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Abstract— Recent advances in automotive technology, such
as, sensing and onboard computation, have resulted in the
development of adaptive cruise control (ACC) algorithms that
improve both comfort and safety. With a view towards devel-
oping advanced controllers for ACC, this paper presents an
experimental platform for validation and demonstration of an
online optimization based controller. Going beyond traditional
PID based controllers for ACC that lack proof of safety, we
construct a control framework that gives formal guarantees
of correctness. In particular, safety constraints—maintaining
a valid following distance from a lead car—are represented
by control barrier functions (CBFs), and control objectives—
achieving a desired speed—are encoded through control Lya-
punov functions (CLFs). These different objectives can be
unified through a quadtraic program (QP), with constraints
dictated by CBFs and CLFs, that balances safety and the
control objectives in an optimal fashion. This methodology is
demonstrated on scale-model cars, for which the CBF-CLF
based controller is implemented online, with the end result
being the experimental validation of an advanced adaptive
cruise controller.

I. INTRODUCTION

According to a 2008 survey conducted by the National
Highway Traffic Safety Administration, 93% (i.e., 9.48 Mil-
lion out of 10.2 Million) of all the car crashes in the U.S. are
caused by mistakes made by the driver. Although, according
to the survey conducted in 2013, these numbers have slightly
decreased, satisfactory technological solutions to prevent
accidents have yet to be developed. As a result, researchers
have more impetus to solve this problem using onboard sens-
ing, computation and control to assist human drivers. Cruise
control, Anti-lock Braking Systems (ABS), traction control,
obstacle avoidance and improved traffic flow are a few
examples [14], [15]. Conventional cruise control [23] (CCC)
has been successfully implemented in almost all production
cars in the United States, yet has not actively taken into
account collision avoidance. Adaptive cruise control (ACC),
which aims to unify CCC with safety related constraints [17],
is being actively studied from various perspectives [19], [11].
Mitsubishi was the first company to start the concept of ACC
in 1995, designing the Preview Distance Control, a method
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Fig. 1: Experimental setup with the electric car on the boom

that matches the velocity of the vehicle to its immediate
leader based on a laser distance measurement system.

To experimentally evaluate advanced automotive con-
trollers like ACC, previous research by the Program of
Advanced Technology for the Highway (PATH) has focused
on creating platoons between vehicles on the highways, e.g.,
multiple controlled cars follow a lead car even for lane
changes [22]. These results were achieved using radar sensor
detection by continuously calculating the headway distance
to maintain the desired velocity. Intelligent cruise control
(ICC) is a variant of ACC explored by [12], [24], [5] which
prioritizes autonomous driving by designing controllers with
braking systems that require minimal manual interaction.
Reference [7] investigates a braking system that allows the
vehicle to perform emergency stops when necessary, then
return to the set point velocity. More progressive control
methods, for example, satisfying Lyapunov Stability crite-
rion, have been shown to create smooth traffic flow in [6].

The main contribution of this paper is the simulation and
experimental validation of a controller that mathematically
accounts for both safety and comfort of the driver. The
safety critical nature of the problem necessitates controllers
that are formally correct, i.e., give guarantees of safety.
To address this, in [2], [17], controllers were presented
that give proofs of safety while simultaneously achieving
speed related control objectives. Of special interest here are
methods that utilize online optimization to maximize the
achievement of performance goals (via CLFs), subject to
safety (CBFs) constraints, and even bounds on actuation.
In particular, safety constraints are formulated as CBFs
and speed regulation related control objectives are encoded
as CLFs; these representations allow for the formulation



of a quadratic program (QP) problem that dynamically
adjusts these potentially contradictory specifications. These
constructions are revisited in the context of a lead vehicle
with variable speed and used to derive a QP based controller
that formally ensures safety. In addition to simply simulating
the resulting controller to validate its correctness, to more
sufficiently validate the feasibility of the framework in real
world application, we introduce an experimental platform uti-
lizing scale-model cars (see Fig. 1) to test the QP based ACC
controllers. In addition to simulating the resulting controller
to validate its correctness, this paper validates the feasibility
of the QP-CBF-CLF approach in a real-time embedded
environment and its ability to handle model uncertainty. In
particular, the QP based controller is implemented on an
autonomous following car while the lead car is manually
controlled . The end result is the experimental validation of
online optimization based controllers for ACC that simulate
realistic driving conditions.

