
USERS GUIDE FOR ASPIRE
3D IMAGE RECONSTRUCTION SOFTWARE

Jeffrey A. Fessler

COMMUNICATIONS & SIGNAL PROCESSING LABORATORY
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

Jul. 1997
Revised May 26, 2013

Technical Report No. 310
Approved for public release; distribution unlimited.

Users guide for ASPIRE 3D image reconstruction software

Jeffrey A. Fessler
4240 EECS, University of Michigan, Ann Arbor, MI 48109-2122

email: fessler@umich.edu
phone: 734-763-1434

May 26, 2013

Technical Report # 310
Communications and Signal Processing Laboratory

Dept. of Electrical Engineering and Computer Science
The University of Michigan

Abstract

This document is a users guide for the iterative 3D image reconstruction portion of the ASPIRE software suite.
This software is available from the author’s web site.

Work supported in part by NIH grants CA-60711, CA-54362, and CA-87955, NSF grant BES-9982349, and the Whitaker Foundation.

1

1 Introduction

This document is a users guide for the 3D image reconstruction subset of the ASPIRE software suite. When this
document was first written in 1997, the only 3D reconstruction method available was PWLS with a very limited choice
of system models. Now maximum-likelihood and penalized-likelihood image reconstruction for the Poisson emission
and transmission problems are also available, which will probably be of more interest to most users, as well as a larger
set of system models and regularization methods.

Readers should first be familiar with the ASPIRE documentation for 2D reconstruction [1].
This documentation is certainly incomplete. The best way to find out what the “latest and greatest” options are

is to execute the programs with too few arguments, and to examine the built-in documentation that is displayed. For
example, running i with no arguments will show all of the iterative methods that are available, both 2d and 3d, and
several other utilities. This documentation focuses on the following three reconstruction methods
• i empl3

Emission tomography (PET and SPECT) under the usual Poisson model and some variations thereof.
• i trpl3

Transmission tomography (X-ray CT or radionuclide transmission scans) under the usual Poisson model and some
variations thereof.

• i pwls3
penalized weighted least-squares (PWLS) image reconstruction. Appropriate for non-Poisson measurements. Not
recommended if either of the preceding two methods are suitable.

1.1 Common Considerations

Roughly speaking, all of the 3D reconstruction methods are based on variations of the model

y = Gx+ noise,

where
• x is the unknown image (volume) to be determined,
• y is the measured projection data, and
• G is the system matrix, which is specified as described in §6.

In all of ASPIRE’s 3D reconstruction methods, x corresponds to a lexicographically ordered nx × ny × nz array with
the x dimension (image column index) varying fastest and the nz dimension (slices) varying slowest, as is standard in
imaging. The dimensions of the data y are imaging-system dependent. For most of the 3D system models in ASPIRE,
the projection data is organized as a set of nview views of size nu × nv, so y corresponds to a lexicographically ordered
nu × nv × nview array, i.e., a stack of projections views like in conventional SPECT imaging.

The goal is to estimate x from y for the user-specified system model G. All three reconstruction methods (EMPL,
TRPL, PWLS) are based on minimizing a cost function of the general form

x̂ = argmin
x

Ψ(x), Ψ(x) = data_fit(y,Gx) +R(x), (1)

where data_fit is a functional that quantifies how well a given “guess” x fits the measurements, and R(x) is a
regularizing penalty function that discourages excessive image roughness, thereby controlling noise. By minimizing
Ψ(x), one finds an image that “fits the data” (where fit is measured by the first term) but is also not too noisy (where
roughness is measured by the penalty term).

1.2 Regularization methods

Currently, all the “3D” penalty functions implemented in ASPIRE penalize 1st-order pixel differences of the following
form:

R(x) =
1

2

np∑
j=1

np∑
k=1

wjk ψ(xj − xk) . (2)

2

(The 1
2 is because each pair is counted twice.) The current choices for ψ(t) are

• the quadratic function t2/2
• the Huber function

ψ(t) =

{
t2/2, |t| ≤ δ
δ|t| − δ2/2, |t| > δ.

As part of the command-line arguments to the iterative reconstruction program i, the user chooses the type of penalty
desired.

