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An energy management controller based on shortest path
stochastic dynamic programming (SP-SDP) is implemented
and tested in a prototype vehicle. The controller simul-
taneously optimizes fuel economy and powertrain activ-
ity, namely gear shifts and engine on-off events. Previous
work reported on the controller’s design and its extensive
simulation-based evaluation. This paper focuses on imple-
mentation of the controller algorithm in hardware. Practical
issues concerning real-time computability, driver perception,
and command timing are highlighted and addressed. The
SP-SDP controllers are shown to run in real-time, gracefully
handle variations in engine-start and gear-shift-completion
times, and operate in a manner that is transparent to the
driver. A hardware problem with the test vehicle restricted
its maximum engine torque, which prevented a reliable fuel
economy assessment of the SP-SDP controller. The data that
were collected indicated that SP-SDP controllers could be
straightforwardly designed to operate at different points of
the fuel economy tradeoff curve and that their fuel economy
may equal or exceed that of a baseline industrial controller
designed for the vehicle.
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1 Introduction
Hybrid vehicles are coming on the market at an increas-

ing rate. At the heart of a hybrid vehicle is an energy man-
agement controller which determines the amount of power
to be delivered by each energy source in the vehicle [4]. In
order to improve drivability, power commands may be co-
ordinated with transmission shifts. Many different energy
management algorithms have been proposed for an array of
vehicle configurations. There are relatively few results in the
literature that test such controllers in hardware [5–11], or that
address the many practical considerations during the imple-
mentation process. There is a significant gap between the
number of published results based on simulations and results
that report hardware testing.

This paper describes the implementation and hardware
testing of an energy management controller based on shortest
path stochastic dynamic programming (SP-SDP) [12–14], a
specific variant of stochastic dynamic programming [15,16].
The controller is designed to address both fuel economy
and constraints on powertrain activity. The controller de-
sign and its simulation-based evaluation using a detailed ve-
hicle model were reported in [17, 18]. Based on the simula-
tion results, it was decided to further evaluate the controller
on a prototype Volvo S-80 provided through a University of
Michigan and Ford Motor Company alliance; the vehicle is
shown in Figure 1.

Three main issues were addressed to obtain a functional
controller in the vehicle. The first is the development of a
real-time implementation that operates within current com-
putation and memory requirements. One of the oft-perceived



Fig. 1: The Prototype Hybrid: A Modified Volvo S-80.

drawbacks of dynamic programming algorithms is the com-
putational burden. The SP-SDP algorithm used here does
require extensive off-line computation, but the on-line com-
putations are shown to be feasible with current technology.
The second major issue was to provide rapid pedal response.
Most optimization-based energy management algorithms are
designed for a 1s update period, but a typical driver will not
be satisfied with a 1s delay in pedal response. A multi-rate
implementation of the controller is proposed which updates
electric machine and engine torque commands rapidly in re-
sponse to pedal variations, but updates the gear and engine
on-off commands more slowly. The third topic is a technique
to reliably operate the controller when the execution of an
actuator command, such as a gear shift or engine start, takes
longer than expected in the model used for controller design.

The controller was implemented in a progressive man-
ner, first in a hardware-in-the-loop (HIL) system, and then
in the vehicle. The test environments used in each step are
described in detail. Most of the topics addressed in this pa-
per are applicable to any optimization-based energy manage-
ment controller and are not specific to SP-SDP.

Partway through testing, the engine controller detected
a fault and limited engine torque to 150 Nm, whereas 300
Nm is full scale. This issue was not repaired and the fuel
economy data reported here reflects this limitation. Figure 2
shows the tradeoff between fuel economy and engine activ-
ity for both simulations and hardware tests. The results that
were obtained do not contradict the general trends shown in
simulation, but certainly there is insufficient data to confirm
those trends. The hardware tests do confirm that an SP-SDP
controller can be executed in real-time on an an embedded
microprocessor, drive cycles, deal with non-ideal real hard-
ware, and generate acceptable vehicle behavior.

The remainder of the article is organized as follows.
Section 2 describes the vehicle configuration and the 5 mod-
eling and testing environments used in controller develop-
ment. Section 3 summarizes the controller design process
developed in [18]. Section 4 demonstrates real-time com-
putability of the SP-SDP controller. Section 5 discusses a
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Fig. 2: Fuel economy and engine activity for simulation
and hardware testing on the Federal Test Procedure (FTP72).
A component failure limited engine torque for all hardware
testing, resulting in decreased fuel economy. All results are
normalized to the simulated baseline controller.

technique for issuing actuator commands at multiple rates,
while Section 6 describes how to handle unpredictable ac-
tuator response timing. Section 7 details further refinement
to the controller implementation that occurred once it was
running in the vehicle. Section 8 provides test data.