The structure of this paper is as follows: Sect. II introduces
the experimental scale-model car test bed, the corresponding
dynamical system model, and the constraint specifications
involved in the ACC problem. In Sect. III we introduce the
control framework that is implemented experimentally. In
particular, we begin by translating the safety specifications
of the ACC problem to control barrier functions and speed
related objectives to control Lyapunov functions. Sect. IV
discusses the embedded level implementation of the control
algorithm on the experimental platform. Finally, Sect. V
and Sect. VI conclude the validation of the controller via
simulation and experimental results.

II. SYSTEM DYNAMICS AND EXPERIMENTAL SETUP

This section presents a novel experimental platform (see
Fig. 1) for testing advanced control algorithms for Adaptive
Cruise Control (ACC). This platform consists of two scale-
model cars, constrained to a 2D sagittal plane (via a boom) to
allow for the detailed study of speed regulation and collision
avoidance. After discussing the experimental platform, we
introduce the nonlinear model of the autonomous (following)
car that will be used to test the controller. Finally, we propose
the necessary constraints: safety, speed and wheel force that
will be used to construct the ACC problem in Sect. III.

A. Experimental Setup

We begin by discussing the experimental platform that will
be used to evaluate formal constructions. This setup is shown
in Fig. 1 and detailed in Fig. 2.

In order to maintain an appropriate balance between real-
ism and complexity, we chose two electric, remote controlled
cars powered by brushless DC (BLDC) motors as the test
vehicles for the experiments (see Fig. 2). The following
car is a all wheel drive, 1/5th scaled model and the lead
car is a rear wheel drive, 1/8th scaled model. The chassis
was machined out of aluminum and came equipped with
hydraulic shocks. The damping from the shocks was not
taken into account in order to keep the simplicity of the
overall dynamics. The vehicle is powered by a 22.2 V ,

Fig. 2: Experimental Setup. The boom restricts motion to a
circle. As shown in figure: (1) Electric motor, (2) On-board
UDOO (3) Battery for the UDOO board, (4) Hall sensor and
magnets, (5) Boom attachment plate, (6) Magnetic encoder
on the central shaft to measure the relative distance.

5000 mAh Lithium Ion-Polymer(LIPO) battery allowing the
vehicle to achieve speeds of more than 10 m/s . The control
algorithms running online on the autonomous car, are coded
at an embedded level on an electrical development board.

To eliminate lateral motion, both cars are rigidly attached
to a central shaft via a boom; see Fig. 1. A similar two dimen-
sional setup has already been implemented in several robotic
experiments, e.g., in the context of bipedal locomotion [16].
Note that the two cars are attached to their respective booms
with a universal ball joint mounted near the front axle
in order to ensure self-correction of lateral disturbances.
Additionally, the location of the ball joint serves as a steering
mechanism, further supporting the assumption of 2D motion
of the cars.

B. Nonlinear Dynamics

This ACC - equiped is modeled as a point mass system
subject to various forces as illustrated in the free body
diagram shown in Fig. 3. Thus, resulting in the equations
of motion of the form:

m
dv

dt
= Fw − Fr, (1)

where m and v are the mass and the velocity of the car, Fw

is the force generated by the contact point of the wheels with
the road, and

Fr = f0 − f1v − f2v2, (2)

is the total resistive force acting on the vehicle, in which
f0, f1 and f2 are various coefficients of friction forces that
can be calculated empirically. All parameters used in this
paper are listed in TABLE I.