For emission image reconstruction, I recommend (for now) a quadratic penalty function using the 4 nearest neigh-
bors to each pixel within a plane, and the pixels above and below in the adjacent slices. For this penalty function,

wjk =


βx, j = k ± 1
βy, j = k ± nx
βz, j = k ± nxny,

roughly speaking. (I ignore edge conditions here; the code does consider them appropriately.) For this penalty with
βx = βy = 2−6 and βz = 2−7, the corresponding penalty string looks like

3d,-6,-7,quad,5,-

For transmission tomography, I recommend (for now) a nonquadratic edge-preserving penalty function such as
Huber’s potential, using all 8 neighbors in plane and at least the pixels above and below in the adjacent slices. For the
Huber potential, one can set δ to a value that is well below the important boundary differences in the attenuation map
(but not too small or it can slow down convergence and make “block” attenuation maps). For the choice βx = 216 and
βz = 211 and δ = 0.002/mm (assuming all units are in mm), the penalty string would be

3d,16,11,huber,6,-,0.002,ih,3

Regularization is an active research area in my group, so expect more options in the future, particularly with regards
to help in choosing the β’s to specify the desired resolution, a 3D extension analogous to that in [2], rather than trial
and error to determine βx and βz . In the mean time, it may be easiest just to use a fairly small value for the β’s and do
some post-filtering if additional noise reduction is desired.

1.3 More on quadratic penalties

Here is another way to write the 1st-order smoothness penalty:

R(x) = βx
∑

{j : ix>0}

wx
j

1

2
(xj − xj−1)

2 + βy
∑

{j : iy>0}

wy
j

1

2
(xj − xj−nx)

2 + βz
∑

{j : iz>0}

wz
j

1

2
(xj − xj−nxny)

2, (3)

where j = ix + iynx + iznxny, and all indices count from zero as in the C programming language. The parameters
βx, βy, βz control the resolution-noise tradeoff.

If Dn denotes the n− 1× n 1st-order differencing matrix:

Dn =


1 −1 0 0 0
0 1 −1 0 0

.
0 0 0 1 −1


and we define

Cx = Inz ⊗ Iny ⊗Dnx , Cy = Inz ⊗Dny ⊗ Inx , Cz = Dnz ⊗ Iny ⊗ Inx ,

then one can write
R = βxC

′
xD(wx

j)Cx + βyC
′
yD(wy

j)Cy + βzC
′
yD(wy

j)Cy,

where D(wj) is a diagonal matrix with diagonal elements w1, w2, This form is useful for analysis, but it does
clearly describe how the code is implemented. I forget why I put this in here in 1997, but I left it in since maybe it was
important.

3

2 Utility Operations

2.1 Forward projections

To generate a simulated noise free data, first create an image file (really a 3D volume) that is nx × ny × nz . If you have
Matlab, and if your version of the software was compiled with the Matlab library and flags, then you can create the
image using any function and then use the Matlab save command to write it to a file. Otherwise, use an AVS .fld
file as described in the ASPIRE manual [1].

Before proceeding, try op range image.fld to check if your file has the right size and values.
Now you need to create the projections of your image, i.e., to compute p = Gx. The command for this is

i proj3 proj.out image.in sys type

Obviously image.in should be your image.fld file, and proj.out should be the name of the output file where the
(noiseless) projections p will be stored. The most important parameter is sys type, which is described in §6.

2.2 Backprojection

Sometimes you may also need to compute
b = G′Wy.

This multiplication is performed by i back3, which has usage:

i back3 backimage.out nx ny nz views.in wi- sys type mask

where views.in is y, and should have dimensions na × nb × nz or nu × nv × nview depending on which system model
you are using. The argument backimage.out is the file to which b will be written, and will have size nx × ny × nz . And
the sys type argument is the same as described in §6.

If W ̸= I , i.e., if you want a weighted backprojection, then the argument wi should be the file containing the diag-
onal elements of W , arranged in the same way as views.in. The default hyphen will give an unweighted backprojection
with W = I .

2.3 Nonuniform Chang attenuation correction factors

To improve the accuracy of SPECT FBP reconstruction, e.g., to get a better initial image for iterative SPECT recon-
struction, one can apply Chang’s approximate correction method [3, 4]. Here is how to compute those factors

i back3 t0 nx ny nz - - sys type -
op div0 chang.out - t0 na

The first line does a backprojection of a set of uniform projections with unity value, storing the result in the intermediate
file t0. (The sys type should be of the type 3s and must specify the attenation map as described in §6.) The second line
divides the intermediate result of the backprojection into the scalar na, the number of projection views. The resulting
file chang.out contains the required factors.