2 Vehicle
2.1 Description

The vehicle studied in this paper is a prototype Volvo S-
80 series-parallel electric hybrid and is shown schematically
in Figure 3. A 2.4 L diesel engine is coupled to the front
axle through a dual clutch 6-speed transmission. An electric
machine, EM1, is directly coupled to the engine crankshaft
and can generate power regardless of clutch state. A second
electric machine, EM2, is directly coupled to the rear axle
through a fixed gear ratio without a clutch and always rotates
at a speed proportional to vehicle speed. Energy is stored in
a 1.5 kWh battery pack. The system parameters are listed in
Table 1.

The vehicle hardware allows three main operating con-
ditions:

1. Parallel Mode-The engine is on and the clutch is en-
gaged.

2. Series Mode-The engine is on and the clutch is disen-
gaged. The only torque to the wheels is through EM2.

3. Electric Mode-The engine is off and the clutch is dis-
engaged; again the only torque to the wheels is through
EM2.

These mode definitions do not restrict the direction of power
flow. The electric machines can be either motors or genera-
tors in all modes.



Table 1: Vehicle Parameters

Engine Displacement 2.4 L

Max Engine Power 120 kW

Electric Machine Power EM1 (Front) 15 kW

Electric Machine Power EM2 (Rear) 35 kW

Battery Capacity 1.5 kWh

Battery Power Limit 34 kW

Battery SOC Range 0.35-0.65

Vehicle Mass 1895 kg
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Fig. 3: Vehicle Configuration

2.2 Operational Assumptions
Several operational assumptions were imposed based on

the prototype vehicle used. Specifically, the clutch cannot
slip to start the vehicle. Starting torque from a full stop is
provided by EM2. The clutch allows the diesel engine to
be decoupled from the wheels. There are no traction control
restrictions on the amount of torque that can be applied to
the wheels. In terms of the controller, regenerative braking
is used as much as possible up to the actuator limits, with the
friction brakes providing any remaining torque.

3 Controller Design and Development
The controller design process is briefly summarized

here. The interested reader should consult [17, 18] for fur-
ther information.

3.1 SP-SDP Controller
The controller is designed using Shortest Path Stochas-

tic Dynamic Programming (SP-SDP), which, as explained
in [12–14, 19], is a specific formulation of Stochastic Dy-
namic Programming (SDP) that allows infinite horizon op-
timization problems to be addressed without the use of dis-
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Fig. 4: The overall development process

counting. In the energy management problem, the acceler-
ation requested by the driver, which is the equivalent of a
drive cycle, is modeled as a stationary, finite-state Markov
chain [20]. The controller minimizes the expected value of
a cost function, which was chosen to reflect a tradeoff be-
tween fuel consumption and powertrain activity, with the lat-
ter measured by accumulated number of engine starts and
gear shifts over a drive cycle.

The controllers generated through SP-SDP are causal
state feedbacks and hence are directly implementable in a
real-time control architecture. The controllers are provably
optimal if the driving behavior matches the assumed Markov
chain model and the vehicle model is accurate. In this paper,
the Markov chains representing driver behavior are modeled
on standard government test cycles, as in [12, 20]. It is also
possible to build the Markov chains on the basis of real-world
driving data, as reported in [17].

The controller design process consists of two steps, one
off-line and the other on-line, as shown in Figure 4. The
off-line solution of the optimal control problem yields the
value function V ∗(x) and the optimal control u∗(x), both as a
function of the state x . The optimal control is a minimizer of
the sum of the current cost c(x,u,w) and the expected future
cost V ∗( f (x,u,w)),

u∗(x) = argmin
u∈U

Ew[c(x,u,w)+V ∗( f (x,u,w))] (1)

where w is a random variable representing the drive cycle,
Ew is the expectation, f (x,u,w) is the system dynamics, U
is the set of admissible controls, and V satisfies the Bellman
equation,

V ∗(x) = min
u∈U

Ew[c(x,u,w)+V ∗( f (x,u,w))]. (2)

A standard iterative method of solving (1) and (2) is given in
[13, 14]. The state and control values are first quantized into
finite grids. At each step of the iteration, the optimal control
and value function are evaluated only at the grid points of the



Fig. 5: The increasing complexity of controller testing in this
work.

state variables, while the value function at the next time step
of the dynamics, V ∗( f (x,u,w)), is determined off the grid
points through interpolation.

3.2 Development Environments
The path from the controller representation (1) to indus-

trial hardware requires dealing with many challenges beyond
those faced in most theoretical analyses. The process fol-
lowed here involved five different models and testing envi-
ronments, as illustrated in Figure 5. The first two steps have
been reported in [17,18]. Controllers were initially designed
and tested on a control-oriented model. They were then ex-
tensively evaluated using a High-Fidelity Vehicle Simulation
Model.

Model and Testing Environments:

1. Control-Oriented Model-Simple, table-based model
used for controller design.

2. High-Fidelity Vehicle Simulation Model-Ford’s in-
house model used to simulate fuel economy. Complex,
MATLAB/Simulink based model with a large number of
parameters and states [21].