Furthermore, the distance D between the following car
and the lead car is specified by the equation:

d

dt
D = vl(t)− v, (3)



Fig. 3: Dynamics on a free body diagram of a vehicle

where vl(t) and v are the velocities of the lead and controlled
car, respectively. Note that the velocity of the lead car, vl(t),
is assumed to be a time varying function (this is in contrast
to previous work by the authors [2] where it was assumed
to be constant). Without some assumptions on the lead car,
there can be no correctness. vl(t) will be governed by the
user manually controlling the lead car and sensed through
the boom encoder.

By defining x = (x1, x2) with x1 the position of the
vehicle, x2 the velocity and z = D to be the distance between
the two cars, the governing equations can be converted to a
nonlinear ODE:

ẋ =

[
x2
−Fr

m

]
︸ ︷︷ ︸
f(x,z)

+

[
0
1
m

]
︸︷︷︸
g(x,z)

u, (4)

ż = vl − x2︸ ︷︷ ︸
q(x,z,t)

, (5)

where u = Fw is the control input. We now introduce the
constraints on the dynamics of this system as dictated by the
ACC problem.

C. Control Objectives

With the goal of validating the requirements of ACC,
including: collision avoidance, adaptive velocity control,
and driver comfort, this section will present three classes
of constraints. These constraints will form the basis for
the development of an advanced online-optimization based
controller for the ACC problem.

Parameter value Unit
g 9.81 kg/s2

m 9.07 kg
f0 0.1 N
f1 5 N · s/m
f2 0.25 N · s2/m
v0 3 kg/s
ε 10 −
γ 10−4 −
ca 0.8 −
cd 1.2 −
psc 105 −
pcc 1010 −

TABLE I: Parameters Used in Simulation and Experiments

Hard Constraint: The constraint with the highest priority
is to prevent the following vehicle from colliding with the
lead car—this constraint should never be violated under any
circumstance. For the purposes of this paper, we consider the
simple rule stated in [25]: the minimum distance between two
cars, must be “half the speedometer”, which is represented
mathematically as:

D ≥ v

2
, (HC1)

where D is in meters and v is in kilometers per hour
Soft Constraint: As the standard objective of cruise control,
the controller should be able to track a specified desired
speed, vd, when adequate headway is assured. In other
words:

Drive v − vd → 0. (SC1)

Comfort Constraint: While satisfying hard and soft con-
straints, it is optimal to reduce the peak forces generated by
the car in emergency situations. For example, the comfort
constraints would prevent sudden jerks so that the driver
can experience a comfortable ride. This can be achieved
by constraining the acceleration and the deceleration of the
vehicle through an inequality constraint:

− cdg ≤
Fw

m
≤ cag, (CC1)

where cd and ca are the factors of g for deceleration and
acceleration, respectively. Similar bounds are assumed for
the lead vehicle’s acceleration.

III. CONTROL FRAMEWORK

The goal of this section is to develop a nonlinear online
optimization based controller that formally guarantees the
precise specifications of the ACC problem. In particular,
to ensure satisfaction of the hard constraint, we utilize the
framework of control barrier functions [18], [26], [13] and,
specifically, the formulation presented in [2]. Soft constraints
are viewed as control objectives, and represented by control
Lyapunov functions [8], [3]. Finally, the hard constraints,
soft constraints and the comfort constraints are unified into
a single control framework through the use of a quadratic
program (QP) [4], [9].

A. Hard Constraints as Control Barrier Functions
To construct a controller that provably enforces the Hard

Constraint (HC1), it is natural to utilize control barrier
functions (CBFs) to ensure that this constraint is satisfied
for all time. Motivated by previous work [2] for the case
where the lead car is moving at a constant velocity, this
paper will develop a control barrier function for a varying
lead car velocity: vl(t). In particular, by converting units to
m and s, the hard constraint (HC1) can be restated as:

h(x, z) = z − 1.8x2 ≥ 0, (6)

which yields the admissible set C given by:

C = {(x, z) ∈ R3 : h(x, z) ≥ 0}, (7)

∂C = {(x, z) ∈ R3 : h(x, z) = 0}, (8)

Int(C) = {(x, z) ∈ R3 : h(x, z) > 0}. (9)



Then the CBF candidate B can be chosen as:

B
(
h(x, z)

)
= B(x, z) =

1

z − 1.8x2
, (10)

with associated derivative:

Ḃ(x, z, t, u) =

−1.8Fr +m(vl(t)− x2)
m(z − 1.8x2)2︸ ︷︷ ︸

LfB

+
1.8

m(z − 1.8x2)2︸ ︷︷ ︸
LgB

u.

