e., the entire reduced

order motion of the mechanism including both the Lagrangian and the impact portions)

is rendered invariant. In this sense, the present results combine the analytical machinery

developed in [GAP01, PGWA01] with the notion of a dynamically targeted postural pre-

scription [SSK98, NFK00] to provide the first rigorous methodology for a lower-dimensional

hybrid target dynamics. Note that [Spo99] can be interpreted as providing a similar result

for fully actuated systems and a target dynamics having the same dimension as the system

being controlled.

The notion of hybrid zero dynamics is an extension of the notion of zero dynamics

for systems described by ordinary differential equations. While the zero dynamics for a

system modeled by ordinary differential equations is a well known [Isi95] and increasingly

used concept, [BF99, IMT00, Spo95, RFAGCL00], the hybrid zero dynamics is a novel

notion developed in this dissertation to deal with the impact map that is common in legged

locomotion models. The hybrid zero dynamics may be defined analogously to the zero

dynamics: the largest internal dynamics compatible with the output being identically zero.

A central contribution of the dissertation is to establish a constructive approach to the

definition of hybrid zero dynamics resulting in useful controllers for robotic walking. The

zero dynamics of the swing phase portion of the model have been previously studied in

[MS01] in the context of trajectory planning and tracking for an underactuated biped.

The theoretical framework was experimentally verified on the planar biped prototype

RABBIT. The ability to systematically generate controllers with desired kinematic and dy-

namic properties enabled the direct implementation of controllers that successfully induced

stable walking.

1.4 Organization of dissertation

Chapter 2 introduces the class of models treated by this dissertation. Chapter 3 casts the

gait coordination problem as an output function design problem which results in nontrivial
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zero dynamics. The model’s impact map is incorporated into the notion of zero dynamics

resulting in the definition of the hybrid zero dynamics. The Poincaré return map for the

hybrid zero dynamics is calculated. Chapter 4 makes the results of Chapter 3 practicable

by specializing the outputs to an almost linear structure utilizing Bézier polynomials. The

use of polynomials finitely parameterizes the outputs which enables them to be automati-

cally designed using standard parameter optimization techniques. Chapter 5 provides two

additional control features: 1) the ability to compose controllers that induce walking at a

fixed average walking rate to obtain walking at several, discrete average walking rates with

guaranteed stability during the transitions; and 2) the ability to regulate the average walk-

ing rate to a continuum of values. Chapter 6 describes the experimental verification of the

theoretical framework developed in Chapters 2–5 on a prototype biped, RABBIT. Chapter

7 is the conclusion. Appendix A gives the equations of motion of a 4-DOF model of a 2-link

walker. Appendix B gives pseudocode for the implementation of the optimization scheme

given in Chapter 4. Appendix C presents a novel means of proving decoupling matrix in-

vertibility in an open set about the robot’s trajectories. Appendix D gives the equations of

motion of a 5-DOF model of the prototype biped RABBIT. Appendix E gives an overview

of the method of Lagrange for deriving the swing phase equations of motions. Appendix F

gives a convenient scheme for the automatic generation of m-files from symbolic MATLAB

code. Appendix G describes the effect of gear reducers on the robot’s swing phase model.

Appendix H are the plots for the experiments described in Chapter 6. Finally, Appendix I

gives some preliminary results on running.

Note that the main results of Chapters 3 and 4 have been published in [WGK03], and

the main results of Chapter 5 have been published in [WGCdW03].
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CHAPTER 2

Modeling

This chapter introduces the class of biped walking models treated in this dissertation.

The class consists of planar open kinematic chain robots comprised of two symmetric open

sub-chains called the legs and a third sub-chain called the torso all connected at a single

joint called the hip. As depicted in Figure 1.4, intentionally suggestive of a human figure,

conditions that guarantee the torso remains free in the air, while the legs alternate in ground

contact will be imposed. All motions will be assumed to take place in the sagittal plane

and consist of successive phases of single support and double support.

The two phases of the walking cycle naturally lead to a mathematical model of the

biped consisting of two parts: the differential equations describing the dynamics during

the single support phase, and a model of the dynamics of the double support phase. To

avoid the “stiffness” associated with including a second differential equation to model the

rapid evolution of the robot’s state at the impact time [Bro96, MO96, Rou98], it will be

assumed that the transition from one leg to another takes place in an infinitesimal length

of time [EG94, SG92]; this assumption entails the use of a rigid contact model to describe

the impulsive nature of the impact of the swing leg with the ground. The rigid contact

model effectively collapses the double support phase to an instant in time and allows a

discontinuity in the velocity component of the state, with the configuration remaining con-

tinuous. The biped model is thus hybrid in nature, consisting of a continuous dynamics and

a re-initialization rule at the contact event.

An important source of complexity in a biped system is the degree of actuation of the
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system, or more precisely, the degree of underactuation of the system. It will be assumed

that there is no actuation at the end of the stance leg. Thus the system is underactuated

during walking, as opposed to fully actuated (a control at each joint and at the contact

point with the ground).

A complete list of hypotheses assumed for the robot model and the desired walking gaits

is now enumerated.

Robot hypotheses

The robot is assumed to be:

RH1) comprised of N rigid links with mass, connected by revolute joints with no closed

kinematic chains;

RH2) planar, with motion constrained to the sagittal plane;

RH3) bipedal, with symmetric legs connected at a common point called the hip;

RH4) actuated at each joint; and

RH5) unactuated at the point of contact between the stance leg and ground.

Gait hypotheses

Conditions on the controller will be imposed and shown to ensure that the robot’s

consequent motion satisfies the following properties consistent with the intuitive notion of

a simple walking gait:

GH1) there are alternating phases of single support and double support;

GH2) during the single support phase, the stance leg acts as a pivot joint, that is, throughout

the contact, it can be guaranteed that the vertical component of the ground reaction force

is positive and that the ratio of the horizontal component to the vertical component does

not exceed the coefficient of static friction;

GH3) the double support phase is instantaneous and can be modeled as a rigid contact

[HM94];
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GH4) at impact, the swing leg neither slips nor rebounds;

GH5) in steady state, successive phases of single support are symmetric with respect to the

two legs;

GH6) walking is from left to right, so that the swing leg starts from behind the stance leg

and is placed strictly in front of the stance leg at impact.

RH1) and RH2) imply the robot has (N +2)-degrees of freedom (DOF) (N joint angles

plus the Cartesian coordinates of the hip, for example). RH4), RH5) and GH2) imply that

when walking the robot has one degree of underactuation, i.e., one less control than DOF.

It is worth noting that even if there were actuation between the stance leg end and ground,

it would be worthwhile to first design a controller under hypothesis RH5) and then add an

outer control loop to exploit the torque available at the ankle to improve the convergence

rate of walking to a desired average walking rate or to enlarge the region of attraction of

the inner controller.

2.1 Swing phase model

Under GH2) the dynamic model of the robot during the swing phase has N -DOF. Let

q := (q1, · · · , qN )′ be a set of angular coordinates describing the configuration of the robot

with respect to a world reference frame. Since only symmetric gaits are of interest here,

the same model can be used irrespective of which leg is the stance leg if the coordinates are

re-labeled after each phase of double support. Forming the Lagrangian,

L(q, q̇) := K(q, q̇)− V (q). (2.1)

were K and V are the kinetic and potential energy of the robot, respectively, and applying

the method of Lagrange (see Appendix E), the model is written in the form

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu. (2.2)

The matrix D is the inertia tensor; C is the Coriolis matrix; G is gravity vector; and B is

a linear map from joint torques to configuration variables.
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In accordance with RH4) and RH5), torques ui, i = 1 to N−1 are applied between each

connection of two links, but not between the stance leg and ground. The model is written in

state space form by defining

ẋ =

 q̇

D−1(q) [−C(q, q̇)q̇ −G(q) +Bu]

 (2.3)

=: f(x) + g(x)u (2.4)

where x := (q′, q̇′)′. The state space of the model is taken as TQ := {x := (q′, q̇′)′ | q ∈

Q, q̇ ∈ R
N}, where Q is a simply-connected, open subset of [0, 2π)N corresponding to

physically reasonable configurations of the robot (for example, with the exception of the

end of the stance leg, all points of the robot being above the walking surface; one could also

impose that the knees are not bent backward, etc.). An alternate approach, not used here,

would be to define the admissible states through viability constraints [Bab98, Bro96].

2.2 Impact model

An impact occurs when the swing leg touches the walking surface, also called the ground.

The impact between the swing leg and the ground is modeled as a contact between two

rigid bodies. In addition to modeling the change in state of the robot, the impact model

accounts for the relabeling of the robot’s coordinates that occurs after each phase of double

support. The development of the impact model requires the full (N +2)-DOF of the robot.

By adding Cartesian coordinates (ph
H, p

v
H) to the hip (see Figure 1.4), the following extended

model is easily obtained through the method of Lagrange,

De(qe)q̈e + Ce(qe, q̇e)q̇e +Ge(qe) = Beu+ δFext, (2.5)

with qe := (q1, q2, . . . , qN , ph
H, p

v
H)

′ and where δFext represents the vector of external forces

acting on the robot at the contact point. If the stance leg end is in contact with the ground

and not slipping, the extended coordinates qe and their velocities q̇e are related to q and q̇

by

qe = π−1(q) and q̇e =
∂π−1(q)

∂q
q̇, (2.6)
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where π−1(q) := (q′, ph
H(q), p

v
H(q))

′, and ph
H(q) and pv

H(q) are the horizontal and vertical

positions of the hip, respectively.

Impact model hypotheses

The impact model of [HM94] is used under the following assumptions:

IH1) the contact of the swing leg with the ground results in no rebound and no slipping of

the swing leg;

IH2) at the moment of impact, the stance leg lifts from the ground without interaction;

IH3) the impact is instantaneous;

IH4) the external forces during the impact can be represented by impulses;

IH5) the impulsive forces may result in an instantaneous change in the velocities, but there

is no instantaneous change in the configuration;1 and

IH6) the actuators cannot generate impulses and hence can be ignored during impact.

IH1)–IH6) imply total angular momentum is conserved [HM94] and therefore

De(q−e )q̇
−
e =

(
∂E(qe)
∂qe

)′∣∣∣∣
qe=q

−
e

 F̂T
2

F̂N
2

+De(q+
e )q̇

+
e (2.12)

1To aid in understanding this assumption, consider the following scalar, second order system with an
impulsive input at t = t0,

ẍ(t) + aẋ(t) + bx(t) = cδ(t− t0) (2.7)

where δ is the unit impulse, t0 > 0, and a, b, c ∈ R. Integrating (2.7) once yields

ẋ(t) = ẋ(0) +

∫ t

0

(−aẋ(τ)− bx(τ) + cδ(τ − t0)) dτ (2.8)

= ẋ(0)− ax(t) + ax(0)−
∫ t

0

bx(τ)dτ + cu(t− t0) (2.9)

where u is the unit step function and hence ẋ(t) is discontinuous at t = t0. Integrating (2.9) yields

x(t) = x(0) +

∫ t

0

(
ẋ(0)− ax(σ) + ax(0)−

∫ σ

0

bx(τ)dτ + cu(σ − t0)

)
dσ (2.10)

= x(0) + (ẋ(0) + ax(0)) t−
∫ t

0

ax(σ)dσ −
∫ t

0

∫ σ

0

bx(τ)dτdσ + c(t− t0)u(t− t0). (2.11)

Notice that x(t+0 ) − x(t−0 ) = 0 whereas ẋ(t+0 ) − ẋ(t−0 ) = c, the magnitude of the impulsive input, where t−0
and t+0 are respectively the times just before and just after the impulsive input is applied.
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where F̂T
2 and F̂N

2 are, respectively, the integral of the tangential and normal forces acting

on the swing leg end at touchdown, E(qe) = (ph
2(qe), pv

2(qe))′ is the Cartesian coordinates

of the swing leg end (see Figure 1.4), and q̇−e (resp. q̇+
e ) is the velocities of the robot just

before (resp. just after without relabeling) impact. Hypothesis IH1) also implies

∂E(qe)
∂qe

∣∣∣∣
qe=q

+
e

= 0. (2.13)

By hypothesis IH5) q−e = q+
e and hence the following expression relating the velocity of the

robot just before impact to the velocity just after (without relabeling) may be written as

Π−1(q−e )


q̇+
e

F̂T
2

F̂N
2

 =

 De(q−e )q̇−e

0

 (2.14)

where

Π(qe) :=

 De(qe) −
(
∂E(qe)
∂qe

)′

∂E(qe)
∂qe

0


−1

, (2.15)

Due to its block-triangular structure and the positive definiteness of De, the matrix Π is

invertible whenever ∂E/∂qe is full rank2 which will be the case whenever the robot is not

in a kinematic singular configuration [MLS93, p. 123].

Solving (2.14) yields 
q̇+
e

F̂T
2

F̂N
2

 = Π(q−e )

 De(q−e )q̇−e

0

 . (2.16)

The map from q̇−e to q̇+
e , that is, the map from velocities just prior to impact to just after

impact (without relabeling), is obtained by partitioning Π(q−e ) as

q̇+
e = Π11(q−e )De(q−e )q̇

−
e (2.17) F̂T

2

F̂N
2

 = Π21(q−e )De(q−e )q̇
−
e . (2.18)

2Suppose that Π is not invertible. Then, there exists (q̇′e, F̂
T
2 , F̂N

2 )
′ �= 0 such that

Π−1(q̇′e, F̂
T
2 , F̂N

2 )
′ = 0. This implies q̇e = D−1

e (∂E/∂qe)
′(F̂T

2 , F̂N
2 )

′ and (∂E/∂qe)q̇e = 0, which implies
(∂E/∂qe)D

−1
e (∂E/∂qe)

′(F̂T
2 , F̂N

2 )
′ = 0. By Sylvester’s inequality [Che84, p. 31], this implies (F̂T

2 , F̂N
2 )

′ = 0
which implies q̇e = 0. Hence, Π is invertible.
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Combining (2.6) with (2.17) and (2.18) results in an expression for the velocities of the robot

just after impact and the integral of the forces experienced by the end of the swing leg at

impact. At impact, it is assumed that the swing leg becomes the new stance leg, so the

coordinates must be relabeled. Express the relabeling of the states as a linear transformation

matrix, R with the property that RR = I, i.e., R is a circular matrix. The result of the

impact and relabeling of the states is then an expression

x+ = ∆(x−) (2.19)

where x+ := (q+, q̇+) (resp. x− := (q−, q̇−)) is state value just after (resp. just before)

impact and

∆(x−) :=

 ∆q q
−

∆q̇(q−) q̇−

 (2.20)

where

∆q := R (2.21)

and

∆q̇(q−) := [R 0 ]Π11 ◦ π−1(q−)De ◦ π−1(q−)
∂π−1(q)

∂q

∣∣∣∣
q=q−

. (2.22)

2.3 Plant model: a hybrid nonlinear underactuated control

system

With the addition of an appropriately chosen switching set, the swing phase model can

be combined with the impact model and expressed as a nonlinear system with impulse

effects [YMH98, GAP01]

ẋ = f(x) + g(x)u x− /∈ S

x+ = ∆(x−) x− ∈ S,

(2.23)

where the switching set is chosen to be

S := {(q, q̇) ∈ TQ | pv
2(q) = 0, ph

2(q) > 0}, (2.24)

and x−(t) := limτ↗t x(τ). The value of ph
2(q) is taken to be positive so that for x ∈ S the

swing leg end is in front of the stance leg as per GH6). In Chapter 3 the set S will be
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ẋ = f(x) + g(x)u x+ = ∆(x−)

x− ∈ S

Figure 2.1: A graphical representation of the hybrid model for walking.

chosen as the Poincaré section. Figure 2.1 gives a graphical representation of this discrete

event system. Solutions are taken to be right continuous and must have finite left and right

limits at each impact event (see [GAP99] for details).

Informally, a step of the robot is a solution of (2.23) that starts with the robot in double

support, ends in double support with the configurations of the legs swapped, and contains

only one impact event. This is more precisely defined as follows. Let ϕ(t, x0) be a maximal

solution of the swing phase dynamics (2.4) with initial condition x0 at time t0 = 0.

Definition 2.1. [GAP99] The time to impact function, TI : TQ → R ∪ {∞}, by

TI(x0) :=

 inf{t ≥ 0 | ϕ(t, x0) ∈ S} if ∃ t s.t. ϕ(t, x0) ∈ S

∞ otherwise
(2.25)

Let x0 ∈ S be such that TI ◦∆(x0) <∞.

Definition 2.2. A step of the robot is the solution of (2.23) defined on the half-open interval

[0, TI ◦∆(x0)) with initial point x0. Any point x0 ∈ S such that TI ◦∆(x0) <∞ is said to

result in the robot taking a step.

Definition 2.3. Walking is defined as successive steps.

2.4 The Acrobot as a walker: a two-link example model

This section presents a simple biped model that will be used to illustrate key points de-

veloped in later chapters. The model consists of two symmetric links with a single actuator
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Figure 2.2: Schematic of the two-link walker with measurement conventions. Note that the

legs are symmetric.

at the link connection point, the hip; see Figure 2.2. In the swing phase, the model corre-

sponds to that of the Acrobot [Spo95, BF98, GEK96] with symmetric links. It is almost

the simplest walking model of Garcia et al. [GCRC98] but with the exception that the mass

is distributed as opposed to being concentrated at the hip.

With its simple morphology, however, this is not a physically realizable model of biped

walking. With equal leg lengths, the swing foot will scuff, i.e., prematurely contact the

walking surface. Usual arguments for overcoming this deficiency are assumptions of small,

retractable leg ends which allow the swing leg to be shortened enough to achieve ground

clearance [GAP01], or, that in three-dimensions, frontal plane hip sway would allow foot

clearance [Kuo99]. The interest here is not the physical realizability of this model, but in

its illustrative utility since it is the simplist model for walking which satisfies RH1)–RH5).

The equations of motion during the swing phase are (2.4) with

(D(q1))1,1 = l2cm+ml2 + 2(l − lc)ml cos(q1) +m(l − lc)2 + 2I (2.26)

(D(q1))1,2 = (l − lc)ml cos(q1) +m(l − lc)2 + I (2.27)

(D(q1))2,1 = (l − lc)ml cos(q1) +m(l − lc)2 + I (2.28)

(D(q1))2,2 = m(l − lc)2 + I, (2.29)

(C(q1, q̇1))1,1 = −(l − lc)ml sin(q1)q̇1 (2.30)

(C(q1, q̇1, q̇2))1,2 = −(l − lc)ml sin(q1)(q̇1 + q̇2) (2.31)
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Model parameter Units Label Value

Leg mass kg m 1

Leg length m l 1

Leg COM position m lc 0.5

Leg Inertia m2kg I 0

Table 2.1: Parameter values for the two-link walker.

(C(q1, q̇2))2,1 = (l − lc)ml sin(q1)q̇2 (2.32)

(C)2,2 = 0 (2.33)

(G(q1, q2))1 = g0m(−2l sin(q2) + lc sin(q2) + (l − lc) sin(q2 − q1)) (2.34)

(G(q1, q2))2 = −g0m(l − lc) sin(q2 − q1), (2.35)

and

B =

 0

1

 (2.36)

The state space is taken as TQ := {x := (q1, q2, q̇1, q̇2)′ | (q1, q2) ∈ Q, (q̇1, q̇2) ∈ R
2} where

Q is an open subset of (0, 2π)× (−π/2, π/2). The parameter values are given in Table 2.1.

Note that D is independent of q2. This will be the case for any N -link robot satisfying

RH1)–RH5) when the coordinates are chosen as (N − 1) shape (relative) coordinates plus

one absolute coordinate, i.e., a coordinate referencing the angle of a point on the robot to

a world coordinate frame. This is due to the invariance of the kinetic energy under the

group action of SO(2), i.e., planar rotations, and will be important for the zero dynamics

development in Chapter 3. The impact map requires the full 4-DOF model which is given

in Appendix A.
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CHAPTER 3

Zero dynamics

The method of computed torque or inverse dynamics is ubiquitous in the field of robotics

[SV89, MLS93, Cra89]. It consists of defining a set of outputs, equal in number to the

inputs, and then designing a feedback controller that asymptotically drives the outputs to

zero. The robot’s task is encoded into the set of outputs in such a way that the nulling of the

outputs is (asymptotically) equivalent to achieving the task, whether the task be asymptotic

convergence to an equilibrium point, a surface, or a time trajectory. For a system modeled

by ordinary differential equations (in particular, no impact dynamics), the maximal internal

dynamics of the system that are compatible with the output being identically zero is called

the zero dynamics [Isi95, IM88, Nv89]. Hence, the method of computed torque, which is

asymptotically driving a set of outputs to zero, is indirectly designing a set of zero dynamics

for the robot. Since in general the dimension of the zero dynamics is considerably less than

the dimension of the model itself, the task to be achieved by the robot has been implicitly

encoded into a lower dimensional system.

One of the main points of this chapter is that this process can be explicitly exploited

in the design of feedback controllers for walking mechanisms even in the presence of im-

pacts. Here, the outputs will be thought of as imposing virtual constraints—holonomic

constraints parameterized by the system state imposed via a feedback. As opposed to phys-

ical mechanical constraints—constraints imposed with, for example, a geared mechanism

that are, consequently, not easily reconfigured—virtual constraints may be easily redefined

(reconfigured). Section 3.1 gives two examples which introduce the concepts of zero dynam-
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ics and virtual constrains. Section 3.2 will introduce a class of outputs for which the swing

phase zero dynamics can be readily identified and analyzed. Section 3.4 will derive natural

conditions under which the swing phase zero dynamics become compatible with the impact

model, thereby leading to the notion of a hybrid zero dynamics for the complete model of

the biped.

3.1 Zero dynamics and virtual constraints

This section introduces zero dynamics and virtual constraints via two examples.

3.1.1 A simple zero dynamics example

Consider the single-input, single-output linear system described by the transfer function

H(s) =
s+ α

s2 − s− 6
(3.1)

where α ∈ R. H(s) has a zero at −α and poles at 3 and −2 and thus the origin is not stable

in the sense of Lyapunov. A state space realization of H(s) is ẋ1

ẋ2

 =

 0 1

6 1


 x1

x2

+

 0

1

u (3.2)

y =
[

α 1

] x1

x2

 . (3.3)

The output dynamics

ẏ = αẋ1 + ẋ2 (3.4)

= 6x1 + (1 + α)x2 + u (3.5)

may be stabilized by choosing

u = −6x1 − (1 + α)x2 − y (3.6)

which results in

ẏ = −y. (3.7)
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Suppose that y ≡ 0, i.e., x2 ≡ −αx1. Under this constraint, the system state must evolve

on the set

Z := {x ∈ R
2 | αx1 + x2 = 0} (3.8)

called the zero dynamics manifold. The maximal internal dynamics compatible with the

output being identically zero, called the zero dynamics, are1

ẋ2 = −αẋ1 (3.9)

= −αx2. (3.10)

The input compatible with x ∈ Z is

u∗ = −6x1 − (1 + α)x2 (3.11)

= −(α2 + α+ 6)x1 (3.12)

Notice that 1) the input u∗ is independent of the input chosen to stabilize the output

dynamics (3.5), 2) that y ≡ 0 implies u ≡ u∗, and 3) the zero dynamics, (3.10), are

invariant with respect to choice of u.

The parameter α can be thought of as a design parameter which selects the zero dynamics

manifold along with the corresponding zero dynamics. Figure 3.1 gives the vector fields for

(3.2) in closed loop with (3.6) for two values of α. For both values of α, the output dynamics

(3.5) with (3.6) are stable; however with α = 1 the zero dynamics are stable while with

α = −2, the zero dynamics are unstable. It is important to note that different choices of

α lead to zero dynamics with different zero dynamics manifolds and with different stability

properties. For a thorough discussion of zero dynamics, see [Kha96, Isi95].

3.1.2 The idea of virtual constraints

As seen in the previous section, the choice of the output specifies the zero dynamics.

This simple idea may be exploited for the design of walking motions in the following way:

consider the two-link biped presented in Section 2.4. Suppose that the hip joint angle, q2,
1It is no accident that the eigenvalue of (3.10) corresponds to the zero of H(s). For a linear system, it

is always the case that the eigenvalues of the zero dynamics correspond to the zeros of the corresponding
transfer function [Isi95].
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(a) Stable zero dynamics (α = 1)
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(b) Unstable zero dynamics (α = −2)

Figure 3.1: Vector fields for a zero dynamics example using a second order linear system.

Vector fields for (3.2) in closed loop with (3.6) for two values of α. The bold line corresponds

to the zero dynamics manifold, Z := {x ∈ R
2 | αx1 + x2 = 0}.

is constrained to be a function of the absolute angle q1,

q2 = hd(q1). (3.13)

Under appropriate conditions to be detailed in the next section, the output

y = q2 − hd(q1) (3.14)

being identically zero leads to second order zero dynamics which evolve on a two-dimensional

embedded sub-manifold of the biped’s state space. These zero dynamics only describe, how-

ever, the behavior of the robot during the swing phase (when the dynamics are continuous).

One of the main contributions of this dissertation, addressed in Section 3.4, is understand-

ing how the discontinuities created by impacts may be incorporated into the notion of the

zero dynamics. See Section 4.3.1 for an investigation of the two-link model with an output

of the form (3.14).

The constraint (3.13) can be thought of as imposing a virtual constraint that may be

reconfigured electronically via change in feedback law as opposed to a physical mechanical
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θ

l

m

Figure 3.2: A horizontal, variable length pendulum used to explain virtual constraints.

constraint implemented with, for example, a geared mechanism. It is important to note that

while virtual constraints and physical constraints impose the same kinematic behavior, the

resulting dynamic behavior is different.

To understand this difference, consider the horizontal variable length pendulum depicted

in Figure 3.2. The distance from the point mass m to the rotation point is l and may vary.

Since the pendulum is horizontal, its Lagrangian is equal to the kinetic energy,

L = K =
1
2
m

(
l̇2 + l2θ̇2

)
. (3.15)

Two different scenarios will be considered. First, the length, l, will be constrained to be a

function of θ via a physical constraint. Second, l will be constrained via a virtual constraint.

In the first case, suppose that a physical constraint is designed such that l = ld(θ). The

Lagrangian (3.15) then becomes

L =
1
2
m

((
∂ld(θ)
∂θ

)2

+ ld(θ)2
)

θ̇2. (3.16)

The equation of motion is therefore

m

((
∂ld(θ)
∂θ

)2

+ (ld(θ))
2

)
θ̈ +m

∂ld(θ)
∂θ

(
∂2ld(θ)
∂θ2

+ ld(θ)
)
θ̇2 = 0. (3.17)

Now suppose that l is constrained via a virtual constraint. In this case, the length l is

treated as a controlled quantity and the equations of motion may be calculated from the

Lagrangian (3.15) to be

θ̈ = −2
l
l̇θ̇ (3.18)

l̈ = lθ̇2 +
1
m

u (3.19)
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where u is an input used to control the length l. Paralleling the development of the previous

section, form an output on the system (3.18) and (3.19) as

y = l − ld(θ) (3.20)

such that y ≡ 0 implies l ≡ ld(θ). As long as ∂ld(θ)/∂θ �= 0, the output (3.20) is of relative

degree two. Hence, differentiating twice yields

ÿ = l̈ − ∂l2d(θ)
∂θ2

θ̇2 − ∂ld(θ)
∂θ

θ̈ (3.21)

= lθ̇2 − ∂l2d(θ)
∂θ2

θ̇2 +
2
l

∂ld(θ)
∂θ

l̇θ̇ +
1
m

u (3.22)

The output dynamics (3.22) may be stabilized with

u = m

(
−lθ̇2 +

∂l2d(θ)
∂θ2

θ̇2 − 2
l

∂ld(θ)
∂θ

l̇θ̇ −KDẏ −KP y

)
(3.23)

for KD,KP > 0. Under the constraint l ≡ ld(θ), the system state must evolve on the set2

Z := {(θ, θ̇, l, l̇) ∈ S× R
3 | l − ld(θ) = 0}. (3.24)

The maximal internal dynamics compatible with the output being identically zero, the zero

dynamics, are

m (ld(θ))
2 θ̈ + 2m

∂ld(θ)
∂θ

ld(θ)θ̇2 = 0 (3.25)

and the unique control required to enforce l ≡ ld(θ) is

u∗ = mld(θ)

(
− (ld(θ))

2 + ld(θ)
∂l2d(θ)
∂θ2

− 2
(
∂ld(θ)
∂θ

)2
)

θ̇2. (3.26)

While the kinematic behavior of the zero dynamics resulting from the virtual constraint

l = ld(θ) is identical to that resulting from the physical constraint l = ld(θ) their dynamic

behavior is quite different, cf. (3.25) and (3.17). Figure 3.3 illustrates this difference for the

constraint ld = sin(θ) + 1.5. For this example, m = 1 and the system (3.17) was initialized

with (θ, θ̇) = (0, 1) and the system (3.25) was initialized with (θ, θ̇, l, l̇) = (0, 1, 1.5, 1) ∈ Z.