3. Model in the Loop (MIL)-Simulink-based vehicle
model combined with simulated implementation of
Ford’s real-time vehicle controller, which is a combina-
tion of C and autocoded Simulink.

4. Hardware in the Loop (HIL)-Vehicle model simulated
in real-time on dedicated hardware. Real-time controller
runs on actual vehicle processor and interacts with sim-
ulated vehicle in real time over the same interface used
in the vehicle.

5. Vehicle- Full-up testing with real-time controller and ve-
hicle hardware.

After the simulation-based testing showed promising re-
sults, the algorithm was implemented in the prototype’s real-
time Vehicle System Controller, which is a combination of
C and autocoded Simulink. The vast majority of the vehicle
controller was reused, only the high-level energy manage-
ment function was replaced. This step is challenging because

the SP-SDP algorithm had to interact with all the existing
vehicle control modules, such as the engine start sequence,
braking logic, and mode switching coordination. The real-
time controller was subsequently implemented in a model-
in-the-loop (MIL) testbed with a simulated vehicle [22]. The
controller was then compiled and run on the actual real-time
embedded processor, which was connected to a simulated ve-
hicle in a hardware-in-the-loop (HIL) testbed. The final step
was to place the real-time embedded processor in the actual
vehicle.

This systematic process allowed progressive develop-
ment of the algorithm and its real-time implementation. Each
step of the process was roughly equivalent in terms of diffi-
culty and time, with attendant opportunities to identify er-
rors and validate results. Section 4 describes the high-level
decisions about the algorithm structure, while Section 5 de-
scribes the multi-rate implementation. Section 6 addresses
unpredictable actuation delays.

4 Real-Time Implementation
The real-time implementation of the optimal control (1)

can be done in at least two ways. As mentioned in Section
3, the off-line calculation of the optimal control policy yields
both the policy itself u∗ and the value function V ∗ at a set
of grid points, say {xi |1 ≤ i ≤ N}, used in the numerical
solution of the Bellman equation from dynamic program-
ming. Hence, the optimal policy can be stored as a state-
feedback lookup table. To keep the off-line problem com-
putationally feasible, however, the continuous control inputs
(engine torque and motor torques) are discretized into a rela-
tively coarse grid of about 20 possible values. The stored op-
timal feedback policy would carry this coarse discretization,
namely, u∗(xi) ∈ {u j |1≤ j≤ 20}, with the nearest neighbor
interpolation being used, for example, to define the controls
at state values not in the grid used for computing the optimal
policy.

It was observed in [12, 23] that a better approximation
of the optimal policy can be obtained as follows. The value
function V ∗(xi) is stored at grid points and V ∗(x) is approx-
imated by linear interpolation. The optimal policy is deter-
mined by on-line minimization of (1), in which the engine
torque control input is discretized into 100 possible values,
yielding increments of 3 Nm. Because the minimization in-
volves selecting a value from a discrete set of fixed size, its
execution is fast and deterministic. Simulations have shown
that this on-line refinement of control inputs is important,
yielding 2-3% better fuel economy than simply implement-
ing the coarse policy u∗(xi) ∈ {u j |1≤ j ≤ 20}. Minimizing
with a continuous control input does not yield significant im-
provement over a control space with 100 values. Conducting
the minimization in (1) on-line allows the flexibility to incor-
porate additional features, as will be discussed later.

4.1 Code structure
The calculations represented by (1) were coded in

Simulink for the MIL and subsequent models to allow easy



integration with the existing Vehicle System Controller, au-
tomatic code generation, and interaction with MATLAB. The
HIL was used to set table sizes, memory allocation, and as-
sess precision. Three functions must be stored as tables: the
cost function c(x,u), the system dynamics f (x,u,w), and the
value function V ∗(x). The largest table was actually the sys-
tem dynamics function f (x,u,w), rather than the value func-
tion V ∗(x). The size of these stored tables scales with the
desired numerical accuracy of the solution. The expected
values in (1) can be pre-computed to reduce the on-line com-
putation.

For each update, the algorithm is passed a 2D array of
700 possible control choices along with the current state.
This array represents 100 possible engine torques and 7 pos-
sible transmission states including the six gears and series
mode. The instantaneous expected cost of each possible con-
trol along with the expected future cost Ew[V ( f (x,u,w))] are
similarly stored as a 700 element array. Selecting a cost-
minimizing command is then a matter of determining the
minimum total cost.

4.2 Results
The vehicle control system runs on a DSPACE Mi-

croAutoBox DS1401 which contains an IBM PPC603 pro-
cessor at 300 MHz with 8 MB of local RAM. The baseline
Vehicle System Controller uses this hardware, and the SP-
SDP energy management software is added to the existing
control system. Both controllers continuously run in parallel
to enable easy transitions between the two.