Based on Definition 2 from [2] and the fact that for (x, z) ∈
Int(C), it follows that 1.8x2−z < 0, B(x, z) is a valid CBF
if it satisfies

Ḃ(x, z, t, u) ≤ γ

B(x, z)
, (11)

where γ is a positive constant. This leads to

inf
u∈U

[
LfB(x, z) + LgB(x, z)u− γ

B(x, z)

]
≤ 0.

(HC1-CBF)
Therefore, by Theorem 1 of [2] any admissible control input
u ∈ U satisfying (HC1-CBF) will guarantee that B(x, z) is a
valid control barrier function, i.e., any (x0, z0) ∈ C will stay
in C for all time for any control law satisfying (HC1-CBF).

B. Control Lyapunov Functions for Soft Constraints
In this section, we revisit the mathematical methodology

used in [2] to build the soft constraint based on Control
Lyapunov Functions (CLFs) [8]. To track a desired velocity,
the control law should drive

y(x, z) = x2 − vd → 0. (SC1)

For this relative 1 degree output, we choose the Lyapunov
function candidate as:

V (y) = y2, (12)

which yields

V̇ (y) = −2y

m
Fr︸ ︷︷ ︸

LfV

+
2y

m︸︷︷︸
LgV

u. (13)

According to Definition 3 in [3], since V (y) satisfies
c1‖y‖2 ≤ V (y) ≤ c2‖y‖2, V (y) is a valid exponentially
stabilizing control Lyapunov function (ES-CLF) if

inf
u∈U

[LfV (y) + LgV (y)u+ εV (y)] ≤ 0, (14)

is also satisfied. In other words, with a proper choice of
control input u, the output y(x, z) will be exponentially
driven to zero, which enforces velocity tracking. However,
this function needs to be converted into constraints that are
functions of (x, z). To achieve this, by defining

ψ0(x, z) = −
2(x2 − vd)

m
Fr + ε(x2 − vd)2,

ψ1(x, z) =
2(x2 − vd)

m
, (15)

we can then construct the CLF constraint:

ψ0(x, z) + ψ1(x, z)u ≤ δsc, (SC1-CLF)

where δsc is a relaxation factor. Note that, it is this relaxation
factor that makes the constraint a soft constraint.

C. QP based Controller

Following [2], we will develop an online quadratic pro-
gram (QP) based controller that will provably satisfy the hard
constraints, while achieving the soft and comfort constraints
whenever possible. To construct a cost function for the
QP, we utilized notions from feedback linearization [21] to
develop a cost that will favor convergence to the control
objective (achieving a desired speed). In particular, a specific
example of a control input that satisfies (13) is given by:

u =
1

Lgy
(−Lfy + µ) = Fr +mµ, (16)

where µ is the control input for the linearized output dy-
namics (see [21]). To minimize the control effort µ, the cost
function of QP is chosen as:

µTµ =
1

m2
(uTu− 2uTFr + F 2

r ). (17)

By combing the above constraints the ACC CBF-CLF
based QP control law is given by:

u∗(x, z) = argmin

u=


u
δsc
δcc

∈R3

1

2
uTHaccu + FT

accu (ACC QP)

s.t. Aclfu ≤ Bclf , (CLF)
Acbfu ≤ Bcbf , (BCF)
Accu ≤ Bcc. (CC)

In which,

Hacc = 2

 1
m2 0 0
0 psc 0
0 0 pcc

 , Facc = −2

 Fr

m2

0
0

 , (18)

and Aclf , Bclf and Abcf , Bbcf are the inequality constraints
obtained from (HC1-CBF), (SC1-CLF):

Aclf =
[
ψ1(x, z) −1 0

]
,

Bclf = −ψ0(x, z),

Acbf =
[
LgB(x, z) 0 0

]
,

Bcbf = −LfB(x, z) +
γ

B(x, z)
.