4

3 EMPL3: 3D emission reconstruction

For emission tomography, ASPIRE is based on the following measurement model:

Yi ∼ Poisson

ci
np∑
j=1

gijxj + ri

,
where ri is additive background that includes random coincidences and possibly scatter, and ci includes ray-dependent
terms such as detector efficiencies and survival probabilities computed from an attenuation map. The array Yi, ci, and
ri must all have the same size, typically nu × nv × nview.

The corresponding log-likelihood is

L(x) =

nd∑
i=1

hi([Gx]i),

where
hi(l) = Yi log(cil + ri)−(cil + ri),

and its negative is the “data fit” term in (1) for maximum likelihood (ML) and penalized-likelihood emission image
reconstruction.

Typing i empl3will print the syntax of how to perform 3D emission image reconstruction under the above model.
The output should include something like:

Usage: empl3 file_out {init|-nx,ny,nz,value} file_yi
file_ci- ci_scale file_ri- ri_factor
sys_type file_mask- method
[saver- flag_obj(0) flag_nonneg(1) pix_max scale_init(0) slices-]
method: @niter@alg@penalty...

(The argument order is fixed.)
The arguments followed by a hyphen “-” are optional; using the hyphen will give sensible defaults.
Here is what each argument means.

• file out is the name of the output image file, dimensions nx × ny × nz .

• init is the name of the initial image file, dimensions nx × ny × nz .

For a uniform initial image of value 13 (within mask), use -nx,ny,nz,13.

For regularized algorithms I recommend an FBP initial image (corrected by Chang for SPECT), for convergence
rate reasons detailed in [5, 6].

• file yi is the nu × nv × nview file containing y.

• file ci contains the ci’s, which are scaled by the ci scale argument before use.

If file ci is the default hyphen, then the program sets the ci’s to be uniformly the value ci scale.

• file ri and ri factor control the model for the ri’s. As explained in the built-in documentation (type i empl3),
there are a few possible ways to use file ri and ri factor.

1. The usual and recommened way is to supply a data-sized file for file ri and set ri factor to 1. The file ri
should include the effects of randoms, scatter, crosstalk, room background, etc.

2. For simulations of randoms-precorrected PET data with a simple constant shift, use ’-shift’ for file ri
and set ri factor to the desired shift. ’The factor of 2’ needed for 2ri must be provided by the user as part
of the input shift argumtent. The code just adds ri factor to the yi’s and sets the ri’s to ri factor too.

5

3. For simulations having constant randoms, use ’-’ for file ri and set ri factor to be the mean randoms per
ray.
See [1] for more discussion of the shifted Poisson model!

4. Ask me if you are interested in saddlepoint approximations. (Not recommended.)

• sys type is as described in §6.

• file mask is a nx × ny × nz file of zeros and ones indicating the support of the object. User should supply this
if possible; the default hyphen varies with projector type. For 2z the default mask is the support read from the
.wtf. For 3a the default mask is a big circle.

• method specifies how many iterations of what algorithms using which penalties. See below.

• saver should usually be a hyphen. Other options are supported to let you write out intermediate iterations. See
the built-in documentation that appears when i empl3 is typed.

• flag obj: if 1, will compute −Ψ
(
x(0)

)
initially and Ψ

(
x(0)

)
−Ψ(x(n)) every iteration and print. Use 0 except

for debugging since this is very computationally expensive.

• flag nonneg: if 1, enforce nonnegativity constraint x ≥ 0. If 0, unconstrained.

• pix max: maximum allowable pixel value, which can be useful for transmission images if you know the maximum
attenuation coefficient. Use a big number like 1e9 otherwise.

• scale init: If you are sure that the initial image is properly scaled, then use 0. Otherwise, use 1, and ASPIRE will
scale your initial image to best fit the date before iterating. This requires an extra projection operation, so it is best
to match scaling of FBP with the G matrix by careful bookkeeping (i.e., preserving counts in the emission case).
ASPIRE will print out the scale factor it applied to the initial image. If your initial image is scaled correctly, it
should print a value within a few percent of 1.

This may not be implemented; please use 0 and get the initial scaling correct!

• slices: Use, say, 7,12 to only reconstruct slices 7 through 12 (numbered from 0). The default hyphen is to do all
slices.