The compiled version of the SP-SDP controller requires
900 kB of memory, including all code and data tables. All
calculations are implemented in a manner identical to sim-
ulation work reported in [17, 18]. The dynamics f (x,u,w)
are implemented analytically, with the exception of the next
SOC, which is stored as an array of 54,978 single-precision
values. The array size was limited by 16-bit memory ad-
dressing (65,536 points). Simulations typically used an ar-
ray 5 times larger, but little numerical precision is lost with
the smaller table. The value function is stored as an array
of 21,384 double precision values, the same size as used in
simulation.

The SP-SDP controller calculations, running in parallel
with the baseline controller, could be completed in less than
16ms on the HIL. Because the controller easily ran with the
available resources, little effort was expended to reduce com-
putation requirements. The controller would likely run on a
significantly less powerful processor.

5 Multi-Rate Updates to Enhance Driver Perception
Hardware implementation of any energy management

controller requires dealing with issues that are commonly
ignored in simulation studies. Update rate is the focus of
this section. The SP-SDP controllers used here are designed
to update with a ∼1s period, as are many energy manage-
ment controllers in the literature. One reason for using a
relatively slow update rate in the controller design process
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Fig. 6: One of the early HIL simulations on NEDC. The ve-
hicle speed, gear, and engine state show reasonable behavior.
The automated driver model was not well-tuned at this point,
so the velocity tracking shows some lag and overshoot.

is that computing the value function for shorter time steps
requires greater numerical accuracy and yields slower off-
line solution convergence. Decreasing the sample interval
below ∼1s is difficult because discrete control actions, such
as engine start and gear shift, take roughly one second to
complete. Shorter update periods would invalidate the sim-
ple gear and engine on-off state representation used in our
controller design model, where intermediate states, such as a
partially started engine, were not used. The ∼1s update cap-
tures the relevant dynamics of the system while ignoring fast
transients. While controllers with this relatively slow update
rate can follow drive cycles, deliver good fuel economy, and
in general look good in simulation, a real driver is bothered
by a pedal with a 1s lag.

5.1 Multi-rate updates
Our solution to perceived pedal lag was a multi-rate im-

plementation of the controller in which actuators are updated
at different rates based on their capability, as illustrated in
Figure 7. The engine on-off and transmission gear transi-
tions are relatively slow and thus are updated with a period
of 1.2 s, or 0.83 Hz. Both engine torque and sound are very
noticeable to a driver, so commanded engine torque is up-
dated at 2.5 Hz to provide improved pedal responsiveness.
Finally, the two electric machines are updated at 60 Hz to
yield fast pedal response.

The real-time controller continued to execute without
problems in the embedded hardware at these faster rates.
Figure 6 shows the result of early testing of the multi-rate
updates on the HIL simulation. The simulated vehicle shows
reasonable behavior, although with poor velocity tracking
due to a poorly tuned automatic driver.
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Fig. 7: Multi-rate actuator commands

5.2 Implementation details
The process of selecting control commands is shown

pictorially in Figure 8a. Possible control choices are orga-
nized as a matrix, where the columns correspond to trans-
mission gear commands plus series mode, and the rows cor-
respond to possible engine torque values. The series column
on the far right in Figure 8a represents the clutch disengaged,
and one entry in this column is used to represent engine off.
The value in each entry of the matrix is the estimated total
cost for the corresponding control values. The min opera-
tion selects the entry of minimum value, with the columns
and row indexes of the minimum providing the control com-
mands. For a given vehicle speed, certain gear choices will
be infeasible because they violate a constraint, such as an
engine speed limit, and are disallowed when the minimum is
computed. As described in [17,18], the required electric ma-
chine torques are uniquely determined from engine torque,
transmission gear, and driver power request.

Figure 8b represents a time series of controller updates.
At each 1.2s update, a matrix of controls is evaluated. At the
initial time step t=0, four possible gears are valid, and the
algorithm selects one. This fixes the gear and engine state
commands over the next 1.2s interval. At the intermediate
updates, t=0.4 and t=0.8 in the figure, engine torque is re-
computed with a constrained minimization of (1) over the
limited control space

u(x) = argmin
u∈Ueng,gear

Ew[c(x,u,w)+V ∗( f (x,u,w))], (3)

where Ueng,gear restricts the engine state and gear to the val-
ues at the last full update. When the next 1.2s interval occurs,
the engine and gear commands are once again updated.

The 1.2s engine and gear update period for the hard-
ware test is longer than the 1s interval used in the simula-
tions reported in [17, 18] to increase the likelihood that the
engine and transmission will execute their commands before
the next time step. Actuator response time is discussed next.

6 Variable Actuator Response Times
The controller design and simulation models assign dis-

crete values to states that are actually somewhat continuous.