The difference between these two realizations lies in u∗, the energy entering the system in the

virtual constraint realization which does not appear in the physical constraint realization.
2Here S is the topological space the unit circle, not the walking surface; see Section 2.3.
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Figure 3.3: Kinematic and dynamic behaviors of the horizontal pendulum. The dashed lines

correspond to the constraint l = sin(θ)+1.5 imposed via a physical constraint, whereas the

solid corresponds to the same constraint imposed via a virtual constraint.

3.2 Swing phase zero dynamics

This section identifies the swing phase zero dynamics for a particular class of outputs

that have proven useful in constructing feedback controllers for bipedal walkers [GAP01,

PGWA01]. Since no impact dynamics are involved, the work here is simply a specialization

of the general results in [Isi95] to the model (2.4). The results summarized here will form

the basis for defining a zero dynamics of the complete hybrid model of the planar biped

walker, which is the desired object for study.

Note that if an output y = h(q) depends only on the configuration variables, then, due

to the second order nature of the robot model, the derivative of the output along solutions

of (2.4) does not depend directly on the inputs,

dy

dt
=

∂h

∂x
ẋ (3.27)

=
[

∂h

∂q

∂h

∂q̇

] [ q̇

D−1 [−Cq̇ −G]


︸ ︷︷ ︸

f

+

 0

D−1B


︸ ︷︷ ︸

g

u

]
(3.28)
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=
[

∂h

∂q
0

] q̇

D−1 [−Cq̇ −G]


︸ ︷︷ ︸

Lfh

+
[

∂h

∂q
0

] 0

D−1B


︸ ︷︷ ︸

Lgh

u (3.29)

= Lfh. (3.30)

Hence its relative degree is at least two. Differentiating the output once again computes

the accelerations, resulting in

d2y

dt2
=

[
∂

∂q

(
∂h

∂q
q̇

)
∂h

∂q

] [ q̇

D−1 [−Cq̇ −G]

+

 0

D−1B

u

]
(3.31)

=
[

∂

∂q

(
∂h

∂q
q̇

)
∂h

∂q

] q̇

D−1 [−Cq̇ −G]


︸ ︷︷ ︸

L2
fh

+
∂h

∂q
D−1B︸ ︷︷ ︸

LgLfh

u (3.32)

= L2
fh(q, q̇) + LgLfh(q)u. (3.33)

The matrix LgLfh(q) is called the decoupling matrix and depends only on the configuration

variables. A consequence of the general results in [Isi95] is that the invertibility of this

matrix at a given point assures the existence and uniqueness of the zero dynamics in a

neighborhood of that point. With a few extra hypotheses, these properties can be assured

on a given open set.

Lemma 3.1. (Swing phase zero dynamics) Suppose that a smooth function h is selected

so that

HH1) h is a function of only the configuration coordinates;

HH2) there exists an open set Q̃ ⊂ Q such that for each point q ∈ Q̃, the decoupling matrix

LgLfh(q) is square and invertible (i.e., the dimension of u equals the dimension of y, and

h has vector relative degree (2, . . . , 2)′);

HH3) there exists a smooth real valued function θ(q) such that (h(q)′, θ(q))′ : Q̃ → R
N is a

diffeomorphism onto its image (see Figure 6.6 for an example θ(q));

HH4) there exists at least one point in Q̃ where h vanishes.
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Then,

1. the manifold

Z := {x ∈ T Q̃ | h(x) = 0, Lfh(x) = 0} (3.34)

is a smooth two-dimensional sub-manifold of TQ; and

2. the feedback control

u∗(x) = −(LgLfh(x))−1L2
fh(x) (3.35)

renders Z invariant under the swing dynamics; that is, for every z ∈ Z,

fzero(z) := f(z) + g(z)u∗(z) ∈ TzZ. (3.36)

Z is called the zero dynamics manifold and ż = fzero(z) is called the zero dynamics.

Lemma 3.1 follows immediately from general results in [Isi95]; a few of the details are

outlined here for later use. From hypotheses HH1) and HH3), Φ(q) := [h′, θ(q)]′ is a valid

coordinate transformation on Q̃, and thus

η1 = h(q), η2 = Lfh(q, q̇),

ξ1 = θ(q), ξ2 = Lfθ(q, q̇),
(3.37)

is a coordinate transformation on T Q̃. In these coordinates, the system takes the form

η̇1 = η2, η̇2 = L2
fh+ LgLfhu,

ξ̇1 = ξ2, ξ̇2 = L2
fθ + LgLfθu,

y = η1

(3.38)

where (q, q̇) is evaluated at

q = Φ−1(η1, ξ1) (3.39)

q̇ =
(
∂Φ
∂q

)−1

 η2

ξ2

 . (3.40)

Enforcing y ≡ 0 results in (η1 = h = 0, η2 = Lfh = 0), u∗ as in (3.35), and the zero

dynamics becoming

ξ̇1 = ξ2

ξ̇2 = L2
fθ + LgLfθu

∗.
(3.41)

36



While it is useful to know that the zero dynamics can be expressed as a second order system,

this form of the equations is very difficult to compute directly due to the need to invert

the decoupling matrix. However, this can be avoided. Indeed, since the columns of g in

(2.4) are involutive, by [Isi95, p. 222], in a neighborhood of any point where the decoupling

matrix is invertible, there exists a smooth scalar function γ such that

η1 = h(q), η2 = Lfh(q, q̇),

ξ1 = θ(q), ξ2 = γ(q, q̇),
(3.42)

is a valid coordinate transformation and

Lgγ = 0. (3.43)

Moreover, by applying the constructive proof of the Frobenius theorem of [Isi95, p. 23] in a

set of coordinates for the robot such that

RH6) the model is expressed in N − 1 relative angular coordinates, (q1, . . . , qN−1), plus one

absolute angular coordinate, qN ,

one obtains that γ can be explicitly computed to be the last entry of D(q)q̇, and hence it

can be assumed that γ(q, q̇) has the form γ0(q) q̇; it follows that (3.42) is a valid coordinate

change on all of T Q̃.

In the coordinates (3.42), the zero dynamics become

ξ̇1 = Lfθ

ξ̇2 = Lfγ

(3.44)

where the right hand side is evaluated at

q = Φ−1(0, ξ1) (3.45)

q̇ =

 ∂h
∂q

γ0


−1  0

ξ2

 . (3.46)

Theorem 3.1. (Swing phase zero dynamics form) Under the hypotheses of Lemma

3.1, (ξ1, ξ2) = (θ(q), γ0(q) q̇) is a valid set of coordinates on Z, and in these coordinates the
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zero dynamics take the form

ξ̇1 = κ1(ξ1)ξ2 (3.47)

ξ̇2 = κ2(ξ1). (3.48)

Moreover, if the model (2.4) is expressed in coordinates satisfying RH6), the following in-

terpretations can be given for the various functions appearing in the zero dynamics:

ξ1 = θ|Z (3.49)

ξ2 =
∂K

∂q̇N

∣∣∣∣
Z

(3.50)

κ1(ξ1) =
∂θ

∂q

 ∂h
∂q

γ0


−1  0

1


∣∣∣∣∣∣∣
Z

(3.51)

κ2(ξ1) = − ∂V

∂qN

∣∣∣∣
Z

, (3.52)

where K(q, q̇) = 1
2 q̇′D(q)q̇ is the kinetic energy of the robot, V (q) is its potential energy,

and γ0 is the last row of D, the inertia matrix.

Proof. The form of (3.47) is immediate by the form of (3.44) and (3.46) since both h and

γ0 are functions of q, and hence when restricted to Z, are functions of ξ1 only.

Suppose now that the model (2.4) is expressed in coordinates satisfying RH6). Since the

kinetic energy of the robot, K(q, q̇), is independent of the choice of world coordinate frame

[SV89, p. 140], and since qN fixes this choice, K(q, q̇) is independent of qN (i.e., qN is a

cyclic coordinate). Since D := ∂ [(∂K/∂q̇)′] /∂q̇ [SV89, p. 141], it follows that ∂D/∂qN = 0.

Let DN , CN , and GN be the last rows of D, C, and G, respectively. Then ξ2 = γ0(q) q̇ is

equal to DN (q) q̇ [GAP01], and thus is equal to ∂K/∂q̇N since K = 1
2 q̇′Dq̇. Continuing,

ξ̇2 := Lfγ becomes

Lfγ =
[

q̇′
∂D′

N

∂q
DN

] q̇

−D−1 [Cq̇ +G]

 (3.53)

= q̇′
∂D′

N

∂q
q̇ − CN q̇ −GN . (3.54)

Noting that (see [SV89, p. 142])

CN = q̇′
∂D′

N

∂q
− 1

2
q̇′

∂D

∂qN
, (3.55)

38



(3.54) becomes Lfγ = −GN = −∂V/∂qN , which, when evaluated on Z, is a function of ξ1

only.

Remark 3.1. [CAA+02] The second state of the zero dynamics, (3.48), can also be derived

directly from the Lagrangian. If the robot’s Lagrangian, L, is expressed in coordinates

satisfying RH6), then since qN is unactuated

d

dt

∂L

∂q̇N
− ∂L

∂qN
= 0. (3.56)

Since qN is a cyclic coordinate (i.e., ∂K/∂qN = 0), (3.56) reduces to

d

dt

∂K

∂q̇N
= − ∂V

∂qN
. (3.57)

3.3 Interpreting the swing phase zero dynamics

Much in the way that it has been proposed that the spring loaded inverted pendulum is

a template for running [Rai86, Sch98], it has been proposed, though less formally, that an

inverted pendulum is the template for walking [FS90, KYK92, KT96, PK98, KKK+02a].

Hence, it may, and should, be asked whether the swing phase zero dynamics, (3.47) and

(3.48), are those of an inverted pendulum or of a similar mechanical variant thereof. They

are not.

Using the angular momentum balance theorem [RP], the rate of change of the angular

momentum of the robot about the stance leg end during the swing phase, ξ̇2, is equal to

the external applied torque,

ξ̇2 = g0 Mph
COM (3.58)

where g0 is the acceleration due to gravity, M is the robot’s mass and ph
COM is the horizontal

position of the robot’s center of mass (see Figure 3.4). Suppose ξ1 is defined as in Figure

3.4. Then, if y ≡ 0, ph
COM = ph

COM(ξ1) and l = l(ξ1) so that

κ2(ξ1) = g0 Mph
COM(ξ1) (3.59)

= g0 Ml(ξ1) sin(ξ1). (3.60)

Equation (3.47) may be expressed as

ξ2 = Izero(ξ1)ξ̇1 (3.61)
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ξ1

l

ph
COM

Figure 3.4: A robot with its center of mass labeled. The COM is of mass M with inertia J .

where3 Izero(ξ1) = 1/κ1(ξ1), is an inertial term. The zero dynamics (3.47) and (3.48) may

then be written as a second order system,

Izero(ξ1)ξ̈1 +
∂Izero(ξ1)

∂ξ1
(ξ̇1)2 − g0 Ml(ξ1) sin(ξ1) = 0. (3.62)

From Figure 3.4 it might seem that (3.62) should be the dynamics of a length and inertia

varying inverted pendulum, i.e., the length, l, and the inertia about the center of mass

(COM), J , vary as function of ξ1. The equation of motion for such pendulum can be easily

derived using the method of Lagrange. The kinetic energy is

K(ξ1) =
1
2
I(ξ1)ξ̇2

1 (3.63)

where

I(ξ1) = M

(
∂l(ξ1)
∂ξ1

)
+M(l(ξ1))2 + J(ξ1). (3.64)

The potential energy is

V (ξ1) = Mg0 l(ξ1) cos(ξ1), (3.65)

and, hence, the equation of motion4 is,

I(ξ1) ξ̈1 +
1
2
∂I(ξ1)
∂ξ1

ξ̇2
1 +Mg0

(
∂l(ξ1)
∂ξ1

cos(ξ1)− l(ξ1) sin(ξ1)
)
= 0. (3.66)

Comparing the swing phase zero dynamics (3.62) and the dynamics for the length and

inertia varying pendulum (3.66), it is evident that what is suggested by Figure 3.4 does not
3Proposition 3.1 on page 43 ensures that κ1(ξ1) is never zero whenever the robot successfully completes

a step.
4If l and J do not vary as a function of ξ1, then I(ξ1) = I, l(ξ1) = l and (3.66) reduces to the equation

of motion for an inverted pendulum, I ξ̈1 −Mg0l sin(ξ1) = 0.
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hold which also implies that the swing phase zero dynamics are not those of an inverted

pendulum. It is interesting to note, however, that if the length and inertia varying inverted

pendulum had a torque, u, acting between the pendulum and ground, i.e.,

I(ξ1) ξ̈1 +
1
2
∂I(ξ1)
∂ξ1

ξ̇2
1 +Mg0

(
∂l(ξ1)
∂ξ1

cos(ξ1)− l(ξ1) sin(ξ1)
)
= u, (3.67)

where

u = −1
2
∂I(ξ1)
∂ξ1

ξ̇2
1 +Mg0

∂l(ξ1)
∂ξ1

cos(ξ1), (3.68)

then, the forms of (3.62) and (3.67) with u as in (3.68) would be identical.5 Matching the

inertial terms, I and Izero, however, does not yield a positive definite J . That is, supposing

Izero has the form of I given in (3.64) implies

J(ξ1) = Izero −M

(
∂l(ξ1)
∂ξ1

)
−M(l(ξ1))2 (3.69)

where l is the distance from the stance leg end to the COM. For every example worked by

the author, J is sign indefinite.

3.4 Hybrid zero dynamics

The goal of this section is to incorporate the impact model into the notion of the

maximal internal dynamics compatible with the output being identically zero, to obtain a

zero dynamics of the complete model of the biped walker, (2.23). Towards this goal, let

y = h(q) be an output satisfying the hypotheses of Lemma 3.1 and suppose there exists a

trajectory, x(t), of the hybrid model (2.23) along which the output is identically zero. If the

trajectory contains no impacts with S, then x(t) is a solution of the swing phase dynamics

and also of its zero dynamics. If the trajectory does contain impact events, then let (t0, tf )

be an open interval of time containing exactly one impact at te. By definition, on the

intervals (t0, te) and (te, tf ), x(t) is a solution of the swing phase dynamics and hence also

of its zero dynamics, so x(t) ∈ Z; since also by definition of a solution, x− := limt↗te x(t)

exists, is finite, and lies in S, it follows that x− ∈ S∩Z. Moreover, by definition of a solution

of (2.23), x(te) := x+ := ∆(x−), from which it follows that ∆(x−) ∈ Z. On the other hand,
5The justification for this input is to account for the energy entering the robot’s dynamics via the control

u∗ given in (3.35).
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if ∆(S ∩Z) ⊂ Z, then from solutions of the swing phase zero dynamics it is clearly possible

to construct solutions to the complete model of the biped walker along which the output

y = h(q) is identically zero. This leads to the following definition.

Definition 3.1. Let y = h(q) be an output satisfying the hypotheses of Lemma 3.1, and let

Z and ż = fzero(z) be the associated zero dynamics manifold and zero dynamics of the swing

phase model. Suppose that S ∩Z is a smooth, one-dimensional, embedded sub-manifold of

TQ. If ∆(S ∩ Z) ⊂ Z, then the nonlinear system with impulse effects,

ż = fzero(z) z− /∈ S ∩ Z

z+ = ∆(z−) z− ∈ S ∩ Z,
(3.70)

with z ∈ Z, is the hybrid zero dynamics of the model (2.23).

Remark 3.2. From standard results in [Boo75], S ∩ Z will be a smooth one-dimensional

embedded sub-manifold if S ∩ Z �= ∅ and the map [h′ (Lfh)′ pv
2]

′ has constant rank equal to

2N − 1 on S ∩ Z. Since

∂

∂x


h

Lfh

pv
2

 =



∂h

∂q
0

∂

∂q

(
∂h

∂q
q̇

)
∂h

∂q

∂pv
2

∂q
0


(3.71)

it is clear that this rank condition will be met if the rank of [h′ pv
2]

′ = N , and under this

rank condition, S ∩ Z ∩ Q̃ consists of the isolated zeros of [h′ pv
2]

′ . Let q−0 be a solution of

(h(q), pv
2(q)) = (0, 0), ph

2(q) > 0. Then the connected component of S ∩ Z containing q−0 is

diffeomorphic to R per σ : R → S ∩ Z, where

σ(ω) :=

 σq

σq̇ ω

 (3.72)

σq := q−0 , and

σq̇ =

 ∂h
∂q (q

−
0 )

γ0(q−0 )


−1  0

1

 . (3.73)

In view of this, the following additional assumption is made about the output h and the open

set Q̃
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HH5) there exists a unique point q−0 ∈ Q̃ such that (h(q−0 ), p
v
2(q

−
0 )) = (0, 0), ph

2(q
−
0 ) > 0 and

the rank of [h′ pv
2]

′ at q−0 equals N .

The next result characterizes when the swing phase zero dynamics are compatible with

the impact model, leading to a non-trivial hybrid zero dynamics.

Theorem 3.2. (Hybrid zero dynamics existence) Consider the robot model (2.23)

satisfying RH1)–RH6) and IH1)–IH6) with a smooth function h satisfying HH1)–HH5).

Then, the following statements are equivalent:

(a) ∆(S ∩ Z) ⊂ Z;

(b) h ◦∆|(S∩Z) = 0 and Lfh ◦∆|(S∩Z) = 0;

(c) there exists at least one point (q−0 , q̇−0 ) ∈ S∩Z such that γ0(q−0 ) q̇
−
0 �= 0, h◦∆q(q−0 ) = 0,

and Lfh ◦∆(q−0 , q̇−0 ) = 0.

Proof. The equivalence of (a) and (b) is immediate from the definition of Z as the zero set

of h and Lfh. The equivalence of (b) and (c) follows from Remark 3.2 once it is noted from

(2.20) that Lfh ◦∆ is linear in q̇.

Under the hypotheses of Theorem 3.2, the hybrid zero dynamics are well-defined. Let

z− ∈ S ∩ Z, and suppose that TI ◦ ∆(z−) < ∞. Set z+ = ∆(z−) and let ϕ : [0, tf ] → Z,

tf = TI(z+), be a solution of the zero dynamics, (3.41), such that ϕ(0) = z+. Define

θ̂(t) := θ ◦ ϕ(t) and ˙̂
θ := dθ̂(t)/dt.

Proposition 3.1. Assume the hypotheses of Theorem 3.2. Then over any step of the robot,
˙̂
θ : [0, tf ] → R is never zero. In particular, θ̂ : [0, tf ] → R is strictly monotonic and thus

achieves its maximum and minimum values at the end points.

Proof. Without loss of generality, assume θ̂(t0) < θ̂(tf ). Then
˙̂
θ(t0) > 0. To show that θ̂(t)

is monotonic it suffices to show that ˙̂
θ(t) > 0 for all t0 < t < tf . Suppose there exists some

t2 (see Figure 3.5) such that t0 < t2 < tf and ˙̂
θ(t2) = 0. Let t2 be the smallest such t.

The point (θ̂(t2), 0) cannot be an equilibrium point of (3.41) because θ̂(t2) < θ̂(tf ). Hence,

there exists some t3 > t2 such that for all t2 < t < t3,
˙̂
θ(t) < 0 and θ̂(t) < θ̂(t2). By the
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˙̂
θ(t)

θ̂(0) θ̂(tf )

t0

t2
t3

t1, t4
tf

θ̂(t)

Figure 3.5: Impossible integral curve of the zero dynamics.

assumption that θ̂(t) > θ̂(t0) for all t > t0 and because θ̂(tf ) > θ̂(t2), there must exist a

t4 > t3 such that θ̂(t4) = θ̂(t1) for some t0 < t1 < t2. This contradicts the uniqueness of

solutions of (3.41). Hence, there can be no t2 such that ˙̂
θ(t2) = 0 and thus ˙̂

θ(t) > 0 for all

t0 < t < tf . Therefore, θ̂ : [t0, tf ]→ R is strictly monotonic.

By Remark 3.2, it follows that θ̂(0) = θ◦∆q(q−0 ) and θ̂(tf ) = θ(q−0 ), that is, the extrema

can be computed a priori. Denote these by

θ− := θ(q−0 ) (3.74)

θ+ := θ ◦∆q(q−0 ). (3.75)

Without loss of generality, it is assumed that θ+ < θ−; that is, along any step of the hybrid

zero dynamics, θ is monotonically increasing.

Remark 3.3. The fact that θ evaluated along a step of the zero dynamics must be monotonic

implies that there are restrictions on the walking gaits that can be achieved through computed-

torque control based on an output that depends only on the configuration variables.

3.5 Stability analysis of the zero dynamics

Now, an explicit expression for the Poincaré map of the hybrid zero dynamics will be

derived, along with a precise determination of its domain of definition. Fixed points of the

Poincaré return map of the hybrid zero dynamics correspond to periodic orbits of the hybrid
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zero dynamics. When the hybrid zero dynamics admit an exponentially stable periodic orbit,

the general feedback approach developed in [GAP01, PGWA01] can be immediately applied

to create a provably, exponentially stable periodic orbit in the full hybrid model.

3.5.1 Poincaré analysis of the zero dynamics

It is shown here that the Poincaré map associated with (3.70) is diffeomorphic to a

scalar LTI system, reducing determination of the local stability properties of its fixed point

to a simple explicit computation.

Assume the hypotheses of Theorem 3.2. Take the Poincaré section to be S ∩ Z so that

the Poincaré map is the partial map ρ : S ∩ Z → S ∩ Z defined as follows [GAP01]: let

ϕ(t, z0) be a solution of the zero dynamics fzero and consider the time to impact function,

(2.25), restricted to Z. Since both fzero(z) and Z are smooth, a solution of (3.47) and (3.48)

from a given initial condition, z0, is unique and depends smoothly on z0. Then by [GAP01,

Lemma 3], Z̃ := {z ∈ Z | 0 < TI(z) < ∞ and pv
2(ϕ(TI(z), z)) �= 0} is open. Define the

Poincaré return map for the hybrid zero dynamics as

ρ(z) := ϕ(TI ◦∆(z),∆(z)). (3.76)

In a special set of local coordinates, the return map can be explicitly computed. Indeed,

express the hybrid zero dynamics in the coordinates of Theorem 3.1, namely, (ξ1, ξ2) =

(θ, γ). In these coordinates, S ∩ Z and ∆ : (ξ−1 , ξ−2 )→ (ξ+
1 , ξ+

2 ) simplify to

S ∩ Z =
{
(ξ−1 , ξ−2 ) | ξ−1 = θ−, ξ−2 ∈ R

}
(3.77)

ξ+
1 = θ+ (3.78)

ξ+
2 = δzero ξ

−
2 , (3.79)

where

δzero := γ0(q+)∆q̇(q−0 )σq̇(q
−
0 ), (3.80)

a constant that may be computed a priori. The hybrid zero dynamics are thus given by

(3.47) and (3.48) during the swing phase, and at impact with S ∩ Z, the re-initialization

rules (3.78) and (3.79) are applied. By Proposition 3.1, over any step ξ̇1 is non-zero, and
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thus (3.47) and (3.48) are equivalent to

dξ2
dξ1

=
κ2(ξ1)
κ1(ξ1)ξ2

. (3.81)

From (3.49), ξ̇1 �= 0 implies ξ2 �= 0, and thus ζ2 := 1
2(ξ2)

2 is a valid change of coordinates

on (3.81). In these coordinates, (3.81) becomes

dζ2
dξ1

=
κ2(ξ1)
κ1(ξ1)

. (3.82)

For θ+ ≤ ξ1 ≤ θ−, define6

Vzero(ξ1) := −
∫ ξ1

θ+

κ2(ξ)
κ1(ξ)

dξ (3.83)

ζ−2 :=
1
2
(ξ−2 )

2 (3.84)

ζ+
2 := δ2

zero ζ
−
2 . (3.85)

Then (3.82) may be integrated over a step to obtain

ζ−2 = ζ+
2 − Vzero(θ−), (3.86)

as long as7 ζ+
2 − V MAX

zero > 0, where,

V MAX
zero := max

θ+≤ξ1≤θ−
Vzero(ξ1). (3.87)

Theorem 3.3. (Poincaré map for hybrid zero dynamics) Assume the hypotheses of

Theorem 3.2 and let (θ, γ) be as in Theorem 3.1. Then in the coordinates (ζ1, ζ2) = (θ, 1
2γ

2),

the Poincaré return map of the hybrid zero dynamics, ρ : S ∩ Z → S ∩ Z, is given by

ρ(ζ−2 ) = δ2
zero ζ

−
2 − Vzero(θ−), (3.88)

with domain of definition

{
ζ−2 > 0

∣∣ δ2
zero ζ

−
2 − V MAX

zero ≥ 0
}
. (3.89)

If δ2
zero �= 1 and

ζ∗2 := −Vzero(θ−)
1− δ2

zero

(3.90)

6In general, Vzero must be computed numerically.
7By definition, ζ2 :=

1
2
(ξ2)

2 must be positive along any solution.

46



is in the domain of definition of ρ, then it is the fixed point of ρ. Moreover, if ζ∗2 is a fixed

point, then ζ∗2 is an exponentially stable equilibrium point of

ζ2(k + 1) = ρ(ζ2(k)) (3.91)

if, and only if, 0 < δ2
zero < 1, and in this case, its domain of attraction is (3.89), the entire

domain of definition of ρ.

Proof. This follows directly from the above results.

Remark 3.4. The domain of definition (3.89) specifies the lower bound on the Poincaré

map ρ. That is, if ζ−2 < V MAX
zero /δ2

zero, then the robot will not successfully complete a step.

Viewed another way, δ2
zeroζ

−
2 − V MAX

zero is the amount of energy that may be removed from

the system during the step—through perturbations, for example—before the robot will not

successfully complete a step.8

These stability results can be reformulated in the following way:

Corollary 3.1. a) There exists a non-trivial periodic orbit of the hybrid zero dynamics if,

and only if, δ2
zero �= 1 and

δ2
zero

1− δ2
zero

Vzero(θ−) + V MAX
zero < 0. (3.92)

b) There exists an exponentially stable periodic orbit of the hybrid zero dynamics if, and

only if, (3.92) holds and

0 < δ2
zero < 1. (3.93)

Remark 3.5. The Lagrangian of the zero dynamics (3.47) and (3.48) can be shown to be

Lzero := Kzero − Vzero, where Vzero is given by (3.83) and

Kzero =
1
2

(
ξ̇1

κ1(ξ1)

)2

. (3.94)

Remark 3.6. The time to impact function, TI(ξ−2 ), may be calculated from (3.47) as

TI(ξ−2 ) =
∫ θ−

θ+

1
κ1(ξ1)ξ2(ξ1, ξ−2 )

dξ1 (3.95)

where ξ2(ξ1, ξ−2 ) is a solution of (3.81) and is monotonic in ξ−2 which implies that TI(ξ−2 )

is monotonic in ξ−2 .
8This interpretation is due to Christine Chevallereau.
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3.5.2 Imposing modeling hypotheses on the zero dynamics

Although the domain of definition of the Poincaré map is given in (3.89), not all solutions

of the zero dynamics satisfy the modeling hypotheses; in particular, walking hypothesis

GH2) limits the ratio and sign of the ground reaction forces of the stance leg end during

phases of single support. This limit is reflected as an upper bound on the domain of

definition of ρ. Let FT
1 and FN

1 be the tangential and normal forces experienced at the end

of the stance leg. The upper bound will be the largest ζ−2 such that at some point during

the associated phase of single support either FN
1 becomes negative, or |FT

1 /FN
1 | exceeds the

maximum allowed static Coulomb friction coefficient.

Calculation of FT
1 and FN

1 requires the full (N + 2)-DOF model. Consider the model

(2.5) and apply the feedback u∗ from (3.35). Let ẋe = fe(xe) + ge(xe)(FT
1 , FN

1 )′ be the

resulting closed-loop system written in state space form, where, xe := (q′e, q̇′e)′ and ye =

he(qe) := (ph
1(qe), pv

1(qe))′ is the 2-vector of outputs corresponding to the position of the end

of the stance leg. It is easily checked that the decoupling matrix LgeLfehe is invertible, thus

the forces FT
1 and FN

1 may be calculated as FT
1

FN
1

 = −(LgeLfehe)−1L2
fehe. (3.96)

The above expression is quadratic in q̇e, and, when restricted to Z, is affine in ζ2. Combining

this with (3.82) results in an expression for the forces over a step of the robot that depends

only on ξ1 and ζ−2 . Express this as FN
1 (ξ1, ζ−2 )

FT
1 (ξ1, ζ−2 )

 = Λ1(ξ1) ζ−2 + Λ0(ξ1), (3.97)

where Λ0 and Λ1 are smooth functions of ξ1. Thus, an upper bound on ζ−2 so that the pivot

assumption holds is given by

ζmax
2,FN

1
:= sup

ζ−2

[
min

θ+≤ξ1≤θ−
FN

1 (ξ1, ζ−2 )
]
≥ 0 (3.98)

ζmax
2,|FT

1 /F
N
1 | := sup

ζ−2 ≤ζmax

2,FN
1

[
max

θ+≤ξ1≤θ−

∣∣∣∣FT
1 (ξ1, ζ−2 )

FN
1 (ξ1, ζ−2 )

∣∣∣∣] ≤ µs, (3.99)
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where µs is the static Coulomb friction coefficient of the walking surface [HM94], and the

domain of definition of the Poincaré return map should thus be restricted to

{
ζ−2 > 0

∣∣∣ δ2
zero ζ

−
2 − V MAX

zero ≥ 0, ζ−2 ≤ ζmax
2,|FT

1 /F
N
1 |

}
. (3.100)

On a practical note, if the modeling hypotheses included bounds on the maximum

actuator torque, these bounds could also be explicitly included in the domain of definition

of the Poincaré map in the same manner.