Note that since the comfort constraint is also a conditional
constraint and it directly acts on the control input, Acc, Bcc

can be obtained by modifying (CC1) by adding the relaxation
factor δcc:

u ≤ camg + δcc,

−u ≤ cdmg + δcc. (CC)

This results in:

Acc =

[
1 0 −1
−1 0 −1

]
, Bcc =

[
camg
cdmg

]
,

where pcc is the user-defined penalty for the relaxation.
Because we want to give higher priority to comfortable
driving experience over velocity regulation, it is necessary



to set psc � pcc, where psc and pcc are the penalties on the
soft constraints and comfort constraint, respectively.

Note that while the output of the control law is a direct
input to the dynamic system for the simulation, for the
experimental setup the actual input to the system is the
PWM command sent to the motor. To best mirror the control
framework on physical experiments, we integrate the output
of the QP (ACC QP) one step forward by using the dynamics
of the system to find the internal velocity via:

vqp = vprevious +
(u− Fr)tloop

m
, (19)

where tloop is the loop rate on the hardware. The end result is
a control input for the nonlinear dynamics that will guarantee
the safety via hard constraint and adaptively use minimum
effort to adjust the velocity of the vehicle for both good
comfort and tracking performances.

IV. EXPERIMENTAL REALIZATION

In order to validate the proposed CBF-CLF QP controller
on the test bed discussed in Sect. II, hardware-software in-
terface along with a high level controller that mathematically
calculates the solution to the ACC QP online, are required. In
other words, three major requirements for the experimental
realization are: sensing, actuation and the embedded level
computing.
Sensing. To address the ACC problem specifications, as
discussed in Sect. III, the speed of the cars and the distance
between them are to be fed into the controller via various
sensors. Velocity measurements of the following car in
experiment are achieved through the use of a Hall effect
sensor, mounted on the wheel hub of the front wheel (see
Fig. 2) with two small magnets placed 180 degrees apart on
the inside of the same wheel. Common measurements of the
headway distance in production vehicles is through radar or
lidar [25]. However, taking advantage of the special boom
setup, the relative distance between two cars can be measured
by the magnetic incremental encoder mounted on the central
shaft.
Actuation. The system considered has a single control
output: velocity. The electric car used as the following car
(Fig. 2) has a three phase BLDC motor that is governed by
pulse width modulation (PWM) signals sent to the Electronic
Speed Control (ESC) unit which converts it into a three phase
voltage. The electric car does not have a separate actuator to
apply a braking force to the wheel, therefore the velocity of
the car is regulated through positive wheel force and resistive
forces only.
Embedded Computing. Realization of the proposed con-
troller has been divided into two stages: a high-level con-
troller which is running ROS (Robotic Operating System) on
Ubuntu, and a low-level controller realized by an Arduino
DUE board and the ESC on the car. Both high- and low-
level controllers are running on the UDOO board with an
embedded Arduino board, which is powered by a quad core
processor and, therefore, has the ability to achieve the online

Algorithm 1 UDOO Module, High Level Controller
Input: Current velocity of controlled car;
Input: Relative distance between the two cars;
Input: Current velocity of the lead car;
1: Enable ROS Master;
2: Run ROSSERIAL to communicate with low-level;
3: Connect to remote laptop through SSH;
4: Enable Electronic Speed Control (ESC) for the car;
5: repeat
6: Wait till all communication is established
7: until ( ESC == Enable )
8: Set up parameters for the model;
9: while ( ROSSERIAL == Running ) do