1 2 3 4 5 6 Series

E
ngine T

e Torque

(a) For a given vehicle state, the expected costs for possible control choices
are strategically organized as a matrix. The columns represent the 6 possible
transmission gears along with series mode. Possible engine torques are rows
in the matrix. Electric mode (engine off) is represented by a zero torque
point in the series mode. For a given vehicle state, some gear choices will be
infeasible, as shown by the dark (red) columns, and others will be feasible,
as shown by the light (green) columns.

Major Update Major Update

0 s 1.6 s1.2 s0.8 s0.4 s

Time

(b) Transmission gear and engine state commands are updated with a 1.2s
sample interval, while engine torque commands are updated at a 0.4s sample
interval. The selected column for gear and engine state is hashed, and is
fixed for the intermediate updates at 0.4, 0.8, and 1.6s.

Fig. 8: Illustration of the command update scheme. Controls
are organized to easily permit updates at multiple rates while
respecting appropriate constraints.

For example, the controller design model assumes the en-
gine is either on or off. The more detailed simulation model
assumes the engine will spin up to its nominal idle speed
within 1s, and then be available to provide torque, support-
ing the controller design model. In the prototype vehicle,
however, it was observed that starting the engine and engag-
ing the clutch sometimes takes 1.5s or longer. Consequently,
a controller update may occur at a time when the engine has
not completely started, and is thus neither on nor off. In
a similar manner, the transmission gear command may not
complete within 1s. A related but different issue is that the
transmission controller may override the gear requested by
the energy management controller.

The basic SP-SDP controller used here is not equipped
to handle these problems as it assumes the engine can only
be on or off, the clutch is fully engaged or not, and the trans-
mission is in a specific gear.

A ready solution is available when commanding torque
at the 0.4s sample intervals: the engine is considered off un-
til ready to deliver torque, which is a discrete yes/no signal
available in the engine control module. Furthermore, engine
torque is computed on the basis of current gear, as reported
by the transmission controller module, independent of what
gear was commanded at the previous 1.2s update.

Issuing correct engine on-off and gear change com-



mands at the 1.2s update intervals is more subtle. As an
example, if the engine is off, at some point in time the algo-
rithm will issue an engine start command. At the next major
update (1.2s later) the engine may be in the process of start-
ing but not fully started. If the engine is considered off, the
optimal decision may be to leave the engine off, that is, is-
sue an engine-off command. The resulting off-on-off change
in the engine state is very undesirable. A similar scenario is
clear for the transmission hunting between gears.

The solution is for the algorithm to issue new engine
state and transmission commands assuming that the com-
mands issued at the previous update have in fact completed,
even if they are still in the process of being completed. This
yields much more consistent behavior.

The ability to deal with delayed or uncertain actuation
completion was quite useful. In the final implementation, the
transmission manufacturer was unable to modify the trans-
mission controller to accept external gear commands over the
vehicle CAN bus. Consequently, gear selection was made by
the existing transmission controller, while the SP-SDP con-
troller handled engine and clutch state. The controller im-
plementation described above could be used with no further
modifications. The inability to independently command gear
turned out to be a only a minor setback to the controller eval-
uation process for two reasons: comparison of the SP-SDP
gear commands to the gear selection made by the transmis-
sion controller revealed almost no differences; and the pre-
vious simulation work had showed that fuel economy of the
prototype vehicle is more sensitive to engine on-off activity
than gear number.

7 Refining the Controller in Hardware
After standard testing and debugging in the MIL/HIL

setup, the SP-SDP controller was tested in the vehicle on a
two-axle dynamometer as shown in Figure 1. The vehicle
is chained in place, and electric motors on the dynamometer
rolls simulate the vehicle drag and rolling losses. The al-
gorithm is implemented in the on-board vehicle system con-
troller and is transparent to the driver. The driver uses stan-
dard controls and pedals, while a laptop provides real-time
vehicle monitoring and data capture. Desired vehicle behav-
ior is set off-line by changing the penalties used in the cost
function, solving the optimal control problem, and building
the associated look-up tables. The look-up tables for several
different controllers are stored simultaneously in the real-
time processor and can be selected without recompiling.

7.1 Initial Test
The SP-SDP algorithm worked correctly the first time

thanks to extensive validation in the MIL/HIL setup. Fig-
ure 9 shows data from one of the initial tests with a human
driver following the New European Drive Cycle (NEDC). At
this point, the controller deliberately had limited functional-
ity: it used neither the front electric machine EM1 nor se-
ries mode. The controller provided reasonable behavior and
performance on the first set of hardware tests with no debug-
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Fig. 9: The first driving attempt in the vehicle, which cor-
responds to the first three hills of NEDC. The difference
between targeted and actual speed is due to driver inexpe-
rience. Accurately following speed traces on a chassis roll
dynamometer is an acquired skill.

ging or tuning. The poor velocity tracking is primarily due to
the human driver; tracking cycles is quite difficult and takes
practice.