3.6 Creating exponentially stable, periodic orbits in the full

model

Fixed points of the Poincaré return map of the hybrid zero dynamics correspond to

periodic orbits of the hybrid zero dynamics. By construction of the hybrid zero dynamics,

these are also periodic orbits of the full model, (2.23). Moreover, exponentially stable orbits

of the hybrid zero dynamics correspond to exponentially stabilizable orbits of the full model.

This is developed next.

Suppose that hypotheses HH1)–HH5) hold and that, in addition, there exists a fixed

point, z∗ ∈ S ∩ Z, of the Poincaré return map for the hybrid zero dynamics. Let O be the

periodic orbit in Z corresponding to z∗; that is,

O := {z ∈ Z | z = ϕ(t,∆(z∗)), 0 ≤ t < TI ◦∆(z∗)} , (3.101)

where ϕ is a solution of the hybrid zero dynamics, (3.70). O is then a periodic orbit of the

full model corresponding to initial condition z∗ and control input u(t) = u∗ ◦ ϕ(t,∆(z∗)),

for 0 ≤ t < TI ◦∆(z∗), where u∗ is given by (3.35).

The application of the pre-feedback

u(x) = (LgLfh(x))−1(v − L2
fh(x)) (3.102)

to (2.4) with an output satisfying HH1)–HH4) results in the chain of N − 1 double integra-

tors,
d2y

dt2
= v; (3.103)
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see (3.33). Let v(y, ẏ) be any feedback controller on (3.103) satisfying conditions CH2)–

CH5) of [GAP01], that is,

Controller Hypotheses: for the closed-loop chain of double integrators, ÿ = v(y, ẏ),

CH2) solutions globally exist on R
2N−2, and are unique;

CH3) solutions depend continuously on the initial conditions;

CH4) the origin is globally asymptotically stable, and convergence is achieved in finite time;

CH5) the settling time function9, Tset : R
2N−2 → R by

Tset(y0, ẏ0) := inf{t > 0 | (y(t), ẏ(t)) = (0, 0),

(y(0), ẏ(0)) = (y0, ẏ0)}

depends continuously on the initial condition, (y0, ẏ0).

Hypotheses CH2)–CH4) correspond to the definition of finite-time stability [Hai86, BB98];

CH5) is also needed, but is not implied by CH2)–CH4) [BB00]. These requirements rule

out traditional sliding mode control, with its well-known discontinuous action.

Consider now the full-model (2.23) in closed loop with the feedback

u(x) = (LgLfh(x))−1(v(h(x), Lfh(x))− L2
fh(x)). (3.104)

Take the Poincaré section as S, the walking surface, and let P : S → S be Poincaré return

map. A simple computation shows that the invariance condition, ∆(S ∩ Z) ⊂ Z, implies

that P has a well-defined restriction to S ∩ Z, and that P |S∩Z = ρ, the Poincaré return

map of the hybrid zero dynamics. By [GAP01, Theorem 2], it therefore follows that O is

exponentially stable for the full model (2.23) under the feedback (3.104) if, and only if, it

is exponentially stable for the hybrid zero dynamics.

Hence, if an output can be selected so that the resulting 1-DOF hybrid zero dynamics

admits an exponentially stable orbit, then an exponentially stable walking motion can be

achieved under feedback control for the full dynamical model of the robot. Moreover, by
9That is, the time it takes for a solution initialized at (y0, ẏ0) to converge to the origin. The terminology

is taken from [BB98].
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the results of Section 3.5.2, it can be assured that key modeling assumptions are met for the

steady state walking motion. The next chapter looks at a means of systematically selecting

the output function.
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CHAPTER 4

Control

Chapter 3 provided the conditions for the existence of a zero dynamics for the complete

robot model with impacts and established a number of its properties. However, in a con-

crete manner, the results are not yet practicable for feedback design because the explicit

computation of the zero dynamics involves the inversion of a coordinate transformation.

This chapter has two principal objectives: to present a class of output functions that leads

to computable, closed-form representations of the zero dynamics; and to introduce a finite

parameterization of the outputs in a convenient form that will permit the shaping of the

zero dynamics by parameter optimization. The output class presented here will be used

throughout the rest of the dissertation.

4.1 An almost linear output function structure

Consider the following output function

y = h(q) := h0(q)− hd ◦ θ(q) (4.1)

where h0(q) specifies (N − 1) independent quantities that are to be controlled and hd ◦ θ(q)

specifies the desired evolution of these quantities as a function of the monotonic quantity

θ(q). Driving y to zero will force h0(q) to track hd ◦ θ(q), see Figure 1.3. Intuitively, the

posture of the robot is being controlled by virtual constraints—here a holonomic constraint

parameterized by θ(q). Note that this is not a trajectory tracking scheme since the desired

evolution of h0(q) is slaved to θ(q) and not time. Slaving h0(q) to θ(q) results in a closed-loop
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system which is autonomous.

Choosing

h0(q) := H0q (4.2)

θ(q) := c q (4.3)

where H0 : R
N → R

N−1 is a linear map, c : R
N → R is a linear functional allows the

hypotheses of Lemma 3.1 to be easily satisfied. Concerning those hypotheses, the output

function structure of (4.1) with h0(q) and θ(q) as in (4.2) and (4.3), respectively, satisfies

HH1) (the output only depends on the configuration variables) and will satisfy HH3) (in-

vertibility) if, and only if, H := [H ′
0 c′]′ is full rank. Hence, if HH2) and HH4) hold, the

swing phase zero dynamics can be computed in closed form. Indeed, the coordinate inverse

required in (3.45) is given by

q = H−1

 hd(ξ1)

ξ1

 . (4.4)

In the next section hd will be specialized to a vector of Bézier polynomials which will make

it easy to achieve the invariance condition, ∆(S ∩ Z) ⊂ Z.

Remark 4.1. Due to the structure of the output (4.1) with h0 and θ as in (4.2) and (4.3),

respectively, HH4) will essentially always hold.

4.2 Specialization of hd by Bézier polynomials

A one-dimensional Bézier polynomial [Béz72] of degreeM is a polynomial, bi : [0, 1]→ R,

defined by M + 1 coefficients, αik, per

bi(s) :=
M∑
k=0

αik
M !

k!(M − k)!
sk(1− s)M−k. (4.5)

For later use, note that

∂bi(s)
∂s

:=
M−1∑
k=0

(αik+1 − αik)
M !

k!(M − k − 1)!
sk(1− s)M−k−1. (4.6)

Some particularly useful features of Bézier polynomials are (see [RA90, p. 291])
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Figure 4.1: An example Bézier fifth-order (M = 5) polynomial curve. Note that 1) the

curve is contained within the convex hull of the 6 coefficients (as viewed as points in R
2,

{(0, α0), (1/5, α1), . . . , (1, α5)}), 2) the curve begins at (0, α0) and ends at (1, α5), and 3)

the curve is tangent to the line segments connecting (0, α0) and (1/5, α1), and (4/5, α4) and

(1, α5) at the start and end points, respectively.

1. the image of the Bézier polynomial is contained in the convex hull of the M + 1

coefficients (as viewed as points in R
2, {(0, αi0), (1/M,αi1), (2/M,αi2), . . . , (1, α

i
M )})

(the polynomial does not exhibit large oscillations with small parameter variations);

2. bi(0) = αi0 and bi(1) = αiM ; and

3. (∂bi(s)/∂s)|s=0 = M
(
αi1 − αi0

)
and (∂bi(s)/∂s)|s=1 = M

(
αiM − αiM−1

)
.

The first feature will be useful for numerical calculations (such as approximating the gradient

of a cost function) where numerical stability is crucial. The second two features are exactly

those used to achieve ∆(S ∩ Z) ⊂ Z. See Figure 4.1 for an example Bézier polynomial

curve.

A given function θ(q) of the generalized coordinates will not, in general, take values

in the unit interval over a phase of single support. Therefore, to appropriately compose a

Bézier polynomial with θ(q), it is necessary to normalize θ by

s(q) :=
θ(q)− θ+

θ− − θ+
, (4.7)
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which takes values in [0, 1]. Define hd ◦ θ(q) as

hd ◦ θ(q) :=



b1 ◦ s(q)

b2 ◦ s(q)
...

bN−1 ◦ s(q)


. (4.8)

Group the parameters αik into an (N − 1) × (M + 1) matrix, α, and denote the columns

of α by αk := (α1
k, . . . , α

N−1
k )′. For the remainder of the dissertation, the output will be

chosen to be of the form (4.1) to (4.3) with hd chosen as in (4.8). An important class of

parameters, α, is now defined.

Definition 4.1. The matrix of parameters α is said to be a regular parameter of an output

of the form (4.1) to (4.3) with hd chosen as in (4.8) if the output satisfies HH1)–HH5),

which together imply the invertibility of the decoupling matrix and the existence of a two-

dimensional, smooth, zero dynamics associated with the single support phase of the robot.

In later chapters it will be important to distinguish between different output functions—

and hence walking motions—which differ only in Bézier parameter choice. For this reason,

from this point forward quantities related to an output will be labeled with the output’s

grouped Bézier coefficients label, e.g., θ associated with α will be written θα, and the Bézier

polynomial order will be written Mα.

Evaluating (4.8) and its derivative with respect to θα at the beginning (respectively end)

of a phase of single support, that is, where θ(q) = θ+
α (respectively θ(q) = θ−α ) will lead to

a convenient means of ensuring ∆(S ∩ Zα) ⊂ Zα. Evaluation of hd,α is particularly trivial,

hd,α(θ+
α ) = α0 (4.9)

hd,α(θ−α ) = αM , (4.10)

and therefore (4.4) evaluated at θ+
α and θ−α becomes

q+
α = H−1

 α0

θ+
α

 (4.11)

q−α = H−1

 αMα

θ−α

 . (4.12)
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Differentiation of (4.4) with respect to time yields

q̇α = H−1


∂hd,α
∂θ

1

 θ̇α. (4.13)

Taking the partial derivative of (4.8) required by (4.13) yields

∂hd,α
∂θ

=
∂bα
∂sα

∂s

∂θ
(4.14)

=

(
Mα∑
k=0

αk
Mα!

k!(Mα − k)!

(
ksk−1(1− s)Mα−k −

(Mα − k)sk(1− s)Mα−k−1
)) 1

θ−α − θ+
α

(4.15)

which when evaluated at θ+
α and θ−α gives

∂hd,α
∂θ

∣∣∣∣
θ=θ+α

=
Mα

θ−α − θ+
α
(α1 − α0) (4.16)

∂hd,α
∂θ

∣∣∣∣
θ=θ−α

=
Mα

θ−α − θ+
α
(αMα − αMα−1) (4.17)

therefore (4.13) evaluated at θ+
α and θ−α becomes

q̇+
α = H−1

 Mα

θ−α − θ+
α
(α1 − α0)

1

 θ̇+
α (4.18)

q̇−α = H−1

 Mα

θ−α − θ+
α
(αMα − αMα−1)

1

 θ̇−α . (4.19)

For two regular parameter sets, α and β, the following theorem gives the conditions under

which ∆(S ∩ Zα) ⊂ Zβ . This theorem will be key in the construction of controllers with

invariant zero dynamics manifolds and when performing event-based PI control (Section

5.2).

Theorem 4.1. (Achieving ∆(S ∩Zα) ⊂ Zβ) Assume the hypotheses of Theorem 3.2 and

two outputs hα and hβ of the form (4.1) with h0, hd, and θ as in (4.2), (4.8), and (4.3),

respectively. Then, hβ ◦∆(S ∩ Zα) = 0 if, and only if, β0

θ+
β

 = H∆qH
−1

 αMα

θ−α

 . (4.20)
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Moreover, if δzero,α �= 0, then Lfhβ ◦∆(S ∩ Zα) = 0 if, and only if,

β1 = H0∆q̇H
−1

 Mα

θ−α − θ+
α
(αMα − αMα−1)

1

 θ−β − θ+
β

Mβ

κ1,α(θ−α )
κ1,β(θ+

β )
1

δzero,α
+ β0 (4.21)

That is, if (4.20) and (4.21) hold, then ∆(S ∩ Zα) ⊂ Zβ.

Proof. Using Theorem 3.2 it suffices to show that there exists at least one point x−α =

(q−0,α, q̇
−
0,α) ∈ S∩Zα such that γ0(q−0,α) q̇

−
0,α �= 0, hβ ◦∆q q

−
0,α = 0, and Lfhβ ◦∆(q−0,α, q̇

−
0,α) = 0.

Evaluating (4.4) on S ∩ Zα, hβ ◦∆(x−α ) = 0 means that q+
β = ∆q q

−
α . Equating (4.11) and

(4.12) with ∆q yields

H−1

 β0

θ+
β

 = ∆qH
−1

 αMα

θ−α

 , (4.22)

which may be solved for (β′
0, θ

+
β )

′. Achieving Lfhβ ◦∆(x−α ) = 0 means that q̇+
β = ∆q̇(q−α ) q̇−α .

Equating (4.18) and (4.19) with ∆q̇ yields

H−1


Mβ

θ−β − θ+
β

(β1 − β0)

1

 θ̇+
β = ∆q̇H

−1

 Mα

θ−α − θ+
α
(αMα − αMα−1)

1

 θ̇−α (4.23)

and consequently

Mβ

θ−β − θ+
β

(β1 − β0) θ̇+
β = H0∆q̇H

−1

 Mα

θ−α − θ+
α
(αMα − αMα−1)

1

 θ̇−α (4.24)

which implies

β1 = H0∆q̇H
−1

 Mα

θ−α− θ+
α
(αMα − αMα−1)

1

 θ−β − θ+
β

Mβ

θ̇−α
θ̇+
β

+ β0. (4.25)

Equation (3.47) implies

θ̇−α = κ1,α(θ−α )ξ
−
2,α (4.26)

θ̇+
β = κ1,β(θ+

β )ξ
+
2,β (4.27)

while (3.79) gives

ξ+
2,β = δzero,α ξ−2,α (4.28)
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and, hence, with the assumption that δzero,α �= 0,

β1 = H0∆q̇H
−1

 Mα

θ−α − θ+
α
(αMα − αMα−1)

1

 θ−β − θ+
β

Mβ

κ1,α(θ−α )
κ1,β(θ+

β )
1

δzero,α
+ β0. (4.29)

Corollary 4.1. (Achieving ∆(S ∩ Zα) ⊂ Zα) Assume the hypotheses of Theorem 3.2

and an output hα of the form (4.1) with h0, hd,α, and θα as in (4.2), (4.8), and (4.3),

respectively. Then, hα ◦∆(S ∩ Zα) = 0 if, and only if, α0

θ+
α

 = H∆qH
−1

 αMα

θ−α

 . (4.30)

Moreover, if δzero,α �= 0, then Lfhα ◦∆(S ∩ Zα) = 0 if, and only if,

α1 = H0∆q̇H
−1

 (αMα − αMα−1)

θ−α − θ+
α

Mα

 κ1,α(θ−α )
κ1,α(θ+

α )
1

δzero,α
+ α0 (4.31)

That is, if (4.30) and (4.31) hold, then ∆(S ∩ Zα) ⊂ Zα.

Remark 4.2. Corollary 4.1 constrains the coefficients α0 and α1 to be functions of αMα

and αMα−1. Hence, Mα must be chosen to be three or greater to impose configuration and

velocity periodicity.

The following two lemmas give the conditions under which two regular parameter sets,

α and β, satisfy S ∩ Zβ = S ∩ Zα and ∆(S ∩ Zβ) = ∆(S ∩ Zα). These lemmas will be key

in transitioning between controllers (Section 5.1).

Lemma 4.1. (Achieving S ∩ Zβ = S ∩ Zα) Assume two outputs hα and hβ of the form

(4.1) with h0, hd, and θ as in (4.2), (4.8), and (4.3), respectively. Then, S ∩ Zβ = S ∩ Zα

if, and only if,

β0 = α0 and θ+
β = θ+

α (4.32)

and

β1 =
Mα

Mβ

θ−β − θ+
β

θ−α − θ+
α
(α1 − α0) + α0 (4.33)
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Proof. The result follows directly from equating (4.11) for β and α and equating (4.18) for

β and α.

Lemma 4.2. (Achieving ∆(S ∩Zα) = ∆(S ∩Zβ)) Assume two outputs hα and hβ of the

form (4.1) with h0, hd, and θ as in (4.2), (4.8), and (4.3), respectively. Then, ∆(S∩Zα) =

∆(S ∩ Zβ) if, and only if,

αMα = βMβ
and θ−α = θ−β (4.34)

and

αMα−1 =
Mβ

Mα

θ−α − θ+
α

θ−β − θ+
β

(βMβ−1 − βMβ
) + βMβ

(4.35)

Proof. The result follows directly from equating (4.12) for β and α and equating (4.19) for

β and α.

4.3 Creating exponentially stable fixed points through opti-

mization

The use of optimization in the analysis and design of biped walking motions is not

a new concept. Work as early as the 1970s can be found in the biomechanics literature

(see [CJ71, Hat76], for example). In more recent years, the design of optimal or approx-

imately optimal trajectories for biped robots has become a popular topic [CA97, CA01,

CS00, HAF00, Har99, RB01a, RB01b, RCdWG98]. In each case the approach has been to

design time trajectories such that a defined cost is minimized, or approximately minimized,

subject to a set of constraints. The optimization technique employed varies. Cabodevila

and Abba [CA97] parameterized the robot state as a finite Fourier series and compared

the performance of three algorithms: Nelder and Mead, Genetic, and Simulated Anneal-

ing. Chevallereau and Aoustin [CA01], and Chevallereau and Sardain [CS00] rewrote the

actuated dynamics of the robot as a polynomial function of the unactuated dynamics and

used Sequential Quadratic Programming (SQP). Hasegawa, Arakawa, and Fukuda [HAF00]

used a modified genetic algorithm to generate reference trajectories parameterized as cubic

splines. Hardt [Har99] used an optimization package, DIRCOL [vS99], which implements a

sparse SQP algorithm and uses a variable number of cubic splines to approximate the state
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and piecewise linear functions to approximate the control signals. Rostami and Bessonnet

[RB01b] applied Pontryagin’s Maximum Principle. Roussel, Canudas-de-Wit, and Goswami

[RCdWG98] approximated the dynamics and used a direct shooting optimization algorithm.

Optimization will be used here to design walking motions via the selection output function

parameters, the Bézier polynomial coefficients of hd. The result of optimization is not in

an optimal or approximately optimal open-loop trajectory, but rather a closed-loop sys-

tem which creates an exponentially stable orbit, and along this orbit energy consumption

has been approximately minimized while satisfying other natural kinematic and dynamic

constraints.

Note that in posing the parameter optimization problem (Section 4.3.2), the output

function structure, (4.1) to (4.3), is fixed and only the Bézier polynomial coefficients of

hd are allowed to vary. The choice of output function structure, H0, c, and M , and the

use of Bézier polynomials for hd in this dissertation was based solely upon intuition and

experience. Though not explored in this dissertation, it would be interesting to study the

effect of varying these choices as well as the effect of choosing altogether different output

function structures. For example, in [PGWA01], which addresses the control of the five-link

model presented in Chapter 6, a Cartesian approach is taken to output function design.

In that work, virtual constraints are posed on the torso angle, horizontal hip position, hip

height, and the swing leg end height. These virtual constraints, however, were not chosen so

that the corresponding outputs are invariant. So, the stability results of Section 3.5.1 may

not be applied. Another example of output function choice is given in [Hür93a]. In that

work, a fully actuated model is assumed and the output is chosen to include dependence

upon the velocity of the robot. In particular, the horizontal velocity of the center of mass is

controlled to be a constant. Although the class of output functions chosen in this dissertation

does not allow explicit dependence upon velocity, the effect of velocity dependence used in

[Hür93a] may be achieved via the event-based PI control scheme given in Section 5.2.

Before the optimization problem is given, it is worth illustrating how the output function

parameters affect gait properties.
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4.3.1 How output function parameters affect gait properties: an example

Consider the two-link model presented in Section 2.4 with an output of the form (4.1) to

(4.3) with hd chosen as in (4.8). The goal of this example is to illustrate how selecting

the Bézier polynomial coefficients of hd affect gait properties. The example will proceed by

selecting the output details up to, but not including, the Bézier polynomial coefficients and

then investigating which parameters give rise to valid walking motions. In the process, the

details of hypothesis verification will be illustrated and the need for a systematic approach

to parameter selection, optimization, will be motivated.

The first step in output function design is selection of the quantity to be controlled. The

controlled quantity is selected to be the hip angle, q1, since the two-link model has only one

actuator at the hip. Hence, H0 = [1, 0]. The function θ(q) is then chosen to be θ(q) = q2,

so c = [0, 1], and

H =

 1 0

0 1

 (4.36)

As a result, HH3) is clearly satisfied and the decoupling matrix is

LgLfh(q1) =
l2 +

(
2− ∂h

∂q2

) (
l2c + lcl cos(q1)

)
ml2c (l2c + l2(1− cos2(q1)))

. (4.37)

Decoupling matrix invertibility, HH2), will be satisfied if the numerator of (4.37) is different

from zero which can be accomplished by appropriately choosing h and Q̃ ⊂ Q for given l and

lc. The Bézier polynomial order, Mα, is selected to be four.1 The first two parameters, α0

and α1, are constrained to impose invariance per Corollary 4.1 leaving three free parameters

α2, α3, and α4. With only a scalar output and three free parameters, it is feasible to

calculate which parameter values give rise to motions that satisfy stability conditions (3.92)

and (3.93) and satisfy the remaining unverified hypotheses: GH2), GH4), HH2), HH4), and

HH5).2 This will be accomplished, but to simplify the presentation, fix α4 = π/5 which

leaves α2 and α3 as the only free parameters to be selected. Since HH5) depends only upon
1It was found that for choosing Mα = 3 did not give rise to any stable motions.
2For this two-link model, GH6) will never be satisfied due to the simplicity of the model. See Section 2.4

for a discussion of this issue.
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(b) Stability requirement (3.93) is met below

the dashed line. Note δzero depends only on

α3 and α4.
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(c) Inside the shaded region HH2), de-

coupling matrix invertiblity, and HH4) are

met. Inside the triangular region above the

shaded region, the decoupling matrix is not

invertible.
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(d) Inside the shaded region the ground con-

tact assumptions given in GH2) and GH4)

are met. Outside one or both are not. The

coeffiecent of friction is assumed to be 0.6.

Figure 4.2: Determining which parameters give rise to walking for the two-link walker. Note

that α4 = π/5.
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Figure 4.3: Contour plot of average walking rate for parameters which give rise to stable

walking. The contour units are meters per second.
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Figure 4.4: Contour plot of the cost for parameters which give rise to stable walking. The

cost is J(α) = 1
ph2(q−0 )

∫ TI(ξ−2 )
0 (u∗(t))2dt with units of Joules squared per meter.
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q−α , given by (4.12), which depends only upon α4, HH5) is verified since

∂

∂q

 hα

pv
2


∣∣∣∣∣∣∣
q−α

=

 −0.5093 1

−0.6180 0.3090

 (4.38)

is full rank. The remaining conditions and hypotheses were checked on a 100 by 100 grid for

−0.7 ≤ α2 ≤ 3.7 and −0.08 ≤ α3 ≤ −0.06. Figure 4.2(a) gives the region in which the two

stability conditions (3.92) and (3.93) are satisfied. The linear shape of the left side of the

D-shaped region is a consequence of δzero being greater than one and δzero only depending

upon α3 and α4 (see Figure 4.2(b)). Output assumptions HH2) and HH4) are satisfied for

the entire walking motion inside the shaded region of Figure 4.2(c). Inside the triangular

region above the shaded region the decoupling matrix becomes singular for at least one

point along the walking motion. Inside the shaded region of Figure 4.2(d), the two ground

contact assumptions given in GH2) and GH4) are met; namely, the the vertical component

of the ground reaction force is positive, the ratio of the horizontal component to the vertical

component does not exceed the coefficient of static friction (assumed here to be 0.6), and

at impact, the swing leg neither slips nor rebounds. Points inside this region satisfy all

gait assumptions, GH1)–GH6), and output assumptions, HH1)–HH5). The grid was refined

about this region and the average walking rate, ν̄, and cost,3

J(α) =
1

ph
2(q

−
0 )

∫ TI(ξ−2 )

0
||u∗(t)||22dt, (4.39)

for points inside the region were calculated (see Figure 4.3 and Figure 4.4 for contour plots).

It is interesting to note that for this example, the cost associated with walking decreases

with increased speed! This is, of course, not the case in general.

For α2 = 0.7 and α3 = 0.5575 the system was simulated for three steps. Table 4.1 and

Figure 4.5 give various statistics and plots of interest. Note that the discontinuities in the

plots of Figure 4.5 are due to impacts and coordinate relabeling. The swing foot height,

Figure 4.5(f), becomes negative due to the foot scuffing that is unavoidable with this simple

model (see Section 2.4). Figure 4.6 gives a stick animation of the simulation.

In this simple example it is clear how to choose α2 and α3 to achieve walking with

certain characteristics. As the Bézier polynomial order, Mα, and the number of links, N ,
3See the next subsection for a discussion of this cost function.
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Figure 4.5: Plots corresponding to an example two-link walker gait at 0.42 m/s for three

steps. The discontinities are due to impacts and coordinate relabeling.
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Figure 4.6: Stick animation of two-link walker taking three steps from left to right. The

stance leg is dotted.

J(α) ζ∗2 δ2
zero Vzero(θ−) V MAX

zero ν̄

(N2m) (kgm2/s)2 - (kgm2/s)2 (kgm2/s)2 (m/s)

10.82 4.45 0.931 −0.306 3.581 0.420

Table 4.1: Example gait statistics for the two-link walker with α2 = 0.7 and α3 = 0.5575.

increase, choosing parameters becomes significantly more difficult. This motivates the use

of optimization as an automated means of parameter selection.

4.3.2 The optimization problem

The parameter selection problem will now be cast as a constrained nonlinear optimiza-

tion problem that may be solved with any number of the numerical optimization tools avail-

able. The objective will be to choose the matrix of output function parameters, α, such

that (2.23) with output (4.1) with h0, hd, and θ as in (4.2), (4.8), and (4.3), respectively,

and feedback (3.104) admit an exponentially stable periodic orbit while approximately min-

imizing some cost function and satisfying a number of constraints. This problem may be

solved on the full hybrid model (2.23), but it is computationally expensive, and increasingly
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so as the order of the Bézier polynomials of (4.8) and the number of links, N becomes large.

Choosing the parameters of (4.2), (4.8), and (4.3) to satisfy the assumptions of Corollary

4.1, however, guarantees that the hybrid zero dynamics (3.70) exist and the unique control

associated with the single support phase of model (2.23) is given by (3.35). In this way, the

optimization problem may be solved on the (2-dimensional) hybrid zero dynamics (3.70)

instead of on the full (2N -dimensional) hybrid model (2.23).

Posing the constrained nonlinear optimization problem requires two ingredients: a cost

function and a set of constraints. Here, the cost function will be some metric on the hybrid

zero dynamics and the constraints will ensure the following: the stability conditions (3.92)

and (3.93) are met; that the gait hypothesis GH2), GH4) and GH6) and output function

hypotheses HH2), HH4), and HH5) are met; and that the the resultant gait has other

desired properties.

In the optimization literature on biped gait design the two most popular cost functions

to minimize over a single step are

J1(α) :=
1

ph
2(q

−
0 )

∫ TI(ξ−2 )

0
||u∗(t)||22dt (4.40)

and

J2(α) :=
1

ph
2(q

−
0 )

∫ TI(ξ−2 )

0
〈q̇(t), Bu∗(t)〉dt (4.41)

where q̇i calculated from (3.46), TI(ξ−2 ) is the step duration, ph
2(q

−
0 ) corresponds to step

length, u∗(t) is the result of evaluating (3.35) along a solution of the hybrid zero dynamics,

and 〈a, b〉 := a′b. The cost (4.40) has the effect of minimizing the peak torque over a step

while (4.41) has the effect of minimizing total power. The total number of parameters for

optimization is (N − 1)(Mα − 1); Mα − 1 free parameters for each output.4

Remark 4.3. The weighting matrix

W (q) := diag(w1(q̇1), . . . , wN (q̇N )), (4.42)

with

wi(qi) :=

 wi,0, sgn(q̇i) ≤ 0

wi,1, sgn(q̇i) > 0,
(4.43)

4By Corollary 4.1 two parameters per output can be calculated from the other Mα − 1.
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wi,0, wi,1 > 0 for i = 1, . . . , N , is sometimes included in the inner product of (4.41) so that

〈·, ·〉 is replaced with

〈a, b〉W := a′Wb. (4.44)

This permits different axes to have different weights associated with their motion as well as

different weights to be associated with motions in their positive and negative directions.