10: Define loop rate for high level controller;
11: Read ROS messages, Current Velocity and Relative Distance;
12: Calculate actual time for the loop (tloop) using loop rate;
13: if Error in Calculation then
14: Report Errors and Stop QP calculation;
15: else
16: if Data recieved from any sensor then
17: Initialize the internal velocity for the QP;
18: Convert relative distance value into relative velocity (m/s);
19: Calculate lead car velocity by finite differencing;
20: Set up parameters for QP;
21: Calculate torque (Fw) via CLF-BCF QP.
22: if Barrier function < 0 then
23: Take vqp = 0 to simulate braking on the car;
24: else
25: Calculate vqp via one-step forward integration;
26: end if
27: Send velocity data to low-level controller
28: end if
29: Log data onto board via remote laptop over SSH;
30: end if
31: end while
32: Disable ROS Master;

control requirements. In particular, the sampling rate for the
ROS master is set to be 200 Hz.

High-Level Controller: The UDOO board runs Ubuntu
12.10 LTS and ROS Groovy on the processor. It is
mounted inside the car and solves the optimization problem
(ACC QP), online. The controller has been coded as a ROS
Node in C++ to improve the efficiency of execution as well
as record data being generated during the tests. The resistive
force as mentioned in (2) uses average coefficients derived
by testing on production cars, so when implementing on
scaled model cars, we scale the equation by the same factor
as the scale of the car. In real world scenarios, as seen in
CCC, the aerodynamic drag might cause high resistive forces
on the car. Which can be compensated by modifying the
force equation coefficients (2) according to the respective
car model. Algorithm 1 presents the pseudo-code of the
embedded implementation at the high level.

Low-Level Controller: Acting at the low-level, this
controller has less computation so it runs at a faster fre-
quency of 57600 BaudRate. The algorithm runs on the
Arduino DUE board as a ROS Node communicating with the
ROS Master. This allows us to connect motors and sensors
creating an interface between the hardware and software.
It is responsible for all the communication to and from
the actuators and sensors. To summarize the functions of
this controller, we present the pseudo-code running on the
Arduino in Algorithm 2.



Algorithm 2 Arduino Module- Low level
1: Compile Arduino code using IDE;
2: Communicate with ROSSERIAL node on ROS Master;
3: Enable Electronic Speed Control (ESC) for the car;
4: repeat
5: Set parameters for low-level controller;
6: until All communication is established
7: while ( ROSSERIAL == Running ) do
8: Initialize all GPIO pins;
9: Define pins for Motor, Hall Sensor and Magnetic Encoder;

10: if ESC == Enabled then
11: Send initialization sequence for ESC;
12: end if
13: Calibrate the relative distance;
14: Wait for messages from high level controller;
15: if PWM Signal == Active then
16: Send respective pulse value to motor;
17: Read data from hall sensor for wheel velocity;
18: Read data from magnetic encoder on central shaft;
19: Convert hall data into velocity in (m/s);
20: Convert encoder data into relative distance in (m);
21: Publish calculated data on ROS Master;
22: Subscribe for current v and vqp data on the Master;
23: Calculate error between v and vqp;
24: if error > 0 then
25: Proportional gain as Kpa;
26: else
27: Proportional gain as Kpd;
28: end if
29: Calculate new PWM signal using P-controller;
30: Send the PWM signal to the motor;
31: Log data onto board via remote laptop over SSH;
32: end if
33: end while
34: Disable Electronic Speed Control;
35: Kill the Arduino code;

V. RESULTS

In this section, the simulated performance and the exper-
imental performance of the CBF-CLF QP controller are an-
alyzed side by side. Importantly, we establish the successful
experimental implementation of the controller (ACC QP) as
exhibited in [1].