Full controller functionality, including series mode and
the front electric machine EM1, was implemented in a sec-
ond step. The interaction with the existing vehicle controller
became more complex as these additional vehicle modes
were used. The MIL, HIL and vehicle itself were all used
in this part of the development process.

7.2 Model Improvement
Once the controller was fully functional and had suc-

cessfully driven a number of cycles, the test data were ana-
lyzed to check the accuracy of the controller design model.
In a vehicle prototyping process such as the one reported
here, it is common for hardware changes to be made without
models being fully updated. Another source of inaccuracy
is the model reduction process used to obtain the controller
design model, where dynamics are neglected, lumped, and
simplified.

Some of these simplified dynamics depend partly on the
controller, rather than the vehicle model. One would like to
imagine the model as not depending on the controller, but
this is not always the case with reduced-order models. One
example is engine start. The control-oriented model lumps
the process of starting the engine and engaging the clutch
into three parameters: the time to execute a start, the fuel
burned during the start, and the battery charge used to spin
up the engine. In hardware, the way the baseline and SP-SDP
controllers execute this process is similar but not identical.
Therefore, the parameters for the reduced-order model are
different depending on which controller is used.

Using the test data, the basic vehicle parameters were
identified and adjusted in the control-oriented model. The



SP-SDP controllers were recomputed on the basis of the up-
dated model.

7.3 Smoothing torque delivery
The next phase of the development addressed issues re-

lating to driver perception that only became apparent when
we were driving the vehicle on the chassis rolls. One such
issue was the smoothness of torque delivery. The SP-SDP
controller updates commands in a discrete fashion, includ-
ing continuous variables such as torque. In the absence of
discrete events, such as shifts or engine starts, drivers ex-
pect the torque delivery to be smooth. The discrete SP-SDP
updates can occasionally yield jumps in engine torque that
feel jarring. A set of low-pass filters and initialization val-
ues was developed to yield a smooth, yet responsive, torque
command.

7.4 Infeasible Conditions
At the intermediate update times, depicted by 0.4s and

0.8s in Fig. 8b, it can happen that it is impossible to meet
the driver’s power demand with the current engine state and
gear number. When no valid torque commands are available
at an intermediate update, a full update of all controls oc-
curs regardless of the normal waiting time. Such updates are
termed “feasibility” updates.

Feasibility updates are especially important in two
cases. The first is for a so-called “gorilla stomp” in which the
driver suddenly demands large torques that are unavailable in
electric mode or higher gears. The full update occurs imme-
diately, forcing an engine start or a downshift. The transition
out of electric mode is especially important for driver per-
ception because otherwise the driver could wait more than a
second before hearing an engine start. A second case is dur-
ing rapid deceleration with the engine on. The clutch cannot
remain engaged below a certain vehicle speed or it will pull
the engine speed below its minimum allowed value. It can
happen that first gear will be valid at one full update, but be-
come invalid before the next full update due to vehicle speed
change. Executing a feasibility update allows the clutch to be
disengaged at one of the intermediate updates if the current
gear becomes infeasible.

7.5 Engine torque oscillation
During testing, it was observed that the engine torque

would oscillate while the vehicle was seemingly at steady
state. One example of this is shown in Figure 10, where
commanded engine torque is varying by 100 Nm while the
pedal position is nearly constant. Similar events were never
observed in simulation. In the vehicle, they occurred at low
pedal and nearly constant vehicle speed, usually around 25
kph. Because the pedal input is almost constant, there is no
obvious reason for these torque oscillations. Such behavior
is clearly unacceptable to a driver.

The underlying reason becomes clear when studying the
SP-SDP total cost estimate. The engine torque command is
selected by minimizing the total cost per (1) at a major up-
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Fig. 10: Engine torque and driver pedal commands. The up-
per plot shows the original SP-SDP engine torque command
as a dotted line (red) oscillating at relatively constant pedal.
The solid (blue) line shows the command after this problem
was fixed with a “bowl” penalty. Both commands are the
raw output of the SP-SDP algorithm before low-pass filter-
ing. The bottom plot shows accelerator pedal command in
percentage of full range.

date, or (3) at an intermediate update. The left column of
Figure 11 shows the total cost versus engine torque at suc-
cessive intermediate update times, that is, multiples of 0.4 s.
It is seen that the total cost function has two local minima
that are very close in value, indicated by the dotted vertical
lines in Figure 11. Small variations in vehicle state are caus-
ing the torque command to oscillate between the two values.

In the design of the SP-SDP controller, the rate of
change of engine torque was not considered. The algo-
rithm is free to use a jump in torque so as to minimize cost.
Although perceptible jumps in torque rarely occurred, they
were disconcerting and we sought to eliminate this behavior.