The constraints may be divided into two classes: nonlinear inequality constraints (NIC’s)

and nonlinear equality constraints (NEC’s). The following constraints are typically required:

Nonlinear Inequality Constraints

The following three NIC’s enforce modeling assumptions per constraints on

NIC1) minimum normal ground reaction force experienced by the stance leg end,

FN
1 > 0; (4.45)

NIC2) maximum ratio of tangential to normal ground reaction forces experienced by the

stance leg end, ∣∣∣∣FT
1

FN
1

∣∣∣∣ < µs; (4.46)

NIC3) swing leg end height to ensure S intersects Z only the end of the step.

Note that other NIC’s, such as a constraint on minimum hip height, maximum swing leg

deflections, etc., are in general required to achieve a desired walking style.

Nonlinear Equality Constraints

There are five natural NEC’s that enforce

NEC1) the average walking rate, ν̄, defined as step length divided by step duration

ν̄ :=
ph
2(q

−
0 )

TI(ξ−2 )
; (4.47)

NEC2) that the post-impact velocity of the swing leg is positive;

NEC3) the validity of the impact of the swing leg end with the walking surface;
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NEC4) the existence of a fixed point, ζ∗2 > V MAX
zero /δ2

zero; and

NEC5) the stability of the fixed point, 0 < δ2
zero < 1.

In this generic form, the parameter optimization problem may be solved with any num-

ber of the numerical optimization tools available. For the work reported in this dissertation,

the optimization problem was solved with MATLAB’s constrained nonlinear optimization

tool fmincon with the hybrid zero dynamics implemented in C as a MATLAB S-Function

(see Appendix B).

It is important to emphasize that the use of the hybrid zero dynamics greatly reduces the

computational cost of evaluating the cost function (4.40) or (4.41). Moreover, stability of the

closed-loop system may be included as a simple optimization constraint. After optimization,

hypothesis HH2), the invertibility of the decoupling matrix, must be checked. This condition

is essentially guaranteed whenever J(α) is finite, since singularities in LgLfh will normally

result in u∗ taking on unbounded values; however, a simply connected, open set about the

periodic orbit where the decoupling matrix is invertible can be explicitly computed by a

method developed in Appendix C.

4.3.3 The optimization problem in Mayer form

The optimization problem may also be expressed in Mayer form [Ban86, p. 332] as

ẋ1 = κ1(x1)x2 (4.48)

ẋ2 = κ2(x1) (4.49)

ẋ3 = J̇(x1, x2, α). (4.50)

where J̇ is the time derivative of the cost. Mayer form is used by parameter optimization

algorithms that construct an approximate solution to some parameterized set of first order

differential equations such that some cost is minimized. Appending the cost as a state

enables the cost calculation and solution approximation to be performed with the same

algorithm. The cost function (4.40), for example, may be appended as

J̇1(x1, x2, α) :=
1

ph
2(q

−
0 )
||u∗(x1, x2, α)||22 (4.51)
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so that

x3(t0) =
1

ph
2(q

−
0 )

∫ t0

0
||u∗(t)||22dt. (4.52)

Posing the problem in Mayer form requires another class of constraints, explicit boundary

constraints (EBC’s), constraints that give the initial or final state. The following EBC’s are

required.

Explicit Boundary Constraints

There are five EBC’s that give the state at t = 0 and t = TI(ξ−2 ),

EBC1) x1(0) = c∆q σq;

EBC2) x2(0) = γ ◦∆ ◦ σ(ζ∗2 );

EBC3) x3(0) = 0;

EBC4) x1(TI(ξ−2 )) = c σq; and

EBC5) x2(TI(ξ−2 )) = γ ◦ σ(ζ∗2 ).

Note that x3(TI(ξ−2 )) cannot be explicitly given as its calculation requires knowledge of x1

and x2 over the entire time interval of optimization. Also note that without use of the

hybrid zero dynamics the optimization in Mayer form would have 2N states, the derivative

of the cost, and N − 1 control signals to be included in the problem formulation.
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CHAPTER 5

Additional tools

This chapter provides two additional tools that enable the design of controllers that are

able to induce walking at more than a single, fixed average walking rate (in steady state).

The first is a method for serially composing two controllers so as to transition the robot

from walking at a given fixed average walking rate to another, without loss of stability.

The controller design is motivated by a switching idea presented in [BAK99]: controllers

were first designed to accomplish the individual tasks of juggling, catching, and palming

a ping-pong ball by a robot arm; these controllers were then sequentially composed via

switching to accomplish the complex task of maneuvering the ping-pong ball in a three-

dimensional workspace with an obstacle. The regions of attraction of each controller were

first empirically estimated within the full state space of the robot. Switching from one

controller to another without loss of stability was then accomplished by comparing the

current state of the robot to the region of attraction of the controller for the next desired

task. The problem faced in this note is more challenging in that the domains of attraction

of any two of the individual controllers may have empty intersection, and hence a transition

controller will be required to steer the robot from the region of attraction of one controller

into the region of attraction of a second, “nearby” controller.

The second tool is an event-based PI controller that is able to regulate average walking

rate to a continuum of values, to reject the effect of moderate disturbances on average walk-

ing rate, and to hasten convergence of average walking rate to its steady state value. The

controller uses PI control to adjust the parameters in a controller that, for fixed parameter
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values, induces an exponentially stable, periodic orbit. Parameter adjustment takes place

just after impact (swing leg touching the ground). The analysis of the controller is based on

the restricted Poincaré map of the hybrid zero dynamics. This idea is most closely related

to the work of [AF99].

5.1 Transitioning

Let α and β be two regular sets of parameters of output (4.1) with h0(q) and θ(q) as

in (4.2) and (4.3), respectively, with corresponding zero dynamics manifolds, Zα and Zβ .

Suppose that ∆(S ∩ Zα) ⊂ Zα and ∆(S ∩ Zβ) ⊂ Zβ , and that there exist exponentially

stable periodic orbits,1 Oα ⊂ Zα and Oβ ⊂ Zβ ; denote the corresponding controllers by

Γα and Γβ. The goal is to be able to transition from Oα to Oβ without the robot falling

(i.e., with stability guaranteed). If it were known that the domains of attraction of the two

orbits had a non-empty intersection, then the method of [BAK99] could be applied directly.

Numerically evaluating the domains of attraction on the full-order model is unpleasant, so

another means of assuring a stable transition is sought that is based on easily computable

quantities, the domains of attraction of the restricted Poincaré maps associated with Γα

and Γβ.

Since in general Zα ∩ Zβ = ∅, the method for providing a stable transition from Zα

and Zβ will be to introduce a one-step transition controller Γ(α→β) whose (swing phase)

zero dynamics manifold Z(α→β) connects the zero dynamics manifolds Zα and Zβ ; (see

Figure 5.1). More precisely, switching will be synchronized with impact events and the zero

dynamics manifold Z(α→β) will be chosen to map exactly from the one-dimensional manifold

∆(S ∩ Zα) (i.e., the state of the robot just after impact with S under controller Γα) to the

one-dimensional manifold S∩Zβ (i.e., the state of the robot just before impact with S under

controller Γβ). The one-step transition controller Γ(α→β) differs from a deadbeat controller

in that Γ(α→β) takes all points in a subset of manifold ∆(S ∩ Zα) into a subset of the

manifold S ∩Zβ as opposed to a deadbeat controller that would map a subset of ∆(S ∩Zα)

to a point in S ∩Zβ . The design of multi-step transition controllers is also possible but not

1Typically, these would correspond to walking at different average walking rates.
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∆(S ∩ Zα)

∆(S ∩ Zβ)
S ∩ Zα

S ∩ Zβ

Zα Zβ

Z(α→β)

Figure 5.1: Composition of two controllers Γα and Γβ via transition controller Γ(α→β).

Under the action of Γα the dynamics evolve on Zα. Switching to Γ(α→β) when the state

enters ∆(S ∩ Zα) causes the dynamics to evolve along Z(α→β) to S ∩ Zβ . Switching to Γβ

when the state enters S ∩ Zβ causes the dynamics to evolve on Zβ .

addressed here.

By Lemma 4.1 and Lemma 4.2 any zero dynamics manifold Z(α→β) with parameters

(α→ β)0 = α0

(α→ β)1 =
Mα

M(α→β)

θ−β − θ+
α

θ−α − θ+
α

(α1 − α0) + α0

(α→ β)M(α→β)−1 =
Mβ

M(α→β)

θ−β − θ+
α

θ−β − θ+
β

(
βMβ−1 − βMβ

)
+ βMβ

(α→ β)M(α→β)
= βMβ

θ+
(α→β) = θ+

α

θ−(α→β) = θ−β

(5.1)

satisfies Z(α→β)∩∆(S ∩Zα) = ∆(S ∩Zα) and ∆(S ∩Z(α→β)) = ∆(S ∩Zβ) (see Figure 5.1).

The choice of the intermediate parameter values, (α → β)i, i = 2 to M(α→β) − 2 affects

the walking motion, and one could choose their values through optimization, for example,

to minimize the torques required to evolve along the surface Z(α→β). However, the simple

choice
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(α→ β)i = (αi + βi)/2, i = 2 to M(α→β) − 2, (5.2)

has proven effective in practice. The reason for this seems to be intimately linked the use

of Bézier polynomials (see Section 4.2).

Assume that the parameter matrix given in (5.1) and (5.2) is regular and let Γ(α→β)

be an associated controller; then Γ(α→β)|Z(α→β)
is uniquely determined by the matrix of

parameters (α → β). The goal now is to determine under what conditions Γ(α→β) will

effect a transition from the region of attraction (in S∩Zα) of Oα to the region of attraction

(in S ∩ Zβ) of Oβ .

Let P(α→β) : S → S be the Poincaré return map of the model (2.23) in closed loop with

Γ(α→β) and consider P(α→β)|(S∩Zα). By construction of Z(α→β), ∆(S∩Zα) ⊂ Z(α→β). Since

Z(α→β) is invariant under Γ(α→β), it follows that P(α→β)(S ∩ Zα) ⊂ S ∩ Z(α→β). But by

construction, S ∩ Z(α→β) = S ∩ Zβ . Thus, the restriction of the Poincaré return map to

S ∩ Zα induces a (partial) map

ρ(α→β) : S ∩ Zα → S ∩ Zβ . (5.3)

In Section 3.5, a closed-form expression for ρ(α→β) is computed on the basis of the two-

dimensional zero dynamics associated with Z(α→β).

Let Dα ⊂ S ∩ Zα and Dβ ⊂ S ∩ Zβ be the domains of attraction of the restricted

Poincaré maps ρα : S ∩ Zα → S ∩ Zα and ρβ : S ∩ Zβ → S ∩ Zβ associated with the

orbits Oα and Oβ, respectively. (Since the existence of exponentially stable, periodic orbits

has been assumed, these domains are non-empty and open.) It follows that ρ−1
(α→β)(Dβ) is

precisely the set of states in S ∩ Zα that can be steered into the domain of attraction of

Oβ under the control law Γ(α→β). In general, from stability considerations, one is more

interested in Dα ∩ ρ−1
(α→β)(Dβ), the set of states in the domain of attraction of Oα that can

be steered into the domain of attraction of Oβ in one step under the control law Γ(α→β)

(see Figure 5.1).

Theorem 5.1. (Serial composition of stable walking motions) Assume that α and β

are regular parameters of output (4.1) with h0, hd, and θ as in (4.2), (4.8), and (4.3), re-

spectively, and that (α→ β) defined by (5.1) and (5.2) is also regular. Suppose furthermore

that
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1. ∆(S ∩ Zα) ⊂ Zα and ∆(S ∩ Zβ) ⊂ Zβ;

2. there exist exponentially stable, periodic orbits Oα and Oβ in Zα and Zβ, respectively,

so that the domains of attraction Dα ⊂ S ∩ Zα and Dβ ⊂ S ∩ Zβ of the associated

restricted Poincaré maps are non-empty and open.

Then the set of states in Dα that can be steered into Dβ in one step under any control law

Γ(α→β) satisfying assumptions CH2)–CH5) of Section 3.6 is equal to Dα ∩ ρ−1
(α→β)(Dβ).

Proof. This follows directly from the definition of ρ(α→β).

An example is given in Section 6.5.3.

5.2 Event-based PI control of average walking rate

For a given controller Γα satisfying the hypotheses of CH2)–CH5) so that Zα is invariant

under the swing phase zero dynamics in closed loop with Γα, the average walking rate is

computed from the model (2.23) as follows. Let Pα : S → S be the Poincaré return map and

let TI,α : TQ → R≥0 ∪ {∞} be the time to impact function (2.25). Formally, the average

walking rate is the (partial) map ν̄α : S → R≥0,

ν̄α :=
ph
2 ◦ Pα

TI,α ◦∆
, (5.4)

where, ph
2 , when evaluated on S, computes step length; see Figure 1.4. On the open subset

S̃ ⊂ S where 0 < TI,α ◦∆ < ∞ and the associated impacts are transversal to S, both Pα

and TI,α ◦∆ are well-defined and continuous (see [GAP01, Sec. III.B]). It follows that ν̄α

restricted to S̃ is continuous. Since Γα is continuous but not Lipschitz continuous, ν̄α is

not smooth on any open subset of S. However, if α is a regular parameter value of output

(4.1) with h0, hd, and θ as in (4.2), (4.8), and (4.3), respectively, giving rise to a hybrid

zero dynamics that evolve on the associated zero dynamics manifold Zα, then ν̄α restricted

to S̃ ∩ Zα depends smoothly on the states and the parameter values α used to define the

outputs, (4.1).

Let A = R
(N−1)×(M+1) be the set of all Bézier polynomial coefficients, α, for the output

(4.1) with h0, hd, and θ as in (4.2), (4.8), and (4.3), respectively. For this section, it is
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TQ
TQ

TQ
TQ

TQ
TQ

A

Figure 5.2: Fiber bundle used for event-based PI control. The fiber bundle π : A×TQ → A.

The base, A = R
(N−1)×(M+1), is the set of all Bézier polynomial coefficients. Above each

point in the base are the fibers, copies of the state space, TQ, of the robot.

important to note that the degrees of the Bézier polynomials in hd are fixed. Partition A,

and, consequently, each α = [α0, . . . , αM ] ∈ A, into two sets:

αinvar := [α0, α1] ∈ Ainvar := R
(N−1)×2, (5.5)

the parameters used to render the swing phase zero dynamics invariant under the impact

mapping and

αfree := [α2, . . . , αM ] ∈ Afree := R
(N−1)×(M−1), (5.6)

those freely chosen to affect the shape of the walking motion. Note that A = Ainvar ×Afree

and α = [αinvar, αfree].

The natural geometric object to use in the analysis of event-based, step-to-step parame-

ter modifications is a fiber bundle. The fiber bundle structure will elucidate the interaction

between parameter modifications and the evolution of a Poincaré-like mapping, the flow

map. To that end, define the trivial fiber bundle

π : A× TQ → A (5.7)

by π(α, x)→ α for α ∈ A and x ∈ TQ (see Figure 5.2). Consider S ⊂ A× TQ defined by

S := {(α, x) ∈ A× TQ | α ∈ A, pv
2(x) = 0, ph

2(x) > 0}. (5.8)
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which is a fiber bundle with base A and fiber π−1
S (α) = S for each α ∈ A where πS = π|S .

The fiber bundle S corresponds to the set of all parameters along with copies of the Poincaré

section. Define Ā ⊂ A to be the set of regular parameters, i.e., for each ᾱ ∈ Ā the

corresponding output satisfies HH1)–HH5). The set Ā is open since HH2), HH3), and

HH5) are rank conditions2 and since condition HH4) requires a zero of a function that

depends continuously on ᾱ to remain in an open set. With Ā, Z ⊂ A×TQ may be defined

as

Z := {(α, x) ∈ A× TQ | α ∈ Ā, hα(x) = 0, Lfhα(x) = 0} (5.9)

which is a fiber bundle with base Ā and fiber π−1
Z (ᾱ) = Zᾱ, ᾱ ∈ Ā and πZ = π|Z . The

fiber bundle Z corresponds to the set of parameters giving rise to well-defined swing phase

zero dynamics along with the associated zero dynamics manifolds. Since, by assumption,

for each ᾱ ∈ Ā the output satisfies HH5), the intersection S ∩Z is also a fiber bundle with

base Ā ⊂ A and fiber π−1
S∩Z(ᾱ) = S ∩ Zᾱ, ᾱ ∈ Ā where πS∩Z = π|S∩Z .

In what follows, the fiber bundle structure of S ∩ Z will permit the creation of event-

based PI controllers which modify parameters step-to-step—even those that change S ∩ Z

step-to-step. Let ᾱ ∈ Ā and suppose that δα ∈ R
(N−1)×(M+1) is such that

δα �= 0 and (δα)0 = (δα)1 = 0. (5.10)

Then, for v, w ∈ R sufficiently small in magnitude

a(ᾱ, v, w) = [ainvar(ᾱ, v, w), ᾱfree] + wδα (5.11)

is also regular. The function

ainvar(ᾱ, v, w) := [ainvar,0(ᾱ, v), ainvar,1(ᾱ, v, w)] (5.12)

is defined to ensure invariance of the zero dynamics step-to-step (when w �= v). To ease the

cumbersome notation, for the remainder of this section define ᾱv := ᾱ+ vδα and, similarly,

ᾱw := ᾱ+ wδα. With this notation, Theorem 4.1 gives ainvar,0 and θ+
a ainvar,0(ᾱ, v)

θ+
a

 := H∆qH
−1

 (ᾱv)M

θ−ᾱv

 (5.13)

2An equivalent condition for a square matrix to be full rank is for its determinant to be nonzero. The
determinant is a continuous function of matrix entries which, in the case of HH2), HH3), and HH5), are a
function of ᾱ.
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which ensures that for each x ∈ S if hᾱ(x) = 0, then hᾱ ◦∆(x) = 0. If δzero,ᾱ �= 0, then by

Theorem 4.1 ainvar,1 is

ainvar,1(ᾱ, v, w) := H0∆q̇H
−1


M

θ−ᾱv
− θ+

ᾱv

((ᾱv)M − (ᾱv)M−1)

1


· θ

−
ᾱw
− θ+

ᾱw

M

κ1,ᾱv(θ
−
ᾱv
)

κ1,ᾱw(θ
+
ᾱw

)
1

δzero,ᾱv

+ ainvar,0(ᾱ, v) (5.14)

which together with ainvar,0 ensures that for each x ∈ S if Lfhᾱ(x) = 0, then Lfhᾱ ◦∆(x) =

0.

Assume that there exists some ᾱ∗ ∈ Ā such that there exists a corresponding exponen-

tially stable periodic orbit of the restricted Poincaré map, defined in Section 3.5,

ρᾱ∗ : S ∩ Zᾱ∗ → S ∩ Zᾱ∗ . (5.15)

Let z∗̄α∗ ∈ π−1
S∩Z(ᾱ

∗) be the corresponding fixed point of ρᾱ∗ . For ᾱ∗, v, and w fixed, define

the induced, restricted flow map

ρ̄a(ᾱ∗,v,w) : π
−1
S∩Z ◦ a(ᾱ∗, · , v)→ π−1

S∩Z ◦ a(ᾱ∗, v, w) (5.16)

by

ρ̄(z, a(ᾱ∗, v, w)) : ϕa(ᾱ∗,v,w)(TI,a(ᾱ∗,v,w)(z), z) (5.17)

for z ∈ π−1
S∩Z ◦ a(ᾱ∗, · , v). Unlike the restricted Poincaré map, ρ, which maps from a single

fiber to itself, the induced, restricted flow map, ρ̄, maps from one fiber (parameterized by

vδα) to another (parameterized by wδα). The parameters δα, v, and w will now be used

to implement event-based PI control on the induced, restricted flow map, (5.16).

Define the single-input, single-output dynamic system on S ∩ Z × R
2,

z(k + 1) = ρ̄(z(k), α(k))

α(k) = a(ᾱ∗, v(k), w(k))

v(k + 1) = w(k)

η(k + 1) = ν̄(z(k), α(k))

y(k) = η(k)

(5.18)
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with input w ∈ R and output y ∈ R equal to the average walking rate. It’s linearization is

δz(k + 1) = a11δz(k) + a12δv(k) + b1δw(k)

δα(k) = δa(ᾱ∗, v(k), w(k))

δv(k + 1) = δw(k)

δη(k + 1) = a31δz(k) + a32δv(k) + b3δw(k)

δy(k) = δη(k)

(5.19)

where

a11 :=
∂ρ̄

∂z
(z(k), a(ᾱ∗, v(k), w(k)))

∣∣∣∣z=z∗
ᾱ∗

v=0

w=0

a12 :=
∂ρ̄

∂v
(z(k), a(ᾱ∗, v(k), w(k)))

∣∣∣∣z=z∗
ᾱ∗

v=0

w=0

b1 :=
∂ρ̄

∂w
(z(k), a(ᾱ∗, v(k), w(k)))

∣∣∣∣z=z∗
ᾱ∗

v=0

w=0

a31 :=
∂ν̄

∂z
(z(k), a(ᾱ∗, v(k), w(k)))

∣∣∣∣z=z∗
ᾱ∗

v=0

w=0

(5.20)

a32 :=
∂ν̄

∂v
(z(k), a(ᾱ∗, v(k), w(k)))

∣∣∣∣z=z∗
ᾱ∗

v=0

w=0

b3 :=
∂ν̄

∂w
(z(k), a(ᾱ∗, v(k), w(k)))

∣∣∣∣z=z∗
ᾱ∗

v=0

w=0

The linearized system (5.19) is exponentially stable if, and only if, |a11| < 1. The DC-gain

is non-zero if, and only if,

a31(b1 + a12) + (a32 + b3)(1− a11) �= 0 (5.21)

Theorem 5.2. Let ᾱ∗ ∈ Ā be a regular parameter value for which there exists an expo-

nentially stable periodic orbit in Zᾱ∗. Denote the corresponding fixed point of the Poincaré

return map by z∗̄α∗. Assume there exists δα satisfying (5.10) and such that the non-zero

DC-gain condition, (5.21), holds. Then average walking rate can be regulated via PI con-

trol. In particular, there exist ε > 0, and scalars KP and KI such that for all η∗ such that
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|η∗ − ν̄(z∗̄α∗ , ᾱ∗)| < ε, the system consisting of (5.18) in closed-loop with the proportional

plus integral controller

e(k + 1) = e(k) + (η∗ − η(k))

w(k) = KP (η∗ − η(k)) +KIe(k)
(5.22)

has an exponentially stable equilibrium, and thus, when initialized sufficiently near the equi-

librium, limk→∞(η∗ − η(k)) = 0.

Proof. The linear system (5.19) is exponentially stable because the exponential stability of

the fixed-point z∗̄α∗ implies that |a11| < 1. This, combined with the DC-gain being non-zero,

implies the existence of a PI controller of the form

δe(k + 1) = δe(k) + (δη∗ − δη(k))

δw(k) = Kp(δη∗ − δη(k)) +KIδe(k)
(5.23)

such that the closed-loop system (5.19) with (5.23) is exponentially stable and satisfies

limk→∞(δη∗ − δη(k)) = 0, where δη∗ − ν̄(zᾱ∗ , ᾱ∗). Since the closed-loop of (5.19) with

(5.23) is the linearization of (5.18) in closed-loop with (5.22), the result follows.
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CHAPTER 6

Experimental verification

This chapter describes the experimental verification of the theoretical framework devel-

oped in Chapters 2–5 on the prototype biped RABBIT. The framework’s ability to sys-

tematically generate controllers with desired kinematic and dynamic properties enabled the

direct implementation of controllers that induced stable walking. To have the dynamic de-

sign specifications more closely match the experimental result, three implementation issues

had to be addressed: the inertia added by the boom system used to constrain RABBIT to

be planar, friction in the gear reducers, and the discrepancy between the energy dissipated

by RABBIT’s swing leg end ground contact and the energy dissipation as predicted by the

rigid impact model. The chapter begins with a description of the prototype, continues with

a controller design example, then discusses several implementation issues, and concludes

with a presentation of six experiments.

6.1 The prototype RABBIT

The five-link, planar prototype RABBIT (see Figure 6.1(a)) is located at the Laboratoire

D’Automatique de Grenoble in Grenoble, France. It was constructed jointly by several

French research laboratories, spanning Mechanical Engineering, Automatic Control, and

Robotics [Che03a, CAA+02]. The RABBIT project was initiated in 1997 and is funded by

the French CNRS and the French National Research Council. Its central mission is to build

a prototype for studying truly dynamic motion control. In particular, the mechanism was

designed to allow for high speed walking and running.
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(a) A front view. (b) The author guides RABBIT through

a step. Note the “training wheels” con-

nected to boom.

Figure 6.1: Photos of the biped prototype RABBIT.

q5

q1 q2

−q3−q4

Figure 6.2: Schematic of the prototype RABBIT with measurement conventions.
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RABBIT’s five links are connected by revolute joints that form two symmetric legs and

a torso (see Figure 6.2). An actuator supplies torque between each of the four internal

joints: one at each knee and one between the torso and each femur. All actuators are

identical and capable of producing a peak torque of 150 Nm. To prevent motions in the

frontal plane, RABBIT was constructed with a boom attached at the hip; see Figure 6.3.

RABBIT’s symmetry about the frontal plane enables it to walk in either direction: clockwise

or counterclockwise. RABBIT has no feet and no means of supplying actuation between

the stance leg end and the ground. The model of RABBIT therefore satisfies RH1)–RH5),

and, with the coordinate choice indicated in Figure 6.2, satisfies RH6). The equations

of motion during the swing phase are (2.4) with D, E, G, and B given in Appendix D.

These equations correspond to an underactuated, planar five-link inverted pendulum. The

linear transformation matrix, R, required by the rigid impact map (2.20) is also given in

Appendix D. The extended model (2.5) required by the impact map is not given, but may

be readily derived using the methodology given in Appendix E. The link parameter values

were identified by a group associated with the project and are given in Table 6.1 with

the measurement conventions given in Figure 6.4. To obtain configuration information,

encoders are located at each internal joint giving the robot’s shape, and between the boom

and hip giving the robot’s absolute orientation. Binary contact switches located at the leg

ends are used to detect whether or not a leg is in contact with the walking surface (see

Figure 6.5). Initially, RABBIT had force sensors incorporated as structural components of

its tibias to measure ground reaction forces. The force sensors were too fragile and failed

after only several days of experiments. They were replaced with metal blanks and the

contact switches. The binary contact switches provide less information than did the force

sensors but are more mechanically robust.

For a real-time control platform RABBIT uses a dSPACE DS1103 system. With the

DS1103 system, run-time software is created by automatic translation and cross-compiling

of Simulink diagrams for the system’s 400 MHz PowerPC 604e DSP, allowing the real-time

controller software to be developed in a high-level language. This obviates the need for

low-level I/O programming and facilitates debugging. In addition, the system provides

low-level computation, digital-to-analog and analog-to-digital conversion, as well as a user
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Figure 6.3: The biped prototype RABBIT’s experimental setup.

Model parameter Units Label Value

MT 12

Mass kg Mf 6.8

Mt 3.2

lT 0.63

Length m lf 0.4

lt 0.4

IT 1.33

Inertia m2kg If 0.47

It 0.20

pMT 0.24

Mass center m pMf 1.11

pMt 0.24

Table 6.1: Identified link parameters for RABBIT.
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femur

lT

pMT

u1, u2

(a) Schematic of torso.

torso

lf

lt

pMf

pMt

u3, u4

(b) Schematic of leg.

Figure 6.4: Schematic of RABBIT’s link parameter measurement conventions.

Figure 6.5: RABBIT’s frontal plane leg end wheel with contact switch.
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interface—all in a single package.

6.2 Example controller design

This section illustrates the application of the theoretical framework for stability analysis

and performance enhancement on the model of RABBIT. A controller based upon the results

of Chapters 3 and 4 that induces walking at 0.8 m/s will be designed and simulated.

Using the Bézier polynomial almost linear output function structure of (4.1) with h0(q)

and θ(q) as in (4.2) and (4.3), controller design is equivalent to choice of 1) the quantities

to be controlled, H0, 2) the function θ(q), c, 3) the Bézier polynomial order, M , and 4) the

Bézier polynomial coefficients, α. Choosing

H0 =
[

I 0

]
(6.1)

c =
[
−1 0 −1/2 0 −1

]
(6.2)

clearly guarantees that H = [H ′
0 c′]′ is invertible, satisfying HH3), and results in the output

y = h0(q)− hd ◦ θ(q) (6.3)

=



q1

q2

q3

q4


− hd ◦ θ(q). (6.4)

Figure 6.6 gives θ(q) corresponding to this choice of c. In light of Remark 4.2, M is chosen

to be 6 which leaves five free parameters to be chosen for each output. This implies a total

of 20 output function parameters to be chosen via optimization. For a particular choice of

α, HH5) must be checked to ensure smoothness of S ∩Z. This entails evaluating the rank1

of

∂

∂q

 h(q)

pv
2(q)


∣∣∣∣∣∣∣
x∈S∩Z

=


H0 −

M

θ− − θ+
(αM − αM−1) c

∂pv
2(q)
∂q

∣∣∣∣
q=q−0

 . (6.5)

where pv
2(q) is the height of the swing end. Hypothesis HH2), the invertibility of the

decoupling matrix, is checked for choice of α by using the technique presented in [PGWA01].
1See Remark 3.2 on page 42.
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θ(q)

Figure 6.6: The measurement convention for the scalar function θ(q). This θ(q) was used

for the example and exerpiments.