3.1 The method string

As in 2D reconstruction [1], the generic syntax of the method argument looks like

@niter1@algorithm1@penalty1@niter2@algorithm2@penalty2...

This allows you to run niter1 iterations using algorithm1 for an objective with penalty1, followed by niter2 iterations
using algorithm2 for an objective with penalty2, etc. Usually you will just have one algorithm. For example, setting
method to

@9@osemc,classic,6,60,1.0@-

means 9 iterations of (unregularized) OSEM with 6 subsets out of 60 projection views, whereas

@9@ospsc,pc,6,60,0.99,0.1@3d,-6,-7,quad,5,-

means 9 iterations of relaxed OSPS [7] with 6 subsets out of 60 projection views, using the quadratic penalty function
described in §1.2 and the relaxation factor

αn = 0.99
1

1 + 0.1 · n

6

which satisfies the global convergence conditions described in [8]. The general form is

αn = relax scale
1

1 + relax rate · n
(4)

where I recommend using relax scale=1 and relax rate between 0 and 0.5, and closer to 0, like 0.1 although good
values are a subject of ongoing research. Using relax rate=0 corresponds to “classic” OSPS which will not converge
but usually works fine enough and saves you the trouble of picking yet another parameter. Using a small value like 0.01
for relax rate will give you behavior nearly identical to classic OSPS for the first 50 iterations or so, yet let you sleep
better at night knowing that if you actually ran hundreds of iterations the theory ensures that it will eventually converge.

Caution: OSPS may have problems when the ri’s are close to zero. (This never should happen in PET since random
coincidences are ubiquitous and the “shifted Poisson” approach usually ensures that the ri’s are not too small. Scatter
estimates should further increase the ri’s.) If your ri’s are close to zero or zero, then you probably need the OSDP
algorithm which is on my “to do” list. Bug me!

7

4 TRPL3: 3D transmission reconstruction

For transmission tomography, ASPIRE is based on the following measurement model:

Yi ∼ Poisson

bi exp
−

np∑
j=1

gijxj

+ ri

,
where ri is additive background that includes random coincidences and possibly scatter, and bi is the blank scan (ap-
propriately scaled for the relative durations of the blank and transmission scans). The arrays Yi, bi, and ri must all have
the same size, typically nu × nv × nview.

The corresponding log-likelihood is

L(x) =

nd∑
i=1

hi([Gx]i),

where
hi(l) = Yi log

(
bie

−l + ri

)
−(bie

−l + ri),

and its negative is the “data fit” term in (1) for maximum likelihood (ML) and penalized-likelihood emission image
reconstruction.

Typing i trpl3 will print the syntax of how to perform 3D transmission image reconstruction under the above
model. The output should include something like:

Usage: trpl3
file_out init|-nx,ny,nz,value} file_yi

file_bi- bi_scale file_ri- ri_scale
sys_type file_mask- method

file_ci- ci_scale file_ri- ri_scale
sys_type file_mask- method
[saver- flag_obj(0) flag_nonneg(1) pix_max scale_init(0) slices-]
method: @niter@alg@penalty...

(The argument order is fixed.)
The arguments followed by a hyphen “-” are optional; using the hyphen will give sensible defaults.
Virtually all of these arguments have the identical meanings as in i empl3, except that of course file bi and

bi scale correspond to the bi’s.
The principal differences are in terms of what algorithms are available to include in the method string.
Based on the work of Erdoğan [9], I recommend using the ordered-subsets paraboloidal surrogates (OSPS) algo-

rithm for transmission reconstruction. (Unlike the emission case, there is no problem with small ri’s in the transmission
case.)

Setting method to

@9@ospsc,pc,6,60,1.0,0.1@-3d,-6,-7,huber,6,-,0.002,ih,3

means 9 iterations of OSPS with 6 subsets out of 60 projection views, with the edge-preserving penalty function de-
scribed in §1.2, and with the same relaxation parameters described in (4).

8

5 PWLS3: 3D penalized weighted least-squares

The (quadratically) penalized weighted least-squares (PWLS) approach to image reconstruction computes an estimate
of the image by minimizing the following cost function:

x̂ = argmin
x

Ψ(x), Ψ(x) =
1

2
(y −Gx)′W (y −Gx)− n′(y −Gx) +

1

2
x′Rx (5)

where
• x is the unknown image (volume),
• y is (typically a processed version of) the measured projection data,
• G is the system matrix,
• W is a diagonal weighting matrix with nonnegative entries,
• R is a nonnegative definite regularization matrix, and
• n is currently undocumented (assume it is 0).