One possible solution is to augment the controller design
model with a state that stores the last commanded engine
torque, per xe = (x,ulast

eng ), and modify the cost function to
penalize rapid torque changes,

ce(xe,u) = c(x,u)+ caug(ueng−ulast
eng ). (4)

A new value function would be computed for the modified
cost function and the controller implemented as in (1) using
the augmented state,

u∗(xe) = argmin
u∈U

Ew[ce(xe,u)+V ∗e ( fe(xe,u,w))]. (5)

We estimated that this approach would increase off-line com-
putation of the value function by roughly a factor of ten.

Instead we choose to implement an idea from [23] and
[1], which incorporates additional control objectives into the
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Fig. 11: The value function during an unexpected pedal oscillation. The recorded vehicle data is shown on the left for
controller updates at 6 consecutive time steps. The total expected cost for each possible engine torque command is shown
as a heavy solid line (red). The minimizing torque selected by the controller is indicated by the vertical dashed line (black),
and demonstrates the cause of the oscillations shown in Figure 10. This oscillation is removed by adding a “bowl” penalty
on engine torque which adds a cost for torque changes. The column on the right represents this improved control response
applying (6) to the same vehicle data. The bowl penalty is marked with a solid line and circles (blue) at the bottom of each
plot. The bowl penalty is centered at the last commanded torque and visibly changes position from t=16.8s to t=17.2s due to
the change in torque command. The minimizing torque selection no longer oscillates.

running cost c(x,u) without recomputing the value function.
The real-time controller is then

u∗(xe) = argmin
u∈U

Ew[ce(xe,u)+V ∗( f (x,u,w))]. (6)

The penalty term caug(ueng−τlast
eng ) in (4) was selected to have

a “bowl” shape as shown in Figure 12. The penalty is zero
for small torque changes and saturates to allow large jumps
in torque if they are sufficiently less costly. The most impor-
tant parameter is the saturation value, which is set just high
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Fig. 12: Additional penalty added to the value function based
on the change in engine torque. This is termed a “bowl”
penalty due to its shape.

enough to eliminate “frivolous” oscillations.
This method is computationally very advantageous, but

suboptimal. The modified controller (6) was evaluated on the
detailed simulation model and no reduction in fuel economy
was observed. The modified cost term was then implemented
on the vehicle, with results given in the right column of Fig-
ure 11. The actual bowl penalty is shown as a line in the
bottom of each plot. The bottom of the bowl moves with the
last commanded torque, and the total penalty is very small
compared to other variations in the cost. This small penalty
is sufficient to eliminate the torque oscillations, as shown by
the minimizing values and the torque command in Figure 10.

8 Hardware testing results
The test vehicle experienced a hardware failure that was

not repaired; more on this given in Sec. 8.3. The results
in this section reflect the malfunctioning vehicle. The con-
trollers still function largely as designed, though the fuel
economy numbers are unreliable.

8.1 Overall performance
Figure 13 shows the baseline controller and two SP-SDP

controllers driving the Federal Test Procedure, FTP72 cycle.
The two SP-SDP controllers use a different penalty for en-
gine start/stop, yielding different behavior observed in the
data. Changing the penalties does effectively modify vehicle
behavior, as predicted by the simulation studies in [17, 18].

Figure 14 presents three controllers run on NEDC. As
predicted by the analysis in [17, 18], on NEDC, the two SP-
SDP controllers yield similar numbers of engine events. This
is due to the contrived nature of NEDC; because it is com-
posed of repeated ramps with constant acceleration, engine
starts will naturally occur at the same places unless large
penalties are used to change behavior.

The raw fuel economy results are shown in Table 2 along
with the final SOC deviation. Both raw and corrected fuel
consumption (i.e., adjusted for difference final and initial
SOC) are normalized to the baseline controller running in
hardware on FTP72. .

The vehicle fuel economy and engine activity of the
baseline and SP-SDP controllers are plotted along side the
values from a simulation study for FTP72 cycle in Figure 2.
In this case, all fuel economy values are normalized to the
simulated baseline controller. This type of plot is used to
characterize the optimal tradeoff curve between fuel econ-
omy and engine activity as discussed in [17, 18]. The vehi-

cle test data suggest a trend similar to the simulated trade-
off curve, but the limited number of cycles executed on the
vehicle, due to the hardware failure, makes any meaningful
comparison impossible.

8.2 Hardware fault
The torque-speed engine operating points are shown in

Figure 15 for the baseline controller and the SP-SDP con-
troller running FTP72. The plots show both the commanded
torque and delivered torque. The nature of the hardware
failure is clear: the engine control unit is clipping the com-
manded engine torque. The source of the error was not iden-
tified before the termination of the project.

The dark black line in Figure 15 is the operational limit
for noise and vibration specified during the design phase.
The SP-SDP controller generally respects this constraint, al-
though the baseline controller calculates the limit differently.
The SP-SDP controller slightly overshoots the limit when
operating on the boundary if the engine speed drops before
the next engine torque update.