If the optimization constraints are satisfied, as detailed in Section 4.3, so will the remaining

gait, impact model, and output function hypotheses.

The optimization problem is posed as described in Section 4.3.2 to choose the 20 free

parameters of α. Three additional nonlinear inequality constraints are imposed to obtain a

human-like gait. The first two, when satisfied, prevent the stance and swing leg knees from

hyper-extending,

NIC4)

q3 < 0, (6.6)

NIC5)

q4 < 0, (6.7)

and the third, when satisfied, prevents the hip from dropping too low,

NIC6)

pv
H − pv

H,min > 0, (6.8)

where pv
H,min is the minimum hip height. MATLAB’s constrained nonlinear optimization

tool fmincon was used to approximately minimize the cost J1(α), (4.40), subject to NIC1)–

NIC6) and NEC1)–NEC5).
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J(α) ζ∗2 δ2
zero Vzero(θ−) V MAX

zero ν̄

(N2m) (kgm2/s)2 - (kgm2/s)2 (kgm2/s)2 (m/s)

91.0 549 0.741 −142 182 0.800

Table 6.2: Example gait statistics for RABBIT.

Table 6.2 summarizes the result of optimizing for a desired average walking rate of

0.8 m/s. From a reasonable initial condition, the optimization took approximately 1 min

on a PC based computer with a 2 GHz Pentium IV processor. The walking motion is

exponentially stable since δ2
zero/(1− δ2

zero)Vzero(θ−) + V MAX
zero = −224 < 0 and 0 < δ2

zero < 1

per Corollary 3.1. This controller was initialized on S ∩Z at the fixed point and simulated

for three steps using MATLAB with m-files generated via the method described in Appendix

F. Figure 6.7 is a stick figure animation of the result. Note that the walking motion appears

to be natural. Figure 6.8 gives the joint trajectories. Figures 6.9(a) and 6.9(b) are the motor

torques for the hip and knees. Of the four associated torques, the peak torque occurs at

the stance leg hip and is approximately 64 Nm. Figures 6.9(c) and 6.9(d) are plots of

the motor speed versus torque requirements for one step of the walking motions. Note

that the requirements for this motion are well below the manufacturer’s limits indicated by

the shaded region. Figures 6.10(a) and 6.10(b) are normal and tangential ground reaction

forces. Figure 6.10(c) is a plot of their ratio. Note that the ratio FT
1 /FN

1 is substantially

below the static friction limit, µs = 0.6. The trajectory of the swing leg end height is given

in Figure 6.10(d).

6.3 Implementation issues

This section presents three important aspects of RABBIT’s implementation whose ef-

fects are not addressed by the theoretical framework. They are the boom used to constrain

RABBIT’s motions to be planar, RABBIT’s gear reducers, and RABBIT’s irregular, non-

rigid walking surface. To have the dynamic design specifications more closely match the

experimental result, these effects were accommodated in the design of controllers for the
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0 m 1 m

Figure 6.7: Stick animation of a simulation of RABBIT taking three steps. Note that

walking is from left to right and that the stance leg is dotted.

experiments presented in Section 6.5.

6.3.1 Constraining RABBIT to be planar

The boom attached to RABBIT’s hip constrains RABBIT’s motions to the sagittal plane

and constrains the sagittal plane to be tangent to a sphere centered at the universal joint

that connects the boom to the center stand (see Figure 6.3). RABBIT therefore walks in a

circle whose radius is determined by the length of the boom. The boom system consists of

the boom, center stand, counterweight, and cabling (see Figure 6.11). “Training wheels,”

shown in Figure 6.1 but not drawn in Figure 6.11, were attached to the boom to provide a

measure of safety. The training wheel’s post has a prismatic joint with a stop to prevent

the robot’s hip from dropping too low. The boom system also includes two encoders at

the universal joint on center stand to measure horizontal and vertical angular displacement

of the boom about the stand. A boom system of this sort was also used for MIT Leg

Lab’s Spring Flamingo [PCT+01] as well as several of their other robots. The other typical

means of constraining a biped robot’s motion to be planar is through the the use of wide

feet. This idea was used in the design of Kenkyaku [FM86] and Meltran II [KT96], among

others. The advantage of a boom system over wide feet is that a boom is able to constrain

the robot’s motion even when none of the feet are on the ground. This is important in

89



0 0.5 1 1.5

3

3.2

3.4

3.6

t (sec)

(r
ad
)

(a) q1 (solid) and q2 (dashed) versus time.

−0.6

−0.5

−0.4

−0.3

0 0.5 1 1.5
t (sec)

(r
ad
)

(b) q3 (solid) and q4 (dashed) versus time.

0

0.02

0.04

0.06

0.08

0.5 1 1.5
t (sec)

(r
ad
)

(c) q5 versus time.

−2

−1

0

0 0.5

1

1 1.5

2

t (sec)

(r
ad

/s
ec
)

(d) q̇1 (solid) and q̇2 (dashed) versus time.

−2

−1

0

0 0.5

1

1 1.5

2

t (sec)

(r
ad

/s
ec
)

(e) q̇3 (solid) and q̇4 (dashed) versus time.

−0.6

−0.4

−0.2

0

0

0.2

0.4

0.5 1 1.5
t (sec)

(r
ad

/s
ec
)

(f) q̇5 versus time.

Figure 6.8: State trajectory plots corresponding to a simulated gait of RABBIT. Three

steps are taken at an average walking rate of 0.8 m/s each step. The discontinuities are due

to impacts and coordinate relabeling.
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(d) Knee motor rotor speed versus torque
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Figure 6.9: Commanded control signals corresponding to a simulated gait of RABBIT.

Three steps are taken at an average walking rate of 0.8 m/s each step. The discontinities

are due to impacts and coordinate relabeling.
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Figure 6.10: Other plots corresponding to a simulated gait of RABBIT. Three steps are

taken at an average walking rate of 0.8 m/s each step. The discontinities are due to impacts

and coordinate relabeling.
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counterweight

center stand

lb lb,1

lb,2
φh

(a) Overhead view of RABBIT’S experimental setup. For clarity,

the electronics are not drawn.

electronics

cabling
φv

le

(b) Side view of RABBIT’s experimental setup.

Figure 6.11: Various dimensions of RABBIT’s experimental setup.
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the case of RABBIT, as one of its stated purposes is to study running, which necessarily

has a flight phase, i.e., a phase when no feet are in contact with the ground. The use of

a boom, however, requires some means of allowing the legs move radially when in contact

with the ground. To accomplish this in RABBIT, wheels aligned with the frontal plane

were attached at the leg ends (see Figure 6.5). Another consideration with a boom system

is how to connect power and communications cabling to the experimental setup. Unless a

slip ring is used, cabling connected to the experimental setup will become twisted or wound

as the robot makes laps. Unfortunately, a slip ring was not installed at the time when the

experiments reported in this chapter were performed, and RABBIT had to be “unwound”

after each experiment.

The inertia of the boom system used to constrain RABBIT’s motion to be planar results

in additional inertia that is significant enough to require incorporation into RABBIT’s

model. The inertia has four components due to 1) the boom connecting RABBIT, the

center stand, and the counterbalance, 2) the counterbalance, 3) the cabling connecting

RABBIT to the support electronics, and 4) the support electronics (see Figure 6.3 and

Figure 6.11). Since the training wheels are not always used, and since they are relatively

light, their inertia is not included. The inertia may be approximated as

Isupport =
1
3
mb

lb

(
l3b,1 + l3b,2

)
︸ ︷︷ ︸

boom

+ mw l2b,2︸ ︷︷ ︸
counterbalance

+
1
3
mc l

2
b,1︸ ︷︷ ︸

cabling

(6.9)

Ielectronics =
1
12

me l
2
e (6.10)

This results in additional kinetic energy,

Ksupport =
1
2
Isupport

(
φ̇2

h + φ̇2
v

)
+

1
2
Ielectronicsφ̇

2
h (6.11)

where φh and φv are the horizontal and vertical angular displacement of RABBIT about

the center stand (see Figure 6.11). The angles φh and φv and may be approximated by

φh ≈ ph
H(q)− ph

H(q0)
lb,1

(6.12)

φv ≈ pv
H(q)− pv

H(q0)
lb,1

(6.13)

where q0 is RABBIT’s configuration at the beginning of a step and ph
H and pv

H are the

horizontal and vertical positions of the hip.
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Model parameter Units Label Value

Constraint boom length m lb 1.5

Hip to stand distance m lb,1 1.4

Stand height m ls 1.4

Constraint boom mass kg mb 5.0

Cable mass kg mc 2.0

Counterbalance mass kg mw 0.0

Support electronics mass kg me 20.0

Table 6.3: RABBIT’s experimental platform parameters.

There is also additional potential energy due to the boom, the counterbalance, and the

cabling,

Vsupport =
1
2
g0

mb

lb
sin(φv)

(
l2b,1 − l2b,2

)
︸ ︷︷ ︸

boom

− g0mw lb,2 sin(φv)︸ ︷︷ ︸
counterbalance

+
1
2
g0mc sin(φv)lb,1︸ ︷︷ ︸

cabling

. (6.14)

Note that the counterbalance mass may be chosen to be,

mw =
1
lb,2

(
1
2
mb

lb

(
l2b,1 − l2b,2

)
+

1
2
mclb,1

)
(6.15)

to negate the potential energy due to the boom and cabling. In the experiments described

in Section 6.5, no counterbalance was used due to the small value of lb,2; the required

counterbalance of 52 kg could not be securely fasted to the boom because of the short

length of lb,2.

The controllers used for the experiments reported in Section 6.5 were designed using

equations of motion which included the boom system’s effects. These equations of motion

were calculated by first forming an updated Lagrangian—the planar model’s Lagrangian

with the kinetic energy Ksupport added and the potential energy Vsupport subtracted—and

then using the method of Lagrange given in Appendix E. Table 6.3 gives the parameter

values for the boom system setup used for the experiments.

Aside from the ability to counterbalance the boom, the choice of boom length has

other important considerations. The longer the boom, the better the approximation of
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RABBIT as a planar mechanical system; however, the longer the boom, the greater the

undesirable dynamic effects of the additional kinetic (6.11) and potential (6.14) energies,

and the greater the flexibility of the boom. Boom flexibility was found to be of great

significance experimentally. The boom was initially chosen to be 3 m in length. Flexing of

the tubular steel boom affected forces on RABBIT’s hip large enough to cause foot slippage.

In response, the boom was swapped for a 1.5 m one, and the foot slippage problem subsided.

6.3.2 Gear reducers and joint friction

To allow smaller, lighter weight motors to be used, RABBIT has gear reducers between

its motors and links. The gear reducers have two important effects on RABBIT’s dynamics.

The first effect is to add significant joint friction, which effectively eliminates all passive

motions of the joints. The second effect is to approximately decouple the robot’s dynamics

leaving the motor’s rotor inertia as the only significant inertial load on the motor. Both

effects were taken into consideration in the control implementation described in Section 6.4.

The joint friction was modeled by viscous and static friction terms,

F (q, q̇) := F ′
vq̇ + F ′

s sgn(q̇) (6.16)

where2 Fv = (Fv,H, Fv,H, Fv,K, Fv,K) and Fs = (Fs,H, Fs,H, Fs,K, Fs,K). The identified values

of RABBIT’s frictional parameters are given in Table 6.4. Note that both the viscous and

static friction values are substantial. At the hip, the static friction is approximately ten

percent of the motor/gear reducer system’s peak available torque of 150 Nm.

Another, in some ways desirable, effect of gear reducers is to scale the inertial load seen

by the motors. This scaling has the effect of approximately decoupling the robot’s actuated

dynamics so that the only significant dynamic terms are the inertia of the motors’ rotors

and the unactuated dynamics (see Appendix G). Writing the model in motor coordinates

makes this evident.
2As is commonly done to circumvent the difficulties associated with the discontinuity of the signum

function, in implementation, a scaled arctangent function was used in its place, i.e., for large τ ,

sgn(x) ≈ 2

π
tan−1(τx) (6.17)

.
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Model parameter Units Label Value

Gear ratio - ng 50

Motor rotor inertia m2kg Ia 0.83

Fv,H 16.5
Viscous friction Ns

Fv,K 5.48

Fs,H 15.0
Static friction Nm

Fs,K 8.84

Table 6.4: Addition dynamic parameters for RABBIT.

Define the motor shaft coordinates

q̄ := Ngq (6.18)

where

Ng = diag(ng, ng, ng, ng, 1) (6.19)

and ng are the gear reducers’ gear ratio (the four gear reducers are identical). Since the

torso, q5, is unactuated, (Ng)55 = 1. Using Proposition G.1, when the motors’ rotor inertias

and the gear ratios are included in RABBIT’s swing phase model, (2.2), and the model is

written in the motor shaft coordinates, the equations of motion become
1
n2

g

D1,1 + IaI
1
ng

D1,2

1
ng

D′
1,2 (D)5,5

 ¨̄q +


1
n2

g

C1,1
1
ng

C1,2

1
ng

C ′
1,2 (C)5,5

 ˙̄q +N−1
g G−N−1

g F = Bū (6.20)

where ū := (ū1, ū2, ū3, ū4) are the torques supplied at the output shafts of the motors and Ia

is the inertia of the motors’ rotors (the four motors are identical). Notice that the actuated

dynamics are approximately decoupled and the motors’ rotor inertias and the unactuated

dynamics as the only significant dynamics. RABBIT’s motors’ rotor inertia and gear ratio

are given in Table 6.4.

6.3.3 The walking surface

The tradeoff between the dissipation due to impacts and the energy gained through

shape change (cf. Theorem 3.3 and Corollary 3.1) determine closed-loop system’s Poincaré
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map’s fixed point, i.e., the resultant average walking rate and stability. Imperfections in

the model parameters and unmodeled dynamics during the swing phase affect the energy

gained through shape change. Imperfections in the impact model affect the amount of

energy dissipated. To study the later, RABBIT was simulated using a compliant ground

contact model described in [PGWA01]. It was found that stability was preserved, but the

steady-state average walking rate differed from the average walking rate designed assuming

rigid impacts. This was also found experimentally.

The floor on which RABBIT walks is concrete with 30 cm wide cabling access trenches

covered with 4 mm steel plates. In preliminary experiments it was found that after stepping

on one of the four plates crossing RABBIT’s path, RABBIT would slow significantly. Since

the gait—change in the shape over a step—was the same, this indicated that the energy

dissipated due to impacting the concrete surface is less than the energy dissipated due to

impacting the steel plates. To help make the walking surface uniform, the floor was covered

with 1.5 cm particle board which was then covered with a layer of 3 mm rubber (see Figure

6.3). Aside from helping to make the walking surface uniform, the rubber layer was added

in hopes of extending the life of RABBIT by providing a modest amount of damping.

For the wood and rubber walking surface, it was found that the in the design of walking

motions, the amount of energy dissipated at impact had to be scaled to be less than the

rigid model predicted at low walking speeds and more at higher walking speeds. This was

accomplished through trial and error by scaling δzero, (3.80), by some constant a. A series

of controllers over a range of values of a were generated and then evaluated using the exper-

iment procedure described in Section 6.5 to determine their steady-state average walking

rates. The value of a resulting in a controller that induced the desired average walking rate

was recorded. Figure 6.12 gives a plot of these values of a verses the corresponding average

walking rate. Surprisingly, the relationship is approximately linear; the least squares fit

is a(ν̄) = 1.2957 − 0.4250ν̄. This apparently linear relationship between average walking

rate and impact scaling is reminiscent of the classical coefficient of restitution relation,

e = 1−av0, where e is the coefficient of restitution, a is some material-dependent constant,

and v0 is the impacting velocity [Gol60, p. 258]. It is hypothesized that this approximately

linear relation will hold for other walking surfaces, suggesting it as a means of identifying
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Figure 6.12: Average walking rate verses impact map scaling constant a. The solid line is

a least squares fit to empirically determined impact scalings (indicated by circles).

the surface to determine how the rigid impact model, i.e., δzero, should be modulated as a

function of ν̄.

6.4 The control algorithm implementation: imposing the vir-

tual constraints

The swing phase zero dynamics (3.47) and (3.48) are independent of the feedback used

to zero the output that gives rise to them. Section 3.6 introduced one possible feedback,

(3.104), a computed torque pre-feedback plus finite time converging controllers. The input-

output linearization of the computed torque pre-feedback decoupled the dynamics resulting

in a chain of four double integrators. The finite-time converging controllers stabilized the

origin of the double integrators in finite time enabling the stability of the robot’s walking

motion to be assessed via the hybrid zero dynamics’ scalar return map. In light of the

decoupling effect of the reducers (see Section 6.3.2 and Appendix G), and the likely inaccu-

racy of the parameter identification, high-gain decoupled PD controllers were used in place

of the feedback (3.104) to impose the virtual constraints on RABBIT. It was found that

this control was able to zero the outputs sufficiently well to induce walking with dynamic

characteristics similar to the theoretical design.
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Control parameter Units Label Value

KP,H 2000
Proportional gains N

KP,K 1500

KD,H 10
Derivative gains Ns

KD,K 10

Single support delay ms TSS 200

Double stance delay ms TDS 100

Table 6.5: Experiment control parameter values.

For the experiments described in the next section, outputs of the form (4.1) with h0(q)

and θ(q) as in (4.2) and (4.3) were used with H0, c, and M as in Section 6.2. Also as in

Section 6.2, to design the gait (select α) an optimization problem was posed to approxi-

mately minimize J1(α) with the additional nonlinear inequality constraints, NIC4)–NIC6).

To accommodate the implementation issues described in Section 6.3, the hybrid zero dy-

namics used in the optimization process were updated to include the additional kinetic

energy, potential energy, joint friction, and δzero was scaled. To zero the output resulting

from optimization, the decoupled, PD controller with friction compensation

u = −KP e−KDė+ Fvhd ◦ θ̂(q̂) + Fs sgn(e) (6.21)

was used where the terms Fvhd ◦ θ̂(q) and Fs sgn(e) correspond to feed-forward viscous

and static friction compensation terms and KP = (KP,H,KP,H,KP,K,KP,K) and KD =

(KD,H,KD,H,KD,K,KD,K) are the proportional and derivative gains given in Table 6.5.

The error signals are defined as

e := H0q̂ − hd ◦ θ̂(q̂) (6.22)

ė := H0
˙̂q − ∂hd

∂θ
˙̂
θ( ˙̂q) (6.23)

where (q̂, ˙̂q) is RABBIT’s state with relabeling,

(q̂, ˙̂q) :=


(q, q̇) if stance leg is right leg

(Rq,Rq̇) if stance leg is left leg.
(6.24)
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SS
[left]

DS 1
[right]

SS
[right]

DS 2
[left]

r ∧ (T > TSS)

r ∧ (T > TDS)

ll ∧ (T > TSS)

l ∧ (T > TDS)

r

Figure 6.13: State diagram of RABBIT’s leg configuration logic. The states are labeled
with “SS” and “DS” for “single support” and “double support,” respectively, and with the
declared, current stance leg indicated by [left] and [right]. Contact switches signals on
the left, l, and right, r, legs with a delay timer, T , drive state transitions. Delay threshold
TDS must be exceeded to transition back from a double support state to a previous single
support state. Delay threshold TSS must be exceeded to transition from a single support
state to a double support state. The delay time is reset at each transition.

The state machine Figure 6.13 gives the logic for determining the current stance leg as

required by (6.24). The delay thresholds, TSS and TDS given in Table 6.5, prevent chatter

in the stance leg declaration. Since hd is only designed for 0 < (θ(q)− θ+)/(θ− − θ+) < 1,

the scalar function of the robot’s states θ(q) was saturated,

(θ̂(q), ˙̂θ(q)) :=



(θ(q), θ̇(q̇)) 0 < θ(q)−θ+
θ−−θ+ < 1

(θ−, 0) θ(q)−θ+
θ−−θ+ > 1

(θ+, 0) θ(q)−θ+
θ−−θ+ < 0.

(6.25)

The velocities were estimated using a five-point numerical differentiator described in [DGMS94]

applied to the encoder outputs.

The PD based feedback (6.21) was chosen over a sliding mode, or finite-time converging

controller because of its robustness to noise and uncertainty. The feedback (6.21) provided
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surprisingly good joint-level tracking (see, for example, Figures H.1 and H.2).

The feedback (6.21)–(6.25) was implemented on the dSPACE DS1103 system running

with a sample period of 1.5 ms (667 Hz) using the Simulink diagram given in Figure 6.14.

The diagram is comprised of a combination of standard Simulink blocks and custom C

S-Functions. To facilitate debugging, a companion Simulink diagram for simulation of

RABBIT was created (see Figure 6.15). The companion diagram uses the same control

block—the shaded block of Figures 6.14 and 6.15 with the block’s contents given in Figure

6.16—as the one used on the dSPACE system. In the simulation diagram, the control block’s

inputs and outputs are connected to a model of RABBIT walking on a compliant surface.

See [PGWA01, Rou98] for discussions of this simulator. To provide high-level control, the

feedback implementation has a state machine which provides an interface between the user

and the lower-level, continuous control. The implementation also has safety mechanisms

which set the commanded control signals to zero in the event of an anomalous condition,

such as a joint exceeding a position limit, or upon user request. One of the advantages of

dSPACE’s systems is that they provide the ability to interactively communicate with the

real-time program running on the hardware’s DSP. In the case of RABBIT, a PC running

Windows NT and ControlDesk, dSPACE’s windows-based interface software, was connected

with the DS1103 system using a dedicated TCP/IP over Ethernet network. A user interface

to the controller’s state machine was designed in ControlDesk. Figure 6.17 gives the two

main ControlDesk interface diagrams of this interface.

6.5 The experiments

This section describes six experiments which highlight the capabilities and robustness

of controllers designed via the theoretical framework presented in Chapters 2–5. To per-

form the experiments, two research visits were made to the Laboratoire D’Automatique de

Grenoble where RABBIT is located. The first visit lasted two weeks, from August 15th

until August 26th 2002, and the second visit lasted three weeks, from February 24th until

March 14th 2003.

During the first visit, RABBIT had not yet been installed into its permanent location. It
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(a) Main controller interface.

(b) Individual link control interface.

Figure 6.17: dSPACE control interface screen shots.
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was located in a lab where the workspace was limited, only allowing about nine consecutive

steps to be taken. Hence, testing if a controller induced a stable gait was impossible. That

limitation notwithstanding, three important tasks where accomplished: 1) familiarization

with RABBIT’s experimental setup, 2) creation of the Simulink and C S-Function software

for control implementation, and, most importantly, 3) controlling RABBIT to walk for its

first time ever, on the first try. The last accomplishment was achieved using a controller

designed via the method described in Section 6.4. Aside from the tuning of the PD gains, no

tweaking or tuning of the robot’s gait, i.e., the output function parameters α, was necessary

to successfully walk. This is a testament to the utility of the theoretical framework.

At the start of the second visit, RABBIT had just been installed into its permanent

location, pictured in Figure 6.3, where about 200 consecutive steps (6 to 7 laps about the

center stand) were possible. The limit on the total number of steps was due to the winding

of the power and Ethernet cabling about the center stand. During the visit, many small

details had to be addressed to improve the experimental platform. Some of these included

changing the mounting hardware of the contact switchings, installing the wood and rubber

walking surface, shortening the boom, fixing a broken encoder, and modifying the training

wheels. All six experiments reported were performed during this second visit using the

shortened bar on the wood and rubber walking surface. The experiments were conducted

as follows: the experiment began with the robot suspended in the air, lifted by an ex-

perimenter. After an encoder calibration phase, the robot was servoed to a configuration

(q, q̇) = (q0, 0) ∈ ∆(S ∩ Zα) and then placed on the ground. Once on the ground, data

collection was initiated and the control was switched to the zero dynamics based feedback

controller (6.21)–(6.25). Switching with (q, q̇) = (q0, 0) ∈ ∆(S ∩ Zα) is possible since the

zero dynamics are asymptotically stable in double support. To initiate walking, an exper-

imenter pushed the robot’s torso—temporarily fully actuating the robot’s underactuated

dynamics—supplying the energy required to land the robot’s state in the basin of attrac-

tion of the Poincaré return map. Once in motion, the robot reached steady state walking

within ten to twenty steps. To stop the robot, an experimenter grabbed the torso—again,

fully actuating the robot’s dynamics—slowing the robot to a stop in double support. This

ability to interact with the robot’s dynamics by pushing on the robot is a consequence of
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the zero dynamics’ parameterization by θ(q). Through mechanical coupling, forces on the

robot drive θ(q) which, in turn, determines the evolution of the robot’s actuated DOF. Fig-

ure 6.18 gives video frames of RABBIT taking two consecutive steps for a typical walking

motion.

6.5.1 Walking at 0.7 m/s

In this first experiment,3 RABBIT was controlled with a feedback designed to induce

walking at 0.7 m/s. The experiment lasted approximately 93 seconds during which RABBIT

took 170 steps. Figures H.1–H.6 are plots of various quantities of interest over a represen-

tative time interval containing approximately nine steps. Figures H.1–H.4 give the tracking

performance along with the associated errors, (6.22) and (6.23). Note that the peak error

in configuration tracking is less than 0.043 rad (2.5 degrees) while the peak error in velocity

tracking is much as 1.4 rad/s. Figure H.5 gives the commanded control signals. The peak

commanded torque is less than 100 Nm, two thirds of the actuators’ 150 Nm maximum.

Figure H.6 gives the trace of the torso angle. Note that the torso angle is not a directly

controlled quantity. Figure H.7 gives the traces of the horizontal and vertical angular dis-

placements of the boom, φh and φv, for the experiment. As indicated by Figure H.7(a),

the robot took approximately six laps about the center stand to complete the 170 steps.

Note the constant slope and monotonicity of the trace of φh indicating smooth, horizontal

motion of the hip. The trace of Figure H.7(b) gives φv over the representative time interval.

Note that the DC offset varies step-to-step (which corresponds to peak-to-peak in this case).

Inspection of the trace of φv for the entire experiment, plotted in Figure H.7(c), reveals that

the envelope of φv is periodic. This periodicity has an amplitude of 0.009 rad (0.5 degrees)

and is due to the nonuniformity in the walking surface height. Figure H.8 gives the step

length, step duration, and the ratio of step length to step duration, step rate. The data

points of Figure H.8 were calculated upon swing foot touchdown declaration as determined

by the state machine given in Figure 6.13. The step lengths given in Figure H.8(a) were

calculated using the measured joint angles and the robot’s identified link lengths Table 6.1.

In each plot of Figure H.8, squares indicate data points corresponding to the inner leg—the
3The data file for this experiment is 3 13 03 exp 004.mat.
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Figure 6.18: Video frames of RABBIT taking two consecutive steps.
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leg closer to the center stand—and circles indicate data points corresponding to the outer

leg—the leg further from the center stand. Labeling the data points in this way reveals

differences between the inner and outer legs in step length, step duration, and step rate.

Since the two legs are, to within close approximation, identical, the difference is likely due

to the non-sagittal plane dynamics created by the boom system. Aside from the differences

between the inner and outer legs, the variances in step length and step duration have sev-

eral contributing factors. The ones believed to be most significant are nonuniformity in the

walking surface, variance in the declaration of leg touchdown, and flexibility in the robot’s

joints. Careful comparison of Figures H.8(b) and H.8(c) with Figure H.7(a) reveals that the

step rate is periodic in φh. This periodicity is due to nonuniformity in the walking surface:

one section of the wood and rubber walking surface was not firmly lying on the ground

because of unevenness in the underlying concrete floor.

6.5.2 Demonstration of robustness to perturbations

This second experiment4 demonstrates the robustness of controllers designed via the

theoretical framework. Two types of perturbations were applied to RABBIT controlled by

a feedback designed to induce walking at 0.9 m/s. The first was a 10 kg mass added to the

torso, which resulted in a shift of the average walking rate from 0.9 m/s to 1.0 m/s (see

Figure H.16(c)). In the fifth experiment, described in Section 6.5.5, it will be demonstrated

that the designed fixed average walking rate may be recovered through the use of event-

based integral control. In addition to the sizable perturbation to the robot’s model (recall

the robot weighs 32 kg), the second perturbation was short duration forces applied to the

RABBIT’s torso by an experimenter in both the forward and reverse directions. Despite

both these significant perturbations, RABBIT did not fall during the experiment which

lasted approximately 74 seconds where RABBIT took 164 steps.