A. Simulation Results

As discussed in Sect. III, previous results [2] considered
the case when the lead care velocity was constant. On the
contrary, this paper constructed a control scheme that allows
for a lead care with time-varying velocity. To validate this
presented framework, the CBF-CLF QP controller was first
tested in an idealized environment: simulation. The lead
car velocity was chosen to be sinusoidal waveform, given
by vl(t) = 3 + 5 sin(0.1πt). As shown in Fig. 4, the
control objectives were accomplished (i.e., safety is always
maintained while the desired speed is achieved whenever
possible). In particular, when the system starts at initial
conditions (x0, z0) ∈ C, close to the boundary ∂C, the hard
constraint (Fig. 4b) forces the CBF constraint to modulate the
speed of the following car. Therefore, with a high value of B
and Ḃ, the following car moves much slower than the lead
car to maintain the safety imposed barrier. When the hard
constraint increases (i.e. the relative distance is within a safe
range) the soft constraint will influence the QP controller and
yield a desired cruise velocity regulation. The acceleration
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Fig. 4: Simulation results with sinusoidal lead car velocity
profile.

bounds restrain the speed modulation of the following car
to a smooth profile. Hence the simulation results verify the
validity of the proposed controller.

B. Experimental Results

Now, we describe the results of experimental implementa-
tion of the CBF-CLF QP controller (ACC QP), and present
the corresponding experimental results, and compare them
to simulation results that utilize the experimentally recorded
lead car velocity profile. In particular, the velocity data for
the manually controlled lead car is collected from the boom
encoder and utilized in simulation (through the fitting of
a high order polynomial to the data). This serves as the
connection point between the simulation and experimental
results as shown in Fig. 6. The consequent simulation results
can be seen alongside the experimental data in Fig. 5 and
Fig. 6 to provide concrete comparisons.
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Fig. 5: Experimental results (left column) and simulation
results (right column) for all of the relevant variables.

In Fig. 5, all of the relevant mathematical quantities are
shown to allow for direct comparison between experimental
plots on the left and simulation plots on the right. Overall,
good agreement is shown between the two cases, subject
to some notable differences. In the case of force input we
can see some discrepancies, which presumably accounts for
the lack of system model specifications—yet the force input
magnitudes are similar in both cases. Some calibration errors
and delays in sensing that propagate through the system,
introduce a slight bias in the behavior of the hard constraint
and the barrier function, B. Even with these practical issues,
the hard constraint is predominantly positive, indicating the
proper enforcement of the safety constraints. Finally, good
accordance is seen between the behavior of the control

Lyapunov function, V , and its derivative, V̇ , indicating the
ability to regulate speed when the control barrier function is
inactive.

As seen in Fig. 6, the velocity of the following car is
consistent between the simulation and experiment. Fig. 6a
shows all the experimental velocities recorded during the
tests. vexpqp is the velocity calculated from (ACC QP) using
the one step forward integration method (19), vexpfollow is the
actual velocity of the car, vexplead is the velocity of the lead
car and vd is the set desired velocity of the following car.
Fig. 6a illustrates the effectiveness of the CLF based control
constraint, which allows tracking of a set point velocity.
Similar outcomes can be seen when considering the sim-
ulation results obtained by using the experimental lead car
data as shown in Fig. 6b. The simulated velocity, vsimfollow, is
compared with the experimentally observed values, vexpfollow.
As expected, the simulation results achieve better velocity
tracking, yet these results still accurately represents the
behavior seen in experiments. Finally, comparing Fig. 6c
with Fig. 6a, we see that the velocity of the following car is
directly modulated by the relative distance and the lead car
velocity. This allows us to conclude that the proposed con-
trol method, encoded by (ACC QP), has been successfully
realized experimentally on scale-model cars.

VI. CONCLUSION

The main contribution of this paper is an experimental
platform that is used to evaluate advanced controllers for
ACC. The presented controller (ACC QP) was able to handle
multiple objectives—safety, speed regulation and comfort—
in a unified fashion. This online optimization based controller
was realized experimentally, where it was shown to satisfy
the safety specifications imposed by the control barrier func-
tion while achieving adaptive speed regulation as encoded by
the control Lyapunov function. To avoid errors arising from
hardware or communication time delays, the experimental
test speed was appropriately scaled to the vehicle. The
experimental results were then confirmed by comparing the
data against the results of a simulation using the same lead
car velocity. The comparison illustrated that the behavior of
the experimental controller for the ACC problem corresponds
with theory. The results of the control implementation, with
failure modes indicating the safety critical nature of ACC,
are available online as a video [1].
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