8.3 Detailed Vehicle Response
For a more detailed view of the system dynamics, a

zoomed view of the third NEDC “hill” is shown in Figure
16. The vehicle accelerates from rest in electric mode, the
engine starts, the transmission engages, and the engine be-
gins delivering torque. Transmission gear shifts are clearly
visible as sawtooth profiles in engine speed. The bottom two
plots show the electrical dynamics, namely SOC as well as
the EM1 and EM2 commands. Before the engine starts, the
vehicle is propelled by EM2 only and the SOC drops. EM1
is then used to start the engine. The engine then provides the
motive power and charges the battery through EM1, while
EM2 is idle. After the engine shuts off, the vehicle is again
in electric mode with EM2 providing propulsion and brak-
ing.

As mentioned in Section 6, the engine start dynamics
are more complex than originally modeled. The engine start
event of Figure 16 is shown in greater detail in Figure 17.
The SP-SDP controller selects parallel mode, so the low-
level controllers start the engine and engage the clutch. This
command is issued as “Parallel Mode Request” at 124.5s,
and the “Parallel Mode Actual” responds at 126s once the
engine is on and the clutch engaged. The engine start is ex-
ecuted by a low-level controller. During the start process,
EM1 applies positive torque to spin the engine. The torque
delivered to the wheels is zero until the clutch engages. Once
the clutch is engaged, the SP-SDP controller starts issuing
torque commands. The SP-SDP torque command is initial-
ized at the engine torque estimate from the Engine Control
Unit to avoid rapid transients.

9 Conclusions
An energy management controller based on Stochastic

Dynamic Programming has been successfully implemented
in a prototype HEV. Theoretical and practical issues affecting



0 200 400 600 800 1000 1200
30

35

40

45

50

55

60

S
O

C
 (

%
)

 

 

0 200 400 600 800 1000 1200
0

0.5

1

1.5
Baseline Controller, 74 Engine Events

E
ng

in
e 

S
ta

te

0 200 400 600 800 1000 1200
0

5

10

15

20

25

sp
ee

d 
(m

/s
)

Speed Traces for SDP Controller #1

 

 
Target Speed
Actual Speed

0 200 400 600 800 1000 1200
0

0.5

1

1.5
SDP Controller #1, Engine Penalty=0.2, 64 Engine Events

E
ng

in
e 

S
ta

te

Baseline Controller
SDP Controller #1
SDP Controller #2

0 200 400 600 800 1000 1200
0

0.5

1

1.5
SDP Controller #2, Engine Penalty=0.5, 52 Engine Events

E
ng

in
e 

S
ta

te

time (s)

Fig. 13: Driving the FTP72 cycle with the baseline controller and two different SP-SDP controllers.
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Fig. 14: Driving the NEDC with the baseline controller and two different SP-SDP controllers.



Table 2: Fuel economy summary for malfunctioning hardware with SOC correction

Controller Cycle Normalized
Uncorrected Fuel
Economy (MPG)

∆SOC Normalized
Corrected Fuel

Economy (MPG)

Improvement Engine Events

Baseline FTP72 1.078 -14.0% 1.000 74

SP-SDP FTP72 1.028 1.4% 1.035 3.528% 64

SP-SDP FTP72 1.006 2.2% 1.018 1.764% 52

Baseline NEDC 0.966 0.5% 0.969 20

SP-SDP NEDC 0.921 12.2% 0.983 1.439% 28

SP-SDP NEDC 0.933 16.7% 1.024 5.662% 26

(a) Baseline controller: commanded torque-speed operating points on
FTP72

(b) SP-SDP controller: commanded torque-speed operating points on
FTP72

(c) Baseline controller: achieved torque-speed operating points on FTP72 (d) SP-SDP controller: achieved torque-speed operating points on FTP72

Fig. 15: Engine torque-speed operating points demonstrating the effects of a hardware failure. The plots on the left (15a and
15c) show the baseline controller, while the plots on the right (15b and 15d) show the SP-SDP controller. The top plots show
the commanded torques, while the bottom plots show the delivered torque. The engine control computer clips the delivered
torque at about 170 Nm.
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real-time implementation were addressed. The controllers
run in real-time on embedded hardware with typical automo-
tive computing capacity.

Optimization-based energy management algorithms are
typically designed based on relatively slow (∼ 1s) update
rates, but directly implementing such an algorithm would
yield poor driving characteristics. A method was developed

and tested that allows different update rates for various ac-
tuators to improve driver perception of pedal response. The
proposed implementation specifically deals with actuator de-
lays and infeasible operating points.

These results demonstrate the practical feasibility of us-
ing advanced optimal control techniques for energy manage-
ment controller design. There is a large gap between the
simple models used for optimization in the literature and
the tremendous complexity of production vehicle controllers.
Although additional issues must be addressed in a real vehi-
cle, the fundamental optimization based on relatively simple
models is effective. The controllers can be directly imple-
mented in hardware and yield good performance with mini-
mal manual tuning.
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