Figures H.9–H.14 are plots of various quantities of interest over a representative time

interval in which the robot was pushed in the forward direction (at approximately 20.5

seconds) and in the reverse direction (at approximately 29 seconds). Note the increases in

tracking errors during the application of these forces (see Figures H.9–H.12) and the change
4The data file for this experiment is 3 13 03 exp 012.mat.
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in the reference motion, hd and (∂hd/∂θ̂)
˙̂
θ. The commanded control signals are within the

actuators’ limits, except during the force perturbations when they saturate (see Figures

H.13(a) and H.13(b)). The slope of φh is less constant than in the previous experiment (cf.

Figures H.7(a) and H.15(a)). The change in slope is due to RABBIT’s average walking rate

changing in response to the force perturbations. As in the last experiment, φv is periodic

due to the nonuniformity in the walking surface height (see Figure H.15(b)). Both the step

length (see Figure H.16(a)) and the step duration (see Figure H.16(b)) vary greatly during

the application of the perturbation forces.

6.5.3 Transitioning between controllers

This third experiment5 demonstrates the use of the transition controllers presented in

Section 5.1. For the experiment, the controller applied to RABBIT was transitioned between

controllers at 0.1 m/s intervals from 0.5 m/s to 0.8 m/s and then back from 0.8 m/s to 0.5

m/s twice (see Figure H.24(c)). The transitioning controllers were designed according to

(5.1) and (5.2). The experiment lasted approximately 86 seconds during which RABBIT

took 139 steps.

Figures H.17–H.22 are plots of various quantities of interest over a representative time

interval of approximately twenty-six steps where the control was transitioned from 0.6 m/s

to 0.8 m/s. Note the change in the reference motion, hd and (∂hd/∂θ̂)
˙̂
θ, with no visible

difference in the tracking error (see Figures H.17–H.20), or in commanded control signal

(see Figure H.21). Also note the changes in slope of φh due to the changes in average

walking rate (see Figure H.23(a)). As should be expected, both the step length and the

step duration vary with the applied controller (see Figures H.24(a) and H.24(b)).

6.5.4 Using event-based integral control to modify the fixed point

In this fourth experiment,6 the same feedback used in the first experiment to induce

walking at 0.7 m/s was applied with the addition of an event-based PI control, described in

Section 5.2, used to modify the steady state average walking rate from 0.7 m/s to 0.6 m/s.
5The data file for this experiment is 3 11 03 exp 006.mat.
6The data file for this experiment is 3 14 03 exp 003.mat.
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The event-based control acts through step-to-step modifications of the Bézier polynomial

coefficients, α, synchronized with double support.

The event-based control was performed on the stance and swing leg relative angles, q1

and q2, which results in a change of the torso angle (see Figure 6.2). This was accomplished

by setting δα to zero except for

δαij = 1, for i = 1, 2 and j = 2, . . . ,M. (6.26)

The controller (5.22) with set-point η∗ = 0.6 and control gains KI = 0.06 and KP = 0 was

applied on the 15th step (at approximately 11 seconds). The proportional gain, KP , was set

to zero because of the noise introduced by the variance in step rate. The experiment lasted

approximately 110 seconds during which RABBIT took 181 steps. Figure H.31 gives the

value of w of (5.22) versus time. Note that the ringing in w and, consequently, in average

walking rate is likely due to the integral gain being set too large (see Figure H.33). Yet, if

that is, indeed, the case, it still took over 50 steps for the average walking rate to converge

to 0.6 m/s (see Figure H.33(c)).

Figures H.25–H.30 are plots of various quantities of interest for the entire experiment.

Note the change in the reference motion, hd and (∂hd/∂θ̂)
˙̂
θ, for q1 and q2 with no visible

difference in the tracking error (see Figures H.25–H.28) or in commanded control signal (see

Figure H.29). Figure H.30 gives the torso angle change resulting from the changing of q1

and q2. Figure H.32 gives the effect on φh and φv.

6.5.5 Using event-based integral control to reject a perturbation

In this fifth experiment,7 the same feedback used in the first experiment to induce walk-

ing at 0.7 m/s was applied but with a 10 kg mass attached to the torso. This perturbation

resulted in a shift of the average walking rate from 0.7 m/s to approximately 0.85 m/s (the

change in average walking rate was determined in a separate experiment not reported in

this dissertation). The average walking rate of 0.7 m/s was recovered using the event-based

integral control described in the previous experiment but with KI = 0.04 and η∗ = 0.7 ap-

plied on the 14th step (at approximately 11 seconds). The experiment lasted approximately
7The data file for this experiment is 3 14 03 exp 004.mat.

112



95 seconds during which RABBIT took 164 steps.

Figure H.40 gives the value of w of (5.22) versus time. Again, note that the ringing in

w and, consequently, in average walking rate (see Figure H.42) is likely due to the integral

gain being too large. Figures H.34–H.39 are plots of various quantities of interest for the

entire experiment. As before, note the change in the reference motion, hd and (∂hd/∂θ̂)
˙̂
θ,

for q1 and q2 with no visible difference in the tracking error (see Figures H.34–H.37) or in

commanded control signal (see Figure H.38). The torso angle trace reflecting the action

of the event-based integral control is given in Figure H.39. This regulation of the torso

angle by integral control was able to recover the 0.7 m/s average walking rate (see Figure

H.42(c)). Figure H.41 gives the effect on φh and φv.

6.5.6 Using event-based integral control to stop the robot

In this sixth and final experiment,8 event-based integral control was used to stop RAB-

BIT from a steady state average walking rate of 0.5 m/s. This was achieved by slowing the

average walking rate of RABBIT to where it did not have enough energy to successfully

complete a step. The integral control described in the fourth experiment (Section 6.5.4)

with KI = 0.04 and η∗ = 0 was applied on the 34th step (at approximately 29 seconds)

and RABBIT was stopped by the 39th step (at approximately 34 seconds). After stopping,

RABBIT rocked back and forth until all kinetic energy from walking was dissipated.

Figures H.43–H.48 are plots of various quantities of interest for a time interval including

a portion of the steady state walking cycle and the stopping of RABBIT. Note the changes

in the reference motion, hd and (∂hd/∂θ̂)
˙̂
θ, for q1 and q2 as the integral control is applied

(see Figures H.43–H.46) and the decrease in the commanded control signals (see Figure

H.47). The increase in the torso angle (see Figure H.48) reflects the action of the integral

control (see Figure H.49). The oscillation in φh (see Figure H.50(a)) and the sign reversal of

step length (see Figure H.51(a)) at approximately 33 seconds reflect the rocking of RABBIT

back and forth after stopping. The final five data points of Figure H.51(c) that seem to

indicate apparently large sign-changing average walking rates are a consequence of the way

in which the average walking rate was calculated (the ratio between step length and step
8The data file for this experiment is 3 14 03 exp 009.mat.
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duration).
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CHAPTER 7

Conclusion and future work

7.1 Conclusion

This dissertation presents the beginnings of a coherent framework for the control of

biped locomotion. The framework builds on previous work by formalizing an approach

common to most schemes for the control of biped walking. That approach is to structure

the control in such a way as to simplify the controller design process. The approach can be

found, for example, in the regulation of angular momentum by Sano and Furusho [SF90],

of total energy by Goswami, Espiau, and Keramane [GEK96], of the robot’s center of mass

trajectory by Kajita and Tani [KT96], via virtual model control by Pratt et al. [PCT+01,

PP98], and of the Zero Moment Point by many [VBSS90, LYT00, YSIT99, HHHT98]. This

framework is an attempt to give a rigorous formulation to this common approach in hopes

of providing a foundation for the further development of control design techniques that

are systematically able to induce walking or running with known kinematic and dynamic

properties. Development of the theoretical framework involved a sequence of key steps.

The first step was the right choice of modeling complexity. The class of models treated

by this dissertation, given in Chapter 2, was chosen to be only as complex as required to

capture the primary difficulties inherent to the control of biped walking. Those difficulties

are limb coordination, effective underactuation, hybrid dynamics, static instability, and the

designing of limit cycles. Addressing these difficulties in a manner conducive to control

design was a result of the remaining steps.
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The second step, described in Chapter 3, was the casting of the gait coordination problem

as an output function design problem. This was accomplished by choosing the output to

encode the robot’s posture—thus coordinating the limbs—over a step parameterized by a

scalar function of the robot’s configuration. Encoding of the posture in this way is thought

of as imposing virtual constraints—holonomic constraints parameterized by the robot’s

state. Since the system is underactuated, zeroing the output results in zero dynamics: the

largest internal dynamics compatible with the output being identically zero. Under certain

assumptions on the output (HH1)–HH4)) and on the coordinate labeling (RH6)) the form

of the zero dynamics becomes apparent. The notion of virtual constraints is likely to be

useful in the control of other mechanical systems where coordination of the system’s motion

is more naturally parameterized by state than by time.

The third step, also described in Chapter 3, was to incorporate the impacts, which occur

as a consequence of swing leg touchdown, into the notion of zero dynamics by specializing the

output to one whose zero set—the associated zero dynamics manifold—is invariant under

the impact mapping. This lead to the definition of a new notion of zero dynamics, the hybrid

zero dynamics. The hybrid zero dynamics were defined analogously to the zero dynamics.

The key to the hybrid zero dynamics is invariance of the zero dynamics manifold under the

impact map not just at a point, but on an entire subset of the zero dynamics manifold (at the

intersection with the chosen Poincaré section). Choosing the output such that the hybrid

zero dynamics exists results in the Poincaré return map restricted to the zero dynamics

manifold being diffeomorphic to a scalar, linear time invariant system, rendering transparent

the existence (or nonexistence) of a dynamically stable walking motion. Moreover, in Section

3.5.2 it was shown that then the modeling hypotheses may be incorporated into the stability

analysis by exactly calculating the upper bound on the domain of definition of the hybrid

zero dynamics’ Poincaré return map.

The fourth step, described in Chapter 4, makes the results of Chapter 3 practicable. The

output functions were further specialized to an almost linear structure utilizing carefully

chosen functions, Bézier polynomials. Though any number of other functions could have

been chosen, Bézier polynomials were selected because of their convenient properties which,

in particular, makes achieving invariance of the zero dynamics manifold simple. The almost
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linear structure enabled trivial inversion of certain coordinate transformations so that zero

dynamics could be written down in closed form. The use of polynomials finitely parameter-

ized the outputs which enabled them—and therefore walking motions—to be automatically

designed using standard parameter optimization techniques on the hybrid zero dynamics.

Appropriate choice of constraints in the optimization process permitted desired kinematic

and dynamic properties to be achieved. Moreover, for the class of models treated in this

dissertation, regardless of the number of links, the dimension of the hybrid zero dynamics is

always two. Thus, in the design of walking motions via parameter optimization, the dimen-

sion of the underlying system’s dynamics being tuned is fixed with respect to the number

of links of the robot. The only increase in complexity that results from the addition of links

is an increase in the number of output parameters.

The fifth step, described in Section 5.1, was the development of a means to compose

two controllers, Γα and Γβ, that induce walking at fixed average walking rates. The key

to composition is the introduction of a transition controller, Γ(α→β), whose zero dynamics

manifold is chosen such that it matches the zero dynamics manifolds associated with Γα

and Γβ in such a way as to enable transition from a subset of the domain of definition of the

Poincaré return map associated with Γα to the domain of definition of the Poincaré return

map associated with Γβ. Properties of the Bézier polynomials used in the output makes

transition controller design particularly simple.

The sixth step, described in Section 5.2, was the development of an outer-loop event-

based PI control for the online regulation of average walking rate. This outer-loop control

acts step-to-step, synchronized with impact events, just after double support, by modifying

the Bézier polynomial coefficients, α. By supplying feedback on the robot’s average walking

rate, event-based control is able to regulate average walking rate to a continuum of values, to

reject the effect of moderate disturbances on average walking rate, and to hasten convergence

of average walking rate to its steady state value.

Chapter 6 described the experimental verification of the theoretical framework developed

in Chapters 2–5 on a prototype biped, RABBIT. A main highlight was that the control

of dynamic walking was achieved without the tweaking or tuning of the gait. The only

tuning required was on the gains of the control used to impose the virtual constraints (zero
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the outputs) and scaling of the impact map as encapsulated in the hybrid zero dynamics.

To have the dynamic design specifications of walking motions designed via the theoretical

frame work more closely match the experimental results, several effects were accommodated

in the controllers’ design. These effects were the inertia added by the boom system used

to constrain RABBIT to be planar, the friction and decoupling effect of the gear reducers,

and the non-rigidity of the walking surface. The decoupling effect of the gear reducers

enabled the virtual constraints to be imposed through the use of high-gain, decoupled

PD controllers. It was found that controllers designed via the theoretical framework and

implemented in this way have a surprising amount of robustness to exogenous, modeling, and

parameter perturbations. The reason for this is, in part, the inherent robustness afforded

by exponential stability of the Poincaré map’s fixed point; see [CAA+02].

7.2 Future work

Research into the control of biped locomotion, and, more generally legged locomotion,

is still in its infancy. There are many, interesting questions to be answered and ideas to

be explored. Some research topics that follow as more direct extensions to the framework

begun in this dissertation are now listed.

Addition of feet. To require that the effective underactuation inherent to biped robots

be addressed, bipeds in the class models treated in this dissertation do not have feet

and are therefore underactuated. Though the introduction of feet adds additional

phases to the walking cycle, the additional torque available during the stance phase

results in full actuation which can be used to improve the robustness. Moreover, any

practicable biped will, almost surely, need feet to perform the statically stable maneu-

vers necessary for walking on surfaces with low coefficients of friction, for climbing,

for negotiating obstacles, etc.

Building in reflexes. Though controllers developed via this framework are robust to mod-

est perturbations, it is necessary to design controllers for recovery from more signif-

icant perturbations, i.e., to build in reflexes [BH95, BT86]. Understanding how to
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recover from large perturbations seems especially important for bipeds because of

their typically high center of mass and relatively small support polygons that makes

them susceptible to overturning by exogenous perturbation forces.

Walking on uneven terrain. The ability to climb and descend stairs, walk on uneven

surfaces and inclines, and step over support discontinuities are some of the main ben-

efits of legged locomotion. As it stands, the presented framework has not addressed

these important abilities. Incorporating these abilities into this dissertation’s frame-

work is possible and will likely require the use of the additional tools presented in

Chapter 5.

Walking in three-dimensions. Since the sagittal plane dynamics are almost decoupled

from those in the frontal plane [FS90, Kuo99, BK00], it is conjectured that the con-

trollers developed in this dissertation can be directly implemented with controllers

for the stabilization of motions in the frontal plane to produce stable, dynamic three-

dimensional walking.

Online gait learning. An intuitively appealing approach used for the control of biped

walking is the tracking of walking trajectories generated online via learning [Jua00,

MM94, Mil94]. The idea is to track trajectories that are modified online using

some technique of approximate optimization. Unfortunately, the performance of such

schemes has been rather poor since the learning algorithms employed are not informed

of the biped’s stability. With the framework this dissertation, however, such learning

could be applied for the online modification of the robot’s gait as specified by the

coefficients of Bézier polynomials while ensuring gait stability.

Running. The primary difference between running and walking is the presence of a flight

phase, when no part of the biped is in contact with the ground. During the flight phase,

the addition of a nonholonomic constraint—the conservation of angular momentum

of the biped about its center of mass—makes significantly more difficult the design

of a feedback law which restricts the robot’s dynamics to an easily characterized sub-

manifold of its state space. Controlling the robot to land in a desired configuration is
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equivalent to the falling cat problem (reorientation of a falling body using only shape

change). Currently, only feed-forward solutions to this problem exist [CS93, FGL94,

SKI99], but work toward understanding the geometry of this type of nonholonomic

constraint is ongoing [Kri90, BRM92]. Appendix I presents some preliminary work

on understanding the stability of running gaits.

7.3 Final thoughts

Since control is often unseen, hidden inside computer code, it is too often overlooked

[Åst03]. Such is the case, in general, with the control of biped locomotion. The control of the

biped appears as an afterthought to the mechanism’s design. The reality is, however, that

requirements on performance, energy efficiency, and stability necessitate control which is

able to treat the difficulties inherent to biped locomotion. For this reason, the efforts placed

in the development of control and mechanism development ought to be, at least, equalized.

This is not to diminish the need for well designed mechanisms and the development of novel

actuators and sensors, all of which are of great importance. The ideal setting would be one

in which the development of control for locomotion informs the mechanism design and vice

versa.

It seems inevitable that legged robots, in particular bipeds, will eventually make their

way into the market place and the work environment. Endowing these machines with

the capability of navigating even structured environments will involve the development of

controllers composed of many sub-controllers each designed to accomplish a specific task.

For example, the framework developed in this dissertation would be just one of those sub-

controllers. Other controllers would enable stair climbing and descending, recovery from

large perturbations, etc. It will be interesting to see how this development occurs and how

the issues of stability and energy efficiency impact that development.
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APPENDIX A

Equations of motion for the 4-DOF model of the 2-link

walker

This appendix gives the details of the 4-DOF equations of motion for the two-link model.

Definition of the constants can be found in Section 2.4. Values of the model parameters can

be found in Table 2.1.

The equations have the general matrix form

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu (A.1)

where q := (q1, q2, p
h
H, p

v
H) and

(D(q))1,1 = l2cm+ 2I +m(l − lc)2

(D(q))1,2 = m(l − lc)2 + I

(D(q))1,3 = (l − lc)m cos(q1 − q2)

(D(q))1,4 = −(l − lc)m sin(q1 − q2)

(D(q))2,1 = m(l − lc)2 + I

(D(q))2,2 = m(l − lc)2 + I

(D(q))2,3 = (l − lc)m cos(q1 − q2)

(D(q))2,4 = −(l − lc)m sin(q1 − q2)

(D(q))3,1 = (l − lc)m cos(q1 − q2)

(D(q))3,2 = (l − lc)m cos(q1 − q2)

(D(q))3,3 = m
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(D(q))3,4 = 0

(D(q))4,1 = −(l − lc)m sin(q1 − q2)

(D(q))4,2 = −(l − lc)m sin(q1 − q2)

(D(q))4,3 = 0

(D(q))4,4 = m

(C(q, q̇))1,1 = 0

(C(q, q̇))1,2 = (l − lc)m(sin(q1 − q2)ṗh
H + cos(q1 − q2)ṗv

H)

(C(q, q̇))1,3 = (l − lc)m sin(q1 − q2)q̇2

(C(q, q̇))1,4 = (l − lc)m cos(q1 − q2)q̇2

(C(q, q̇))2,1 = −(l − lc)m(sin(q1 − q2)ṗh
H + cos(q1 − q2)ṗv

H)

(C(q, q̇))2,2 = 0

(C(q, q̇))2,3 = −(l − lc)m sin(q1 − q2)q̇1

(C(q, q̇))2,4 = −(l − lc)m cos(q1 − q2)q̇1

(C(q, q̇))3,1 = −(l − lc)m sin(q1 − q2)q̇1

(C(q, q̇))3,2 = (l − lc)m sin(q1 − q2)q̇2

(C(q, q̇))3,3 = 0

(C(q, q̇))3,4 = 0

(C(q, q̇))4,1 = −(l − lc)m cos(q1 − q2)q̇1

(C(q, q̇))4,2 = (l − lc)m cos(q1 − q2)q̇2

(C(q, q̇))4,3 = 0

(C(q, q̇))4,4 = 0

(G(q))1,1 = g0(mlc sin(q1) + (l − lc)m sin(q1 − q2))

(G(q))2,1 = −g0m(l − lc) sin(q1 − q2)

(G(q))3,1 = 0

(G(q))4,1 = 2g0m
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B =



0

1

0

0


The linear transformation matrix required by (2.20) is

R =

 1 −1

0 −1

 . (A.2)
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APPENDIX B

Optimization algorithm implementation

This appendix gives the pseudocode for the S-Function called by MATLAB’s constrained

nonlinear optimization tool fmincon which is used for walking motion design as described in

Section 4.3.2. Use of an S-Function (which is compiled) in place of a MATLAB script (which

is interpreted) increases optimization speed by decreasing the iteration time interval. The

S-Function computes both the cost and the constraints required by the fmincon algorithm.

The pseudocode below is implemented entirely in C (without call to MATLAB), includ-

ing the integration of the zero dynamics. Communication between the S-Function and the

fmincon routine is accomplished by copying global variables to and from the MATLAB

workspace. Continuity of the cost function, (4.40) or (4.41), with respect to the output

function parameters along with use of a small optimization step size makes use of the

gradient-based fmincon algorithm feasible. In the event the algorithm lands in a regime

where no feasible periodic orbit exists (there is no fixed point of the Poincaré return map),

the values for the cost and the constraints of the previous optimization step are used. If the

algorithm persists in such a regime, the optimization process is terminated manually. The

pseudocode is as follows.

1: copy variables from MATLAB workspace

2: per Corollary 4.1, compute output function parameters from reduced set of parameters

3: per (3.90), calculate the Poincaré return map fixed point

4: if fixed point exists (per inequality (3.89)) then

5: integrate the hybrid zero dynamics
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6: evaluate constraints

7: save cost and constraints (in case fixed point does not exist on next optimization

step)

8: else

9: if first optimization step call then

10: optimization failure

11: else

12: use previously computed cost and constraint values

13: end if

14: end if

15: write variables to MATLAB workspace

126



APPENDIX C

Proving decoupling matrix invertibility

Existence of the zero dynamics depends upon the invertibility of the decoupling matrix.

Since the decoupling matrix can have singularities even at points where the Jacobian of the

output, ∂h/∂q, has full row rank1, proof of the invertibility of the decoupling matrix must

be local in q. If the decoupling matrix is sufficiently simple, as in the case of the three-link

biped of [GAP01], it may be possible to analytically find regions in q where the matrix is

non-singular by examination of the determinant, or linear dependence of the columns or

rows. When the decoupling matrix is more complex, as in the five-link biped of [PGWA01],

direct proof of invertibility is highly non-trivial. In this case, there is a need to resort to an

automated methodology.

One such methodology is to demonstrate sign definiteness of the decoupling matrix’s

determinant in an open set about the robot’s trajectories. Sign definiteness implies the

determinate never equals zero in that set and, hence, in that set, the decoupling matrix

is invertible. This is the method used here. The proof is carried out in two steps. In the

first step, the decoupling matrix is simplified by the application of an invertible feedback

[RvdSMK99] to the model2. In the second step, elementary bounds on the individual terms

appearing in the determinant of the decoupling matrix are determined and used to compute

upper and lower bounds on the determinant of the decoupling matrix.
1First note that LgLfh = ∂h/∂q D−1B. Although D−1B has full column rank (since D(q) is positive

definite and B is a constant, full column rank matrix), application of Sylvester’s inequality [Che84, p. 31]
shows that the rank of LgLfh is strictly greater than N − 2, not N − 1.

2By standard results in [Isi95], the invertibility of the decoupling matrix is invariant under the application
of invertible feedbacks.
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To apply the technique of [RvdSMK99], first note that in the coordinates of RH6) B

has the form

B =

 I

0

 . (C.1)

so that the q may be partitioned as

qa = (qq, . . . , qN−1)′ and qu = qN , (C.2)

the “actuated” coordinates and “un-actuated” coordinate, respectively. Write (2.2) as

D11(q)q̈a +D12(q)q̈u + C1(q, q̇)q̇ +G1(q) = u (C.3)

D21(q)q̈a +D22(q)q̈u + C2(q, q̇)q̇ +G2(q) = 0, (C.4)

and solve3 (C.4) for q̈u as

q̈u = −D22(q)−1 (D21(q)q̈a + C2(q, q̇)q̇ +G2(q)) . (C.5)

Substituting (C.5) into (C.3) yields

D̂(q)q̈a + Ĉ(q, q̇)q̇ + Ĝ(q) = u (C.6)

where

D̂(q) = D11(q)−D12(q)D−1
22 (q)D21(q) (C.7)

Ĉ(q, q̇) = C1(q, q̇)−D12(q)D−1
22 (q)C2(q, q̇) (C.8)

Ĝ(q) = G1(q)−D12(q)D−1
22 (q)G2(q). (C.9)

Applying the partial linearizing feedback

u = D̂(q)v + Ĉ(q, q̇)q̇ + Ĝ(q) (C.10)

to (C.3) with (C.5) results in

q̈a = v (C.11)

The model (C.11) and (C.5) is feedback equivalent to the original system. It can be ex-

pressed in state space form with the same choice of x as before to obtain

ẋ = f̂(x) + ĝ(x)v. (C.12)
3The invertibility of D22 is assured by the positive definiteness of D.
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Since the rank of the decoupling matrix is invariant under invertible feedback, the decou-

pling matrices for systems (2.4) and (C.12) have the same rank. The determinant of the

decoupling matrix for (C.12) can be directly computed and shown to be of the form4

detLĝLf̂h(q) =
Num(q)
Den(q)

(C.13)

with

Num(q) =
nnum∑
i=1

ki,num gi,num (ci,num q) and Den(q) =
nden∑
i=1

ki,den gi,den (ci,den q) (C.14)

where the ki,∗’s are constants, gi,∗’s are sine and cosine functions, and ci,∗’s are row vectors

in R
N . For a given subset O ⊂ Q (recall that Q is the allowed set for the configuration

variables), upper and lower bounds on the determinant of the decoupling matrix can be

found via calculation of the minimum and maximum of each of the nnum + nden terms

of the numerator and denominator over O. For example, if the denominator in (C.13) is

positive, then

max
q∈O

detLĝLf̂h(q) ≤
maxq∈O Num(q)
minq∈O Den(q)

≤ maxi∈I maxq∈Oi Num(q)
mini∈I minq∈Oi Den(q)

, (C.15)

where, O ⊂
⋃
i∈I Oi, and the Oi are closed and bounded. The max and min operations in

(C.15) are especially trivial to evaluate if the sets Oi are selected to be of the form

Oi :=
{
x

∣∣ q min1,i ≤ q1 ≤ q max1,i , q min2,i ≤ q2 ≤ q max2,i , · · · , q minN,i ≤ qN ≤ q maxN,i

}
. (C.16)

Determination of the individual closed sets Oi is accomplished by dividing the time

trajectory into disjoint pieces and over bounding the configuration variables in each time

interval to guarantee that the trajectory of the configuration variables lies strictly in the

interior of Oi. It should be noted that: 1) this process could be iterated to prove the

decoupling matrix’s invertibility over a larger subset of the robots’s state space, and, 2)

the fact that this method works is not an accident. Results from real analysis can be used

to show that the decoupling matrix is invertible on an open set about the configuration

variable trajectories if, and only if, a there exists a set O which is the interior of a union of

a finite number of closed sets Oi as described above.

For an example of this technique applied see [PGWA01].
4It is straightforward to check that the decoupling matrix depends only upon the configuration variables,

q, and not on the angular velocities.
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APPENDIX D

Equations of motion for 5-DOF model of RABBIT

This appendix gives the details of the equations of motion for RABBIT during the swing

phase. The intention is to impress upon the reader the complexity of the robot’s dynamics.

It is clear that little understanding of the model’s dynamic behavior can be understood

from direct inspection of its equations of motion in this form. Chapter 3 demonstrates that

despite this apparent complexity, the structure of dynamics may be leveraged for controller

design. Definition of the constants can be found in Section 6.1. Values of the constants

used in the design of the controllers tested in the experiments can be found in Table 6.1.

The equations have the general matrix form

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu (D.1)

where q := (q1, q2, q3, q4, q5) and

(D(q))1,1 = It + If + 4Mf lf lt cos(q3) + 2Mf l
2
t + 2Mtlf lt cos(q3) + 2MT lf lt cos(q3) +

Ia,H−2pMf lt cos(q3)+2Mf l
2
f−2pMt lt+Mtl

2
f+MT l

2
f+MT l

2
t−2pMf lf+2Mtl

2
t

(D(q))1,2 = −pMt lf cos(−q2 − q4 + q1)−Mtltlf cos(q1 + q3 − q2)−Mtl
2
f cos(q1 − q2)−

pMf lf cos(q1 − q2)−pMf lt cos(q1 + q3 − q2)−pMt lt cos(−q2 − q4 + q1 + q3)

(D(q))1,3 = −2pMt lt + 2Mf l
2
t + 2Mf lf lt cos(q3) +Mtlf lt cos(q3) + 2Mtl

2
t +

MT lf lt cos(q3)− pMf lt cos(q3) + It +MT l
2
t

(D(q))1,4 = −pMt lt cos(−q2 − q4 + q1 + q3)− pMt lf cos(−q2 − q4 + q1)
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(D(q))1,5 = 2Mf l
2
t − pMt lf cos(−q2 − q4 + q1)−Mtltlf cos(q1 + q3 − q2)−

Mtl
2
f cos(q1 − q2)− pMf lf cos(q1 − q2)− pMf lt cos(q1 + q3 − q2) +

2Mtlf lt cos(q3) + 2MT lf lt cos(q3) + 2Mf l
2
f − 2pMt lt +Mtl

2
f +MT l

2
f +

MT l
2
t + 4Mf lf lt cos(q3)− 2pMf lf + 2Mtl

2
t − pMT lt cos(q1 + q3)−

pMT lf cos(q1)− 2pMf lt cos(q3)− pMt lt cos(−q2 − q4 + q1 + q3) + If + It

(D(q))2,1 = −pMt lf cos(−q2 − q4 + q1)−Mtltlf cos(q1 + q3 − q2)−Mtl
2
f cos(q1 − q2)−

pMf lf cos(q1 − q2)−pMf lt cos(q1 + q3 − q2)−pMt lt cos(−q2 − q4 + q1 + q3)

(D(q))2,2 = Mtl
2
f + If + 2pMt lf cos(q4) + Ia,H + It

(D(q))2,3 = −lt(pMf cos(q1 + q3 − q2) +Mtlf cos(q1 + q3 − q2) +

pMt cos(−q2 − q4 + q1 + q3))

(D(q))2,4 = It + pMt lf cos(q4)

(D(q))2,5 = Mtl
2
f − pMf lf cos(q1 − q2)−Mtl

2
f cos(q1 − q2) + 2pMt lf cos(q4)−

pMt lt cos(−q2 − q4 + q1 + q3)− pMt lf cos(−q2 − q4 + q1) + It + If −

pMf lt cos(q1 + q3 − q2)−Mtltlf cos(q1 + q3 − q2)

(D(q))3,1 = −2pMt lt + 2Mf l
2
t + 2Mf lf lt cos(q3) +Mtlf lt cos(q3) + 2Mtl

2
t +

MT lf lt cos(q3)− pMf lt cos(q3) + It +MT l
2
t

(D(q))3,2 = −lt(pMf cos(q1 + q3 − q2) +Mtlf cos(q1 + q3 − q2) +

pMt cos(−q2 − q4 + q1 + q3))

(D(q))3,3 = −2pMt lt + 2Mf l
2
t + Ia,K + 2Mtl

2
t + It +MT l

2
t

(D(q))3,4 = −pMt lt cos(−q2 − q4 + q1 + q3)

(D(q))3,5 = −2pMt lt + 2Mf l
2
t + 2Mtl

2
t +MT l

2
t +MT lf lt cos(q3) +Mtlf lt cos(q3) +

2Mf lf lt cos(q3)− pMT lt cos(q1 + q3)− pMt lt cos(−q2 − q4 + q1 + q3)−

pMf lt cos(q3) + It − pMf lt cos(q1 + q3 − q2)−Mtltlf cos(q1 + q3 − q2)

(D(q))4,1 = −pMt lt cos(−q2 − q4 + q1 + q3)− pMt lf cos(−q2 − q4 + q1)

(D(q))4,2 = It + pMt lf cos(q4)

(D(q))4,3 = −pMt lt cos(−q2 − q4 + q1 + q3)

(D(q))4,4 = It + Ia,K

(D(q))4,5 = pMt lf cos(q4)−pMt lt cos(−q2 − q4 + q1 + q3)+It−pMt lf cos(−q2 − q4 + q1)
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(D(q))5,1 = 2Mf l
2
t − pMt lf cos(−q2 − q4 + q1)−Mtltlf cos(q1 + q3 − q2)−

Mtl
2
f cos(q1 − q2)− pMf lf cos(q1 − q2)− pMf lt cos(q1 + q3 − q2) +

2Mtlf lt cos(q3) + 2MT lf lt cos(q3) + 2Mf l
2
f − 2pMt lt +Mtl

2
f +MT l

2
f +

MT l
2
t + 4Mf lf lt cos(q3)− 2pMf lf + 2Mtl

2
t − pMT lt cos(q1 + q3)−

pMT lf cos(q1)− 2pMf lt cos(q3)− pMt lt cos(−q2 − q4 + q1 + q3) + If + It

(D(q))5,2 = Mtl
2
f − pMf lf cos(q1 − q2)−Mtl

2
f cos(q1 − q2) + 2pMt lf cos(q4)−

pMt lt cos(−q2 − q4 + q1 + q3)− pMt lf cos(−q2 − q4 + q1) + It + If −

pMf lt cos(q1 + q3 − q2)−Mtltlf cos(q1 + q3 − q2)

(D(q))5,3 = −2pMt lt + 2Mf l
2
t + 2Mtl

2
t +MT l

2
t +MT lf lt cos(q3) +Mtlf lt cos(q3) +

2Mf lf lt cos(q3)− pMT lt cos(q1 + q3)− pMt lt cos(−q2 − q4 + q1 + q3)−

pMf lt cos(q3) + It − pMf lt cos(q1 + q3 − q2)−Mtltlf cos(q1 + q3 − q2)

(D(q))5,4 = pMt lf cos(q4)−pMt lt cos(−q2 − q4 + q1 + q3)+It−pMt lf cos(−q2 − q4 + q1)

(D(q))5,5 = 2pMt lf cos(q4) + 2Mf l
2
t − 2pMt lf cos(−q2 − q4 + q1)−

2Mtltlf cos(q1 + q3 − q2)− 2Mtl
2
f cos(q1 − q2)− 2pMf lf cos(q1 − q2)−

2pMf lt cos(q1 + q3 − q2) + 2Mtlf lt cos(q3) + 2MT lf lt cos(q3) + 2Mf l
2
f −

2pMt lt + 2Mtl
2
f +MT l

2
f +MT l

2
t + 4Mf lf lt cos(q3)− 2pMf lf + 2Mtl

2
t −

2pMT lt cos(q1 + q3)− 2pMT lf cos(q1)− 2pMf lt cos(q3)−

2pMt lt cos(−q2 − q4 + q1 + q3) + IT + 2If + 2It

(C(q, q̇))1,1 = −lt(2Mf lf sin(q3) +Mtlf sin(q3) +MT lf sin(q3)− pMf sin(q3))q̇3

(C(q, q̇))1,2 = −q̇4p
M
t lf sin(−q2 − q4 + q1)− q̇2Mtl

2
f sin(q1 − q2)−

q̇2p
M
t lf sin(−q2 − q4 + q1)− q̇2p

M
f lf sin(q1 − q2)−

q̇5p
M
t lf sin(−q2 − q4 + q1)− q̇5p

M
f lf sin(q1 − q2)− q̇5Mtl

2
f sin(q1 − q2)−

q̇5Mtltlf sin(q1 + q3 − q2)− q̇5p
M
t lt sin(−q2 − q4 + q1 + q3)−

q̇5p
M
f lt sin(q1 + q3 − q2)− q̇2Mtltlf sin(q1 + q3 − q2)−

q̇2p
M
t lt sin(−q2 − q4 + q1 + q3)− q̇2p

M
f lt sin(q1 + q3 − q2)−

q̇4p
M
t lt sin(−q2 − q4 + q1 + q3)

(C(q, q̇))1,3 = −lt(q̇5+ q̇3+ q̇1)(2Mf lf sin(q3)+Mtlf sin(q3)+MT lf sin(q3)−pMf sin(q3))

(C(q, q̇))1,4 = (−q̇2 − q̇4 − q̇5)(pMt lt sin(−q2 − q4 + q1 + q3) + pMt lf sin(−q2 − q4 + q1))
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(C(q, q̇))1,5 = −2q̇3Mf lf lt sin(q3)− q̇3Mtlf lt sin(q3)− q̇3MT lf lt sin(q3) +

q̇3p
M
f lt sin(q3)− q̇2p

M
f lf sin(q1 − q2)− q̇2Mtl

2
f sin(q1 − q2)−

q̇2p
M
t lf sin(−q2 − q4 + q1)− q̇4p

M
t lf sin(−q2 − q4 + q1)−

q̇5p
M
T lf sin(q1)− q̇5p

M
f lf sin(q1 − q2)− q̇5p

M
t lf sin(−q2 − q4 + q1)−

q̇5Mtl
2
f sin(q1 − q2)− q̇5Mtltlf sin(q1 + q3 − q2)− q̇5p

M
T lt sin(q1 + q3)−

q̇5p
M
t lt sin(−q2 − q4 + q1 + q3)− q̇5p

M
f lt sin(q1 + q3 − q2)−

q̇4p
M
t lt sin(−q2 − q4 + q1 + q3)− q̇2Mtltlf sin(q1 + q3 − q2)−

q̇2p
M
t lt sin(−q2 − q4 + q1 + q3)− q̇2p

M
f lt sin(q1 + q3 − q2)

(C(q, q̇))2,1 = q̇1p
M
f lf sin(q1 − q2) + q̇3Mtltlf sin(q1 + q3 − q2) +

q̇1Mtltlf sin(q1 + q3 − q2) + q̇3p
M
t lt sin(−q2 − q4 + q1 + q3) +

q̇1p
M
t lf sin(−q2 − q4 + q1) + q̇1Mtl

2
f sin(q1 − q2) +

q̇1p
M
f lt sin(q1 + q3 − q2) + q̇1p

M
t lt sin(−q2 − q4 + q1 + q3) +

q̇3p
M
f lt sin(q1 + q3 − q2) + q̇5p

M
f lf sin(q1 − q2) +

q̇5p
M
t lf sin(−q2 − q4 + q1) + q̇5Mtl

2
f sin(q1 − q2) +

q̇5Mtltlf sin(q1 + q3 − q2) + q̇5p
M
t lt sin(−q2 − q4 + q1 + q3) +

q̇5p
M
f lt sin(q1 + q3 − q2)

(C(q, q̇))2,2 = −lf q̇4p
M
t sin(q4)

(C(q, q̇))2,3 = lt(q̇5 + q̇3 + q̇1)(pMf sin(q1 + q3 − q2) +Mtlf sin(q1 + q3 − q2) +

pMt sin(−q2 − q4 + q1 + q3))

(C(q, q̇))2,4 = −lf (q̇2 + q̇4 + q̇5)pMt sin(q4)

(C(q, q̇))2,5 = q̇1p
M
f lf sin(q1 − q2) + q̇3Mtltlf sin(q1 + q3 − q2) +

q̇1Mtltlf sin(q1 + q3 − q2)− lf q̇4p
M
t sin(q4) +

q̇3p
M
t lt sin(−q2 − q4 + q1 + q3) + q̇1p

M
t lf sin(−q2 − q4 + q1) +

q̇1Mtl
2
f sin(q1 − q2) + q̇1p

M
f lt sin(q1 + q3 − q2) +

q̇1p
M
t lt sin(−q2 − q4 + q1 + q3) + q̇3p

M
f lt sin(q1 + q3 − q2) +

q̇5p
M
f lf sin(q1 − q2) + q̇5p

M
t lf sin(−q2 − q4 + q1) + q̇5Mtl

2
f sin(q1 − q2) +

q̇5Mtltlf sin(q1 + q3 − q2) + q̇5p
M
t lt sin(−q2 − q4 + q1 + q3) +

q̇5p
M
f lt sin(q1 + q3 − q2)

(C(q, q̇))3,1 = lt(q̇1 + q̇5)(2Mf lf sin(q3) +Mtlf sin(q3) +MT lf sin(q3)− pMf sin(q3))
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(C(q, q̇))3,2 = −lt(sin(q1 + q3 − q2)lfMtq̇2 + sin(−q2 − q4 + q1 + q3)pMt q̇2 +

sin(q1 + q3 − q2)pMf q̇2 + sin(−q2 − q4 + q1 + q3)pMt q̇4 +

q̇5p
M
t sin(−q2 − q4 + q1 + q3) + q̇5p

M
f sin(q1 + q3 − q2) +

q̇5Mtlf sin(q1 + q3 − q2))

(C(q, q̇))3,3 = 0

(C(q, q̇))3,4 = −lt(q̇2 + q̇4 + q̇5)pMt sin(−q2 − q4 + q1 + q3)

(C(q, q̇))3,5 = −lt(−2 sin(q3)lfMf q̇1 − sin(q3)lfMtq̇1 − sin(q3)lfMT q̇1 + sin(q3)pMf q̇1 +

sin(−q2 − q4 + q1 + q3)pMt q̇2 + sin(q1 + q3 − q2)pMf q̇2 +

sin(q1 + q3 − q2)lfMtq̇2 + sin(−q2 − q4 + q1 + q3)pMt q̇4 + q̇5p
M
f sin(q3) +

q̇5p
M
T sin(q1 + q3)− 2q̇5Mf lf sin(q3)− q̇5Mtlf sin(q3)− q̇5MT lf sin(q3) +

q̇5p
M
t sin(−q2 − q4 + q1 + q3) + q̇5Mtlf sin(q1 + q3 − q2) +

q̇5p
M
f sin(q1 + q3 − q2))

(C(q, q̇))4,1 = q̇1p
M
t lt sin(−q2 − q4 + q1 + q3) + q̇1p

M
t lf sin(−q2 − q4 + q1) +

q̇3p
M
t lt sin(−q2 − q4 + q1 + q3) + q̇5p

M
t lt sin(−q2 − q4 + q1 + q3) +

q̇5p
M
t lf sin(−q2 − q4 + q1)

(C(q, q̇))4,2 = lf (q̇2 + q̇5)pMt sin(q4)

(C(q, q̇))4,3 = lt(q̇5 + q̇3 + q̇1)pMt sin(−q2 − q4 + q1 + q3)

(C(q, q̇))4,4 = 0

(C(q, q̇))4,5 = q̇1p
M
t lt sin(−q2 − q4 + q1 + q3) + q̇1p

M
t lf sin(−q2 − q4 + q1) +

q̇2p
M
t lf sin(q4) + q̇3p

M
t lt sin(−q2 − q4 + q1 + q3) + q̇5p

M
t lf sin(q4) +

q̇5p
M
t lt sin(−q2 − q4 + q1 + q3) + q̇5p

M
t lf sin(−q2 − q4 + q1)
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(C(q, q̇))5,1 = q̇1p
M
f lf sin(q1 − q2) + q̇3Mtltlf sin(q1 + q3 − q2) +

q̇1Mtltlf sin(q1 + q3 − q2)− 2q̇3Mf lf lt sin(q3)− q̇3Mtlf lt sin(q3) +

q̇1p
M
T lt sin(q1 + q3)− q̇3MT lf lt sin(q3) + q̇3p

M
f lt sin(q3) +

q̇3p
M
T lt sin(q1 + q3) + q̇5p

M
T lf sin(q1) + q̇1p

M
T lf sin(q1) +

q̇3p
M
t lt sin(−q2 − q4 + q1 + q3) + q̇1p

M
t lf sin(−q2 − q4 + q1) +

q̇1Mtl
2
f sin(q1 − q2) + q̇1p

M
f lt sin(q1 + q3 − q2) +

q̇1p
M
t lt sin(−q2 − q4 + q1 + q3) + q̇3p

M
f lt sin(q1 + q3 − q2) +

q̇5p
M
f lf sin(q1 − q2) + q̇5p

M
t lf sin(−q2 − q4 + q1) + q̇5Mtl

2
f sin(q1 − q2) +

q̇5Mtltlf sin(q1 + q3 − q2) + q̇5p
M
T lt sin(q1 + q3) +

q̇5p
M
t lt sin(−q2 − q4 + q1 + q3) + q̇5p

M
f lt sin(q1 + q3 − q2)

(C(q, q̇))5,2 = −lf q̇4p
M
t sin(q4)− q̇2p

M
f lf sin(q1 − q2)− q̇2Mtl

2
f sin(q1 − q2)−

q̇2p
M
t lf sin(−q2 − q4 + q1)− lf q̇4p

M
t sin(−q2 − q4 + q1)−

q̇5p
M
f lf sin(q1 − q2)− q̇5p

M
t lf sin(−q2 − q4 + q1)− q̇5Mtl

2
f sin(q1 − q2)−

q̇5Mtltlf sin(q1 + q3 − q2)− q̇5p
M
t lt sin(−q2 − q4 + q1 + q3)−

q̇5p
M
f lt sin(q1 + q3 − q2)− q̇4p

M
t lt sin(−q2 − q4 + q1 + q3)−

q̇2Mtltlf sin(q1 + q3 − q2)− q̇2p
M
t lt sin(−q2 − q4 + q1 + q3)−

q̇2p
M
f lt sin(q1 + q3 − q2)

(C(q, q̇))5,3 = lt(q̇5 + q̇3 + q̇1)(Mtlf sin(q1 + q3 − q2)− 2Mf lf sin(q3) +

pMf sin(q1 + q3 − q2)−MT lf sin(q3) + sin(q1 + q3)pMT + pMf sin(q3) +

pMt sin(−q2 − q4 + q1 + q3)−Mtlf sin(q3))

(C(q, q̇))5,4 = (−q̇2 − q̇4 − q̇5)(pMt lf sin(q4) + pMt lt sin(−q2 − q4 + q1 + q3) +

pMt lf sin(−q2 − q4 + q1))
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(C(q, q̇))5,5 = q̇3p
M
t lt sin(−q2 − q4 + q1 + q3) + q̇1p

M
f lf sin(q1 − q2) +

q̇1p
M
t lf sin(−q2 − q4 + q1) + q̇1Mtl

2
f sin(q1 − q2) +

q̇1p
M
f lt sin(q1 + q3 − q2)− lf q̇4p

M
t sin(q4) +

q̇1p
M
t lt sin(−q2 − q4 + q1 + q3)− q̇2p

M
t lf sin(−q2 − q4 + q1)−

q̇2Mtl
2
f sin(q1 − q2)− q̇2p

M
f lf sin(q1 − q2)− lf q̇4p

M
t sin(−q2 − q4 + q1)−

q̇4p
M
t lt sin(−q2 − q4 + q1 + q3)− q̇2Mtltlf sin(q1 + q3 − q2)−

q̇2p
M
f lt sin(q1 + q3 − q2)− q̇2p

M
t lt sin(−q2 − q4 + q1 + q3) +

q̇3p
M
f lt sin(q1 + q3 − q2) + q̇1p

M
T lf sin(q1) + q̇3Mtltlf sin(q1 + q3 − q2) +

q̇1Mtltlf sin(q1 + q3 − q2)− q̇3MT lf lt sin(q3)− q̇3Mtlf lt sin(q3) +

q̇1p
M
T lt sin(q1 + q3) + q̇3p

M
T lt sin(q1 + q3) + q̇3p

M
f lt sin(q3)−

2q̇3Mf lf lt sin(q3)

(G(q))1,1 = g0(lf sin(q1 + q5)MT + lt sin(q1 + q3 + q5)MT + 2lf sin(q1 + q5)Mf +

2lt sin(q1 + q3 + q5)Mf − sin(q1 + q5)pMf + 2lt sin(q1 + q3 + q5)Mt −

sin(q1 + q3 + q5)pMt + lf sin(q1 + q5)Mt)

(G(q))2,1 = g0(− sin(q2 + q5)pMf − lf sin(q2 + q5)Mt − sin(q2 + q4 + q5)pMt )

(G(q))3,1 = g0(lt sin(q1 + q3 + q5)MT + 2lt sin(q1 + q3 + q5)Mf +

2lt sin(q1 + q3 + q5)Mt − sin(q1 + q3 + q5)pMt )

(G(q))4,1 = −g0 sin(q2 + q4 + q5)pMt

(G(q))5,1 = g0(lf sin(q1 + q5)MT + lt sin(q1 + q3 + q5)MT − sin(q5)pMT +

2lf sin(q1 + q5)Mf + 2lt sin(q1 + q3 + q5)Mf − sin(q1 + q5)pMf −

sin(q2 + q5)pMf + 2lt sin(q1 + q3 + q5)Mt − sin(q1 + q3 + q5)pMt +

lf sin(q1 + q5)Mt − lf sin(q2 + q5)Mt − sin(q2 + q4 + q5)pMt )

B =

 I

0

 .
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The linear transformation matrix required by (2.20) is

R =



0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1


.
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APPENDIX E

Rigid body model derivation via the method of Lagrange

This appendix derives the equations of motion for N -link, rigid body open-chain robots

with N one-DOF revolute joints moving in three-dimensions using the method of Lagrange.

The planar biped models of this dissertation are a subclass of the class of models treated in

this appendix. With one exception these calculations parallel and, at points, duplicate the

calculations performed in [MLS93, pp. 161–171] and [SV89, pp. 136–141]. The exception is

that each center of mass (COM) of the individual links is not assumed to be coincident with

the origin of its body coordinate frame (i.e., r̄ �= 0 in Figure E.1). This is interesting because

while the origin of the link body coordinate frames may be designed to be collocated with

the their respective centers of mass, upon robot construction and parameter identification

collocation is unlikely to hold.

E.1 The Lagrangian

The Lagrangian for an N -link, rigid body open-chain robot with N one-DOF revolute

joints is a functional acting on points in the state space, x = (q, q̇) ∈ X = TQ, where Q

is a is a simply connected, open subset of [0, 2π)N+3 × R
3. The generalized coordinates

q ∈ Q give the robot’s shape, orientation, and position in three-dimensional space. The

Lagrangian is defined to be the difference between the kinetic and potential energies

L(q, q̇) := K(q, q̇)− V (q). (E.1)
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link i

A

B

rA

rB

r̄

p

Figure E.1: A single link of an open-chain robot used to explain the method of Lagrange.

A is an inertial coordinate frame and B is a body coordinate frame, i.e., it is affixed to the

link. The vector r̄ is from the origin of B to the center of mass of the link. The vector rA

(resp. rB) is from the origin of A (resp. B) to an arbitrary point in the link. The vector p

is from the origin of A to the origin of B.

From Hamilton’s principle, the equations of motion can be calculated directly from the

Lagrangian as
d

dt

∂L

∂q̇i
− ∂L

∂qi
= fi (E.2)

where fi are joint torques and other nonconservative forces affecting the ith generalized

coordinate [GPS02, pp. 34–45].

The calculation of the equations of motion using the method of Lagrange will proceed

by calculation the robot kinetic energy, calculation of the robot potential energy, and cal-

culation of the particular form the equations of motion used in this dissertation.

E.2 The kinetic energy

The first ingredient required to calculate the Lagrangian is the total kinetic energy of

the robot. The kinetic energy of a single link will be calculated first and then the kinetic

energy of the entire robot will be calculated.
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The kinetic energy of an individual link (rigid body) is given by

K =
1
2

∫
V
ρ(rB)||ṙA||2dV (E.3)

where V ⊂ R
3 is the region of three-dimensional space occupied by the link, ρ(rB), rB ∈ V

is the density of the link at point rB, and || · || is the two-norm. The total mass of the link

is

m =
∫
V
ρ(r)dV (E.4)

and the center of mass is then

r̄ =
1
m

∫
V
ρ(r)rdV. (E.5)

Note that r̄ in (E.5) is in whatever coordinate frame the integral is performed. To prevent

clutter, the subscripts indicating the link will will be dropped until the end of the section.

Using the coordinate frames A and B as given in Figure E.1, let RAB ∈ SO(3), i.e., RAB

is a rotation matrix, which takes vectors expressed in the coordinates of the body frame B

into vectors expressed in the coordinates of the inertial frame A. Hence, rA and ṙA may be

expressed

rA = p+RABrB (E.6)

ṙA = ṗ+ ṘABrB. (E.7)

Let ωB ∈ R
3 be the angular velocity vector of the link expressed in the body coordinate

frame and note that ṘAB may be expressed in terms of ωB:

ṘAB = RABR
−1
ABṘAB (E.8)

ṘAB = RABω̂B (E.9)

where

ω̂B := R−1
ABṘAB (E.10)

and ω̂ ∈ so(3), i.e., ω̂ is an element of the Lie algebra of SO(3), is a skew-symmetric matrix

and may be expressed as

ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (E.11)
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Hence, the total kinetic energy (E.3) may be expanded as

K =
1
2

∫
V
ρ(rB)||ṗ+ ṘABrB||2dV (E.12)

=
1
2

∫
V
ρ(rB)

(
||ṗ||2 + ||ṘABrB||2 + 2ṗ′ṘABrB

)
dV (E.13)

=
1
2

∫
V
ρ(rB)

(
||ṗ||2 + ||RABω̂BrB||2 + 2ṗ′RABω̂BrB

)
dV . (E.14)

The first term of (E.14) is due to translation of the link with respect to A

Ktranslation =
1
2

∫
V
ρ(rB)||ṗ||2dV (E.15)

=
1
2
m||ṗ||2. (E.16)

The second term of (E.14) is due to rotation of the link about the origin of B

Krotation =
1
2

∫
V
ρ(rB)(RABω̂BrB)′(RABω̂BrB)dV (E.17)

=
1
2

∫
V
ρ(rB)r′Bω̂

′
BṘ

′
ABṘABω̂BrBdV (E.18)

=
1
2

∫
V
ρ(rB)r′Bω̂

′
Bω̂BrBdV (E.19)

=
1
2

∫
V
ρ(rB)(−ω′

B r̂
′
B)(−r̂BωB)dV (E.20)

=
1
2
ω′
B

(∫
V
ρ(rB)r̂′B r̂BdV

)
ωB (E.21)

=
1
2
ω′
BIrotationωB (E.22)

where Irotation is the inertia tensor of link expressed in the body frame. The third term of

(E.14)—and the one of interest here since it is normally zero—is due to non-collocation of

the origin of B and the COM of the link

Knon−collocation =
∫
V
ρ(rB)ṗ′RABω̂BrBdV (E.23)

= mṗ′RABω̂B r̄B. (E.24)

Hence, the total kinetic energy for the link may be expressed as

K =
1
2
m||ṗ||2 + 1

2
ω′
BIrotationωB +mṗ′RABω̂B r̄B (E.25)

The dependence of ṗ, ωB, RAB and Irotation upon q and q̇ has been suppressed up until this

point. Each of these terms will be expressed in such a way that (E.25) may be written in

quadratic form. It will be assumed that q and q̇ are with respect to the inertial frame A.
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The translational velocity of the origin of B with respect to A is

ṗ(q, q̇) =
∂p

∂q
q̇ (E.26)

=: Jp(q)q̇. (E.27)

Expanding (E.10) yields

ω̂B(q, q̇) =
N+6∑
i=1

R−1
AB(q)

∂RAB(q)
∂qi

q̇i (E.28)

which may be rewritten as

ωB = JAB(q)q̇ (E.29)

where

JAB(q) :=
[(

R−1
AB(q)

∂RAB(q)
∂q1

)∨
. . .

(
R−1
AB(q)

∂RAB(q)
∂qN+6

)∨]
(E.30)

and (ω̂)∨ extracts the three parameters of the skew-symmetric matrix ω̂ (i.e., (ω̂)∨ = ω).

Now, the kinetic energy of an individual link (E.25) may be expressed as

K(q, q̇) =
1
2
mq̇′J ′

p(q)Jp(q)q̇ +
1
2
q̇′J ′

AB(q)Irotation(q)JAB(q)q̇

−mq̇′J ′
p(q)RAB(q)̂̄rBJAB(q)q̇ (E.31)

=
1
2
q̇′D(q)q̇ (E.32)

where
D(q) = mJp(q)′Jp(q) + J ′

AB(q)Irotation(q)JAB(q)

−2mJ ′
p(q)RAB(q)̂̄rBJAB(q). (E.33)

The total kinetic energy of the robot is the sum of the individual link inertia

K(q, q̇) =
N+6∑
i=1

Ki(q, q̇) (E.34)

where Ki is the kinetic energy of link i.

E.3 The potential energy

The second ingredient required to calculate the Lagrangian is the total potential energy

of the robot. Calculation of the potential energy is considerably less complicated than

calculation of the kinetic energy.
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Let pv
i (q) be the height of the center of mass of link i. The potential energy for link i is

simply

Vi(q) = g0mip
v
i (q) (E.35)

where g0 is the acceleration due to gravity. The total potential energy of the robot is then

V (q) =
N+6∑
i=1

Vi(q). (E.36)

E.4 Equations of motion

The equations of motion may now be directly calculated using (E.2). The two primary

structural properties of the Lagrangian that will be exploited are the form of (E.32) and

the independence of the potential energy of q̇. First, expand (E.2) as

d

dt

∂K(q, q̇)
∂q̇i

− ∂K(q, q̇)
∂qi

+
∂V (q)
∂qi

= fi (E.37)

where fi are nonconservative forces affecting the ith generalized coordinate. Expanding the

first term of (E.37) yields

d

dt

∂K(q, q̇)
∂q̇i

=
d

dt

N+6∑
j=1

Dij(q)q̇j

 (E.38)

=
N+6∑
j=1

Dij(q)q̈j +
N+6∑
j,k=1

∂Dij(q)
∂qk

q̇j q̇k. (E.39)

Expanding the second term of (E.37) yields

∂K(q, q̇)
∂qi

=
1
2

N+6∑
j,k=1

∂Dkj(q)
∂qi

q̇j q̇k. (E.40)

Hence, (E.37) may be written as

N+6∑
j=1

Dij(q)q̈j +
N+6∑
j,k=1

(
∂Dij(q)
∂qk

q̇j q̇k −
1
2
∂Dkj(q)

∂qi
q̇j q̇k

)
+

∂V (q)
∂qi

= fi. (E.41)

To write (E.41) vector form define the Christoffel symbol to be

Γijk :=
1
2

(
∂Dij(q)
∂qk

+
∂Dik(q)

∂qj
− ∂Dkj(q)

∂qi

)
(E.42)

so that the matrix Coriolis matrix C(q, q̇) ∈ R
(N+6)×(N+6) may be defined as

Cij(q, q̇) :=
N+6∑
k=1

Γijk(q)q̇k. (E.43)
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The effect of the potential energy is represented by G ∈ R
N+6 defined as

Gi(q) :=
∂V (q)
∂qi

. (E.44)

The torques and other nonconservative forces affecting the ith generalized coordinate can

often be decomposed as

fi(q, q̇, u) = Fi(q, q̇) + Ei(q)Fext +Bi(q)τ. (E.45)

where F is a vector of frictional forces and Ei(q) and Bi are the ith rows of the matrices E

and B which are defined as follows. Decompose u ∈ R
P into the torques and nonconservative

forces, u = (Fext, τ), where Fext ∈ R
(P−Pτ ) and τ ∈ R

Pτ . Let the nonconservative forces act

at pj(q), j = 1, . . . , (P − Pτ ) so that

E(q) =
(
∂p(q)
∂q

)′
. (E.46)

Similarly, let q̃j(q), j = 1, . . . , Pτ , be the points of application of torques so that

B(q) =
(
∂q̃(q)
∂q

)′
. (E.47)

Finally, assuming the decomposition of fi given in (E.45), the equations of motion may be

written in vector form as

D(q)q̈ + C(q, q̇)q̇ +G(q)− F (q, q̇) = E(q)Fext +B(q)τ (E.48)
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APPENDIX F

Auto-generation of MATLAB m-files

By means of a simple example, this appendix gives a convenient scheme for the automatic

generation of m-files from symbolic MATLAB code which expedites m-file generation and

helps to minimize the introduction of typographical errors. The primary tool exploited is

the MATLAB function char which converts matrix or scalar symbolic expressions to strings.

In this dissertation, all simulation routines containing the result of symbolic computations

use this scheme.

In this example, a MATLAB function, generate_myfcn_maclaurin5, is used to generate

a second MATLAB function, myfcn_maclaurin5.m, that computes the fifth order Maclaurin

expansion of ln(1 + x). The function generate_myfcn_maclaurin5 is

function generate_myfcn_maclaurin5

syms x

f = taylor(log(1+x),5);

fid = fopen(’myfcn_maclaurin5.m’,’w’);

fprintf(fid,’function f = myfcn_maclaurin5(x)\n’);

fprintf(fid,’%% MYFCN_MACLAURIN5\n\n’);

fprintf(fid,’%%Eric Westervelt\n’);

fprintf(fid,’%%%s\n\n’,datestr(now));

fprintf(fid,[’f = ’,char(f),’;\n’]);

fclose(fid);

Running this function at the MATLAB command line generates myfcn_maclaurin5.m,
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>> generate_myfcn_maclaurin5

>> type myfcn_maclaurin5

function f = myfcn_maclaurin5(x)

% MYFCN_MACLAURIN5

%Eric Westervelt

%23-Jun-2003 18:22:35

f = x-1/2*x^2+1/3*x^3-1/4*x^4;

>> myfcn_maclaurin5(0.2)-log(1+0.2)

ans =

-5.4890e-005

Though not used to great advantage, this example illustrates the general idea of auto-

generation of MATLAB m-files: perform symbolic computations and then create (an) m-

file(s) from the symbolic computation result using the char function. This scheme becomes

more useful as the size of the symbolic expression to be written in the m-file increases.
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APPENDIX G

Adding motor and gear reducer dynamics

This appendix treats the additional dynamic effects of the motors used to actuate the

links of the general N -link robot of Appendix E. Two motor characteristics of interest will

be incorporated into the equations of motion: the motor inertias and the gear ratios. It

will be shown that for sufficiently large gear ratios, the motor inertias and the unactuated

dynamics become the dominate terms of (E.48).

The presentation begins with an assumption that is not technically needed, but will

simplify the subsequent development.

Assumption G.1. For each actuated joint i, located on link i, assume that qi corresponds

to the relative angle between the links that comprise the joint (see Figure G.1). For each

unactuated joint, qi may be a relative or absolute angle.

Define the motor shaft angle of joint i

q̄i := ng,i qi (G.1)

where ng,i is the gear ratio for joint i and is typically much larger than 1 (for joints without

gear reducers or for unactuated joints set ng,i to be 1). Then,

q̄ = Ng q, (G.2)

where Ng = diag(ng,1, . . . , ng,N ). Let Ia,i be the inertia of the motor used to actuate joint

qi (for unactuated joints set Ia,i = 0). The additional kinetic energy for link i due to the
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joint i

link i

qi

q̄i

Figure G.1: Joint i on link i of an open-chain robot actuated by a motor through a gear

reducer. The angle between link i and the previous link is qi. The angle of the motor shaft

is q̄i = ng,i qi where ng,i is the gear ratio for joint i.

rotor is added to (E.31) and may be expressed as

Ki,rotor(q̄) =
1
2
Ia,i ˙̄q2

i . (G.3)

For the entire robot, the additional kinetic energy may be expressed

Krotor(q̄) =
1
2
˙̄q′Ia ˙̄q. (G.4)

where Ia := (Ia,1, . . . , Ia,N )′. In q coordinates

Krotor(q) =
1
2
q̇′N ′

gIaNgq̇. (G.5)

When Krotor is added to (E.34), the constant, diagonal term N ′
gIaNg appears in the equa-

tions of motion (E.48) as being added to D(q).

Proposition G.1. Assume an N -link, rigid body open-chain robot model satisfying As-

sumption G.1 with motors and gear reducers with gear ratios Ng = diag(ng,1, . . . , ng,N )

and rotor inertias Ia := (Ia,1, . . . , Ia,N )′. Then, in coordinates q̄ given in (G.2), the model

equations of motion are

D̄(q̄)¨̄q + C̄(q̄, ˙̄q) ˙̄q + Ḡ(q̄)− F̄ (q̄, ˙̄q) = Ē(q̄)Fext + B̄ū (G.6)
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where ū = N−1
g u are the motor torques, and

D̄(q̄) := N−1
g D(q̄)N−1

g + Ia (G.7)

C̄(q̄, ˙̄q) := N−1
g C(q̄, ˙̄q)N−1

g (G.8)

Ḡ(q̄) := N−1
g G(q̄) (G.9)

F̄ (q̄, ˙̄q) := N−1
g F (q̄, ˙̄q) (G.10)

Ē(q̄) := N−1
g Ē(q̄) (G.11)

B̄ := B (G.12)

with D, C, G, F , E, and B as in (E.48).

Proof. Assumption G.1 ensures that B(q) = B = B̄. The remainder of the result follows

by substitution.

Remark G.1. When the robot’s dynamics (E.48) is expressed in motor coordinates the

following hold. The entries (D)ij and (C)ij are scaled by 1/(ng,ing,j), and the entries (G)i,

(F )i, and (E)i are scaled by 1/ng,i.

Remark G.2. The rotor inertias of the motor used to actuate link i, Ia,i, only appears in

the ith diagonal entry of D̄ and is unscaled by any of the gear ratios.

Remark G.3. If joint i is unactuated, then (D)ii and (C)ii will be unscaled and the other

entries of the ith column and row of D and C will be only partially scaled.

Remark G.4. In light of Remarks G.1–G.3, the actuated dynamics will be dominated by

the rotor inertia Ia and be coupled with the unactuated dynamics.
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APPENDIX H

Experimental Verification Plots
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(d) e2 = q2 − hd,2 versus time.

Figure H.1: Walking at 0.7 m/s: q1, e1, q2, and e2 versus time.
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Figure H.2: Walking at 0.7 m/s: q3, e3, q4, and e4 versus time.
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θ versus time.

Figure H.3: Walking at 0.7 m/s: q̇1, ė1, q̇2, and ė2 versus time.
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ė 3
(r
ad

/s
ec
)

35 36 37 38 39 40

−1

0

1
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θ (dashed) versus time.
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ė 4
(r
ad

/s
ec
)

35 36 37 38 39 40

−1

0

1

(d) ė4 = q̇4 − (∂hd,4/∂θ̂)
˙̂
θ versus time.

Figure H.4: Walking at 0.7 m/s: q̇3, ė3, q̇4, and ė4 versus time.
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Figure H.5: Walking at 0.7 m/s: u1, u2, u3, and u4 versus time.

155



t (sec)

q 5
(r
ad
)

−0.1

−0.05

35 36 37 38 39 40

0

(a) q5 versus time.

t (sec)

q̇ 5
(r
ad

/s
ec
)

35 36 37 38 39 40

−1
−0.5

0
0.5
1

(b) q̇5 versus time.

Figure H.6: Walking at 0.7 m/s: q5, q̇5 versus time.
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Figure H.7: Walking at 0.7 m/s: φh and φv versus time.
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Figure H.8: Walking at 0.7 m/s: step length, step duration, and average walking rate versus

time. Circles represent steps taken by the outer leg, squares represent steps taken by the

inner leg.
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Figure H.9: Robustness demonstration: q1, e1, q2, and e2 versus time.
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Figure H.10: Robustness demonstration: q3, e3, q4, and e4 versus time.
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ė 1
(r
ad

/s
ec
)

18 20 22 24 26 28 30 32
−4

−2

0

2

(b) ė1 = q̇1 − (∂hd,1/∂θ̂)
˙̂
θ versus time.

(r
ad

/s
ec
)

t (sec)
18 20 22 24 26 28 30 32

−4
−2
0

2

(c) q̇2 (solid) and (∂hd,2/∂θ̂)
˙̂
θ (dashed) versus time.

t (sec)
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Figure H.11: Robustness demonstration: q̇1, ė1, q̇2, and ė2 versus time.
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Figure H.12: Robustness demonstration: q̇3, ė3, q̇4, and ė4 versus time.
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Figure H.13: Robustness demonstration: u1, u2, u3, and u4 versus time.
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Figure H.14: Robustness demonstration: q5, q̇5 versus time.
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Figure H.15: Robustness demonstration: φh and φv versus time.
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Figure H.16: Robustness demonstration: step length, step duration, and average walking

rate versus time. Circles represent steps taken by the outer leg, squares represent steps

taken by the inner leg.
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Figure H.17: Transitioning: q1, e1, q2, and e2 versus time.
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Figure H.18: Transitioning: q3, e3, q4, and e4 versus time.
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Figure H.19: Transitioning: q̇1, ė1, q̇2, and ė2 versus time.
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Figure H.20: Transitioning: q̇3, ė3, q̇4, and ė4 versus time.
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Figure H.21: Transitioning: u1, u2, u3, and u4 versus time.
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Figure H.22: Transitioning: q5, q̇5 versus time.
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Figure H.23: Transitioning: φh and φv versus time.
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Figure H.24: Transitioning: step length, step duration, and average walking rate versus

time. Circles represent steps taken by the outer leg, squares represent steps taken by the

inner leg.
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Figure H.25: I-control to change fixed point: q1, e1, q2, and e2 versus time.
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Figure H.26: I-control to change fixed point: q3, e3, q4, and e4 versus time.
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Figure H.27: I-control to change fixed point: q̇1, ė1, q̇2, and ė2 versus time.
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Figure H.28: I-control to change fixed point: q̇3, ė3, q̇4, and ė4 versus time.
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Figure H.29: I-control to change fixed point: u1, u2, u3, and u4 versus time.
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Figure H.30: I-control to change fixed point: q5, q̇5 versus time.
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Figure H.31: I-control to change fixed point: w versus time.
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Figure H.32: I-control to change fixed point: φh and φv versus time.
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Figure H.33: I-control to change fixed point: step length, step duration, and average walking

rate versus time. Circles represent steps taken by the outer leg, squares represent steps taken

by the inner leg.
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Figure H.34: I-control to reject a perturbation: q1, e1, q2, and e2 versus time.
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Figure H.35: I-control to reject a perturbation: q3, e3, q4, and e4 versus time.
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Figure H.36: I-control to reject a perturbation: q̇1, ė1, q̇2, and ė2 versus time.
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Figure H.37: I-control to reject a perturbation: q̇3, ė3, q̇4, and ė4 versus time.
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Figure H.38: I-control to reject a perturbation: u1, u2, u3, and u4 versus time.
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Figure H.39: I-control to reject a perturbation: q5, q̇5 versus time.
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Figure H.40: I-control to reject a perturbation: w versus time.
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Figure H.41: I-control to reject a perturbation: φh and φv versus time.
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Figure H.42: I-control to reject a perturbation: step length, step duration, and average

walking rate versus time. Circles represent steps taken by the outer leg, squares represent

steps taken by the inner leg.
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Figure H.43: I-control to stop the robot: q1, e1, q2, and e2 versus time.
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Figure H.44: I-control to stop the robot: q3, e3, q4, and e4 versus time.

192



(r
ad
/s
ec
)

t (sec)

−2

2

20 22 24 26 28 30 32 34 36 38

−1
0

1

(a) q̇1 (solid) and (∂hd,1/∂θ̂)
˙̂
θ (dashed) versus time.

t (sec)
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ė 2
(r
ad

/s
ec
)

20 22 24 26 28 30 32 34 36 38

−1

0

1

(d) ė2 = q̇2 − (∂hd,2/∂θ̂)
˙̂
θ versus time.

Figure H.45: I-control to stop the robot: q̇1, ė1, q̇2, and ė2 versus time.
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θ versus time.

Figure H.46: I-control to stop the robot: q̇3, ė3, q̇4, and ė4 versus time.
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Figure H.47: I-control to stop the robot: u1, u2, u3, and u4 versus time.
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Figure H.48: I-control to stop the robot: q5, q̇5 versus time.
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Figure H.49: I-control to stop the robot: w versus time.
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Figure H.50: I-control to stop the robot: φh and φv versus time.
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Figure H.51: I-control to stop the robot: step length, step duration, and average walking

rate versus time. Circles represent steps taken by the outer leg, squares represent steps

taken by the inner leg.
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APPENDIX I

Extensions to running

This appendix sketches some initial work toward the development of a framework for

the control of running in planar biped robots satisfying RH1)–RH5). The approach to the

control of running taken here follows the approach to the control of walking taken in the

main body of the dissertation. That approach is to impose virtual constrains on the biped’s

posture to regulate the biped’s state to a low dimensional surface within the biped’s state

space, that is, to design outputs such that the resulting zero dynamics has an asymptotically

stable periodic orbit. The appendix begins with a model for running, then continues with

the definition of outputs and their corresponding zero dynamics, and concludes with a

Poincaré analysis and a comment on the next steps in the development of the framework

begun here.

I.1 The model for running

The model for running considered differs from the model for walking given in Chapter

2 in that 1) running has an additional phase of motion, the flight phase, when no part of

the biped is in contact with the ground, and 2) running does not have a phase of double

support. The model of running consists of two phases: the stance phase and the flight

phase; and running is informally defined as alternating stance and flight phases.

This section gives the models for the stance and flight phases and for the impact that

occurs upon leg touchdown at the end of the flight phase. To distinguish objects associated

with the models of the stance and flight phases, the labels “s” and “f” will be used as

199



subscripts.

I.1.1 The stance phase model

The model for the stance phase is the same for running as it is for walking. See Section

2.1 for details of that model.

I.1.2 The flight phase model

The model for the flight phase is similar to the extended model used in the impact

model given in Section 2.2. It differs from the extended model in coordinate choice. Here,

qe := (q′, ph
COM, pv

COM)′, i.e., qe is q appended with the Cartesian position of the robot’s

center of mass (COM) with respect to some world coordinate frame. Note that by coordinate

choice, De depends only on the shape coordinates, q, and partitions into

De(q) =

 De,11(q) 0

0 De,22

 (I.1)

where De,22 is a constant matrix.

The state space of the model is taken as TQf := {xe := (q′e, q̇′e)′ | qe ∈ Qf , q̇e ∈ R
N+2},

where Qf is a simply-connected, open subset of [0, 2π)N × R
2 corresponding to physically

reasonable configurations of the robot such that pv
1 ≥ 0 and pv

2 ≥ 0, i.e., the leg ends are

above the walking surface. The model is written in state space form by defining

ẋe =

 q̇e

D−1
e (qe) [−Ce(qe, q̇e)q̇e −Ge(qe) +Beu]

 (I.2)

=: ff(xe) + gf(xe)u. (I.3)

I.1.3 The impact model

The impact model presented in Section 2.2 expressed in the coordinates of Section I.1.2

is used to model the impact that occurs when the end of what was the swing leg during the

previous stance phase touches down.
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I.1.4 The hybrid model of running

Adopting the notation for hybrid dynamical systems given in [GJ95], the overall biped

robot model is expressed as a nonlinear hybrid system containing two charts

Σs :



Xs = TQs

Fs : (ẋ) = fs(x) + gs(x)u

Sf
s = {(q, q̇) ∈ TQs | FN

1 = 0}

T f
s : (xe) = π−1(x)

(I.4)

Σf :



Xf = TQf

Ff : (ẋe) = ff(xe) + gf(xe)u

Ss
f = {(qe, q̇e) ∈ TQf | pv

2 = 0, pv
1 > 0}

T s
f : (x+) = π ◦∆(x−e )

(I.5)

where, Fi is the flow on chart Xi, Sji is the switching surface for transitions between chart

i and chart j, T j
i is the transition function applied when x ∈ Sji ,

π(xe) :=

 πq(qe)

πq̇ q̇e

 , (I.6)

π−1(x) :=

 π−1
q (q)

π−1
q̇ (q) q̇

 , (I.7)

and

πq(qe) := q (I.8)

πq̇ :=
∂πq
∂qe

(I.9)

π−1
q (q) := (q′, ph

COM(q), pv
COM(q))′ (I.10)

π−1
q̇ (q) :=

∂π−1
q

∂q
. (I.11)

A transition from chart Xs to chart Xf occurs when the normal force on the stance leg end

vanishes. A transition from chart Xf to chart Xs occurs when the end of what was the swing

leg during the previous stance phase touches down. It is assumed that the control signals

are continuous upon switching from chart Xs to chart Xf .
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I.2 Stance phase zero dynamics

Following the development in Chapter 4, define an output on (2.4) as

ys = hs(q) := hs,0(q)− hs,d ◦ θs(q) (I.12)

where hs,0(q) specifies (N−1) independent quantities that are to be controlled and hs,d◦θs(q)

specifies the desired evolution of these quantities as a function of the monotonic quantity

θs(q) := cq. (I.13)

Let hs,d be as in (4.8) so that h(q) is finitely parameterized by αs, the output’s Bézier

polynomial’s coefficients. Define

γs(q, q̇) := γ0,s(q)q̇ (I.14)

where γ0,s(q) is the last row of D, and assume that hs satisfies HH2)–HH4). Then, the

stance phase zero dynamics manifold is

Zs := {x ∈ T Q̃s | hs(x) = 0, Lfshs(x) = 0}. (I.15)

where Q̃s is defined in HH2), and

ηs,1 := hs(q), ηs,2 := Lfshs(q, q̇),

ξ1,s := θs(q), ξ2,s := γs(q, q̇),
(I.16)

is a valid coordinate transformation on Zs. Since Lgsθs = 0 and Lgsγs = 0, the zero dynamics

of the stance phase are

ξ̇1,s = Lfsθs

ξ̇2,s = Lfsγs

(I.17)

where the right hand side is evaluated at

q = Φ−1
s (0, ξ1,s) (I.18)

q̇ = Ψ−1
s (q)

 0

ξ2,s

 (I.19)
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with

Φs(q) :=

 hs

θs

 (I.20)

Ψs(q) :=

 ∂hs
∂q

γ0,s

 . (I.21)

From Theorem 3.1, zero dynamics of the stance phase are known to have the form

ξ̇1,s = κ1,s(ξ1,s)ξ2,s (I.22)

ξ̇2,s = κ2,s(ξ2,s), (I.23)

and, from the results in Section 3.5, may be integrated to obtain

ξ2
2,s(t) = ξ2

2,s(0) + 2
∫ θ−s

θ+s

κ2,s(θ)
κ1,s(θ)

dθ (I.24)

where θ+
s and θ−s are, respectively, the values of θs at the beginning and end of the stance

phase.

I.3 Flight phase zero dynamics

Paralleling the development for the stance phase zero dynamics, define an output on

(I.3)

yf = hf(qe) := hf,0(qe)− hf,d ◦ θf(qe) (I.25)

with hf,0 and hf,d defined analogously to hf,0 and hf,d with

θf(qe) := ph
COM (I.26)

Here, hf,d is finitely parameterized by αf . Assume that hf satisfies HH2)–HH4) and define

γf(qe, q̇e) := γ0,f(qe)q̇e (I.27)

where γ0,f(qe) is the N th row of De. Then, the flight phase zero dynamics manifold is

Zf := {xe ∈ T Q̃f | hf(xe) = 0, Lffhf(xe) = 0}. (I.28)
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where Q̃f is defined in HH2), and

ηf,1 := hf(q), ηf,2 := Lffhf(q, q̇),

ξ1,f := qN , ξ4,f := γf ,

ξ2,f := ph
COM, ξ5,f := ṗh

COM,

ξ3,f := pv
COM, ξ6,f := ṗv

COM,

(I.29)

is a valid coordinate transformation on Zf . Since

Lgf qN = 0, Lgfγf = 0,

Lgfp
h
COM = 0, Lgf ṗ

h
COM = 0,

Lgfp
v
COM = 0, Lgf ṗ

v
COM = 0,

(I.30)

the zero dynamics of the flight phase are

ξ̇1,f = Lff qN , ξ̇4,f = 0,

ξ̇2,f = ξ5,f , ξ̇5,f = 0,

ξ̇3,f = ξ6,f , ξ̇6,f = −g0,

(I.31)

where Lff qN is evaluated at

qe = Φ−1
f (0, ξ1,f , ξ3,f , ξ5,f) (I.32)

q̇e = Ψ−1
f (qe)



0

ξ2,f

ξ4,f

ξ6,f


. (I.33)

with

Φf(qe) :=



hf

qN

θf

pv
COM


(I.34)

Ψf(qe) :=


∂hf
∂qe

γ0,f[
0 I

]
 . (I.35)
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The zero dynamics of the flight phase take the form

ξ̇1,f = κ1,f(ξ4,f , ξ2,f , ξ5,f , ξ6,f) (I.36)

ξ̇4,f = 0 (I.37)

ξ̈2,f = 0 (I.38)

ξ̈3,f = −g0 (I.39)

Equation (I.36) is the dynamics of the absolute coordinate. Equation (I.37) reflects a

nonholonomic constraint, conservation of the angular momentum γf . Equations (I.38) and

(I.39) correspond to the ballistic COM dynamics.

Aside from the absolute coordinate’s dynamics, integration of the flight phase zero

dynamics is trivial. Integration of (I.37) yields the expected conservation law

ξ4,f(t) = γf(0). (I.40)

Integration of the the COM dynamics yields

ξ5,f(t) = ṗh
COM(0) (I.41)

ξ6,f(t) = −g0t+ ṗv
COM(0) (I.42)

ξ2,f(t) = (ṗh
COM(0))t+ ph

COM(0) (I.43)

ξ3,f(t) = −g0

2
t2 + (ṗv

COM(0))t+ pv
COM(0) (I.44)

These results along with the observation that κ1,f is independent of ξ6,f allows (I.36) to be

written as

ξ̇1,f = κ1,f(γf(0), ξ2,f , ṗh
COM(0)). (I.45)

Since ξ2,f is monotonic whenever the robot is moving forward, (I.45) may be written as

dξ1,f
dt

dt

dξ2,f
= κ1,f(γf(0), ξ2,f , ṗh

COM(0))
1

ṗh
COM(0)

(I.46)

so that integration yields∫ ξ1,f(t)

qN (0)
dξ1,f =

1
ṗh
COM(0)

∫ phCOM(t)

phCOM(0)
κ1,f(γf(0), ξ2,f , ṗh

COM(0))dξ2,f (I.47)

which yields

ξ1,f(t) = qN (0) +
1

ṗh
COM(0)

∫ phCOM(t)

phCOM(0)
κ1,f(γf(0), ξ2,f , ṗh

COM(0))dξ2,f . (I.48)
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Figure I.1: Sketch of the running cycle

I.4 Achieving boundary conditions via deadbeat control

Assume that the output parameters αs and αf are chosen such that there exists a periodic

orbit corresponding to ys ≡ 0 and yf ≡ 0, i.e., the periodic orbit evolves on Zs and Zf . In

particular, assume the following orbit conditions hold,

OC1) at the boundary of the stance and flight phases FN
1 = 0,

OC2) at the boundary of the stance and flight phases the shape coordinates q1, . . . , qN−1

are continuous up to their second derivatives (ensuring that the control signals will be

continuous), and

OC3) upon impact (upon transition from the flight phase to the stance phase), the state is

mapped from a point in Zf to a point in Zs.

It is assumed that the parameters αs can be made differentiable functions of γ+
f (the

value of γf at the end of the flight phase; see Figure I.1) and that the parameters αf can

be made differentiable functions of γ−
s (the value of γs at the end of the stance phase; see

Figure I.1) such that the following conditions on the parameters hold

PC1) Zs ∩ Sf
s is a one-dimensional smooth embedded submanifold of TQs and can be pa-

rameterized by γ−
s ,
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PC2) Zf ∩ Ss
f is a one-dimensional smooth embedded submanifold of TQf and can be pa-

rameterized by γ−
f , and

PC3) the orbit conditions OC1)–OC3) are met in an open set of Zs ∩ Sf
s .

I.4.1 Flight phase duration

The desired landing configuration at the end of the flight phase depends only on ξ1,f and

ξ3,f (if the constraints encoded in hf are scaled according to the flight time). The parameters

αf are chosen so that ξ1,f and ξ3,f at the end of the flight phase are some desired, fixed values,

ξ1,f(tf ) = qd
N (I.49)

ξ3,f(tf ) = pv,d
COM (I.50)

where tf is the flight time which may be calculated from (I.44) to be

tf =
ṗv
COM(0)
g0

+
1
g0

√(
ṗv
COM(0)

)2 + 2g0

(
pv
COM(0)− pv,d

COM

)
. (I.51)

If pv,d
COM is chosen to be equal to pv

COM(0) (i.e., the COM height at the end of the flight

phase be the same as at the beginning of the of the flight phase) then the calculation of tf

simplifies to

tf =
2
g0

ṗh
COM(0). (I.52)

I.5 A Poincaré analysis

The Poincaré section will be chosen as Sf
s , corresponding to the set where FN

1 = 0 at

the end of the stance phase. Under the assumptions of Section I.4, the Poincaré map is a

map from real line back to itself: At the end of the stance phase the velocity is given by

q̇−s = Ψ−1
s (q−s )

 0

1

 γ−
s . (I.53)

At the beginning of the flight phase the velocity is given by

q̇+
e,f = π−1

q̇ (q−s )Ψ
−1
s (q−s )

 0

1

 γ−
s . (I.54)
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At the end of the flight phase the velocity is given by

q̇−e,f = Ψ−1
f (Rq+

s )Θγ−
s (I.55)

where

Θ :=



0
γ0,f

∂phCOM
∂q

−
√(

ṗv
COM(0)

)2 + 2g0

(
pv
COM(0)− pv,d

COM

)



∣∣∣∣∣∣∣∣∣∣∣
q−s

Ψ−1
s (q−s )

 0

1




. (I.56)

As a consequence of the rigid impact model, the velocity at the beginning of the stance

phase is

q+
s := Rπq̇ Π(q−e,f)

 De(q−e,f)

0

Ψ−1
f (Rq+

s ) Θγ−
s . (I.57)

where Π(qe) is defined in (2.15). Hence,

γ+
s = δzeroγ

−
s (I.58)

where

δzero := γ0,s Rπq̇ Π(q−e,f)

 De(q−e,f)

0

Ψ−1
f (Rq+

s ) Θ. (I.59)

Define ζs,2 := 1
2 (γs)

2. The Poincaré map is

ρ(ζ−s,2) := δ2
zeroζ

−
s,2 − Vzero(ζ−s,2) (I.60)

where

Vzero(ζ−s,2) := −
∫ θ−s

θ+s

κ2,s(θ, αs(
√
2ζ−s,2))

κ1,s(θ, αs(
√
2ζ−s,2))

dθ. (I.61)

Unfortunately, this map is not LTI as it was in walking since Vzero depends upon ζ−s,2. The

existence of a fixed point ζ∗s,2 of (I.60) is guaranteed by the assumption of periodicity. The

fixed point satisfies

ζ∗s,2 = −
Vzero

(
ζ∗s,2

)
1− δ2

zero

(I.62)
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and may be calculated numerically. Linearization about the fixed point yields

dρ

dζ−s,2

∣∣∣∣∣
ζ∗s,2

= δ2
zero −

∂Vzero(ζ−s,2)
∂ζ−s,2

∣∣∣∣∣
ζ∗s,2

. (I.63)

Hence, the fixed point (I.62) will be locally asymptotically stable if∣∣∣∣∣∣ dρ

dζ−s,2

∣∣∣∣∣
ζ∗s,2

∣∣∣∣∣∣ < 1. (I.64)

I.6 Technical issues to be addressed

The work of this appendix represents the beginnings of a framework for the control

of running in a class of planar biped robots. The next key steps in the development will

include 1) careful definition of a solution to the system as modeled by Σs and Σf and 2)

investigation of the assumptions on the output parameters αs and αf given by PC1)–PC3).

Other technical issues will likely arise as these issues are addressed.
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