By minimizing Ψ(x), one finds an image that “fits the data” (where fit is measured by the first term) but is also not too
noisy/rough (where roughness is measured by the penalty term).

As noted in §1.3, a quadratic penalty can be written as

R(x) =
1

2
x′Rx.

Currently only quadratic penalties are documented for PWLS in 3D.
One can verify that the (column) gradient of Ψ(x) is given by

∇Ψ(x) = G′W (Gx− y) +G′n+Rx

= Hx− b

where
H = ∇2Ψ(x) = G′WG+R

is the Hessian of the objective function, and
b = G′(Wy − n)

is a weighted backprojection of the data.
Thus, in the absence of nonnegativity constraints, the reconstruction algorithm must solve the linear system of

equations
Hx = b.

The analytical solution is
x̂ = H−1b = [G′WG+R]−1G′(Wy − n),

but this cannot be computed directly except for small problems, so iterative methods are required. The preconditioned
conjugate gradient (PCG) algorithm [10] is well-suited to the above minimization problem (5).

Note that if W = I and R = 0, then
x̂ = [G′G]−1G′y,

which is the ordinary least-squares solution to the linear model

y = Gx+ noise.

Ordinary least-squares is suboptimal for tomography.

9

5.1 Execution of PWLS

Typing i pwls3 will print the syntax of how to perform PWLS-based reconstruction. The output should include
something like:

Usage: pwls3 out {init|-nx,ny,nz,value} data
sys_type wi- mask- method
[saver- flag_obj(0) flag_nonneg(1) pix_max scale_init(0) slices-]

Most of the arguments are identical to those for i empl3.
The arguments that differ are as follows.

• init is the name of the initial image file, dimensions nx × ny × nz , or a string −nx, ny, nz, value that gives the
size and value of a uniform initial image. For PCG I am less sure about the importance of initializing with FBP.

• data is either the nx × ny × nz file containing b, or the projection data y. The latter is recommended now.

• sys type is as described in §6. If b is used for data, then make sure that exactly the same sys type argument is
used here and when b is computed using i back3, or the reconstruction results will be garbage!

• wi is the (usually) nu × nv × nview file containing the wi’s (diagonal of W).

• flag nonneg This is not implemented for PCG.

• pix max: maximum allowable pixel value. This is not implemented for PCG.

For the method string, consider

@9@cg,none@3d,-6,-7,quad,5,-

which means 9 iterations of conjugate gradient with no preconditioner for the quadratic penalty described in §1.2. (Other
preconditioners may be documented later.)

5.2 Applying PWLS to Poisson Emission Data

Poisson emission data has a non-quadratic log-likelihood, but we can make a quadratic approximation. At one time I
thought this would be handy for speeding things up. But ordered subsets algorithms are so fast now even for the Poisson
likelihoods that I doubt that these quadratic approximations will be important. Here they are for historical interest.

Some of this may be implemented in op lin,em.
If the measurements have independent Poisson distributions:

Yi ∼ Poisson

ci
np∑
j=1

gijxj + ri

,
then the log-likelihood is

L(x) =

nd∑
i=1

hi([Gx]i),

where

hi(l) = Yi log(cil + ri)−(cil + ri)

ḣi(l) = ci

[
Yi

cil + ri
− 1

]
ḧi(l) = −c2i

Yi
(cil + ri)2

.

10

Let l̂i be an estimate of [Gx]i, obtained somehow (and called pivot). One natural choice for l̂i is

l̂i =
Yi − ri
ci

, (6)

which is a fairly standard choice (“precorrect the data”), but this is not the only logical choice. In particular, since

ltrue = Gxtrue ≥ 0,

another logical choice is

l̂i =

[
Yi − ri
ci

]
+

.

It may also be sensible to smooth the l̂i’s [6].
Regardless of which choice one makes for l̂i, for l ≈ l̂i,

hi(l) ≈ hi
(
l̂i

)
+ḣi(l̂i)(l − l̂i) +

1

2
ḧi(l̂i)(l − l̂i)

2

= hi
(
l̂i

)
−ni(l − l̂i)−

1

2
di(l − l̂i)

2

= hi
(
l̂i

)
+ni(l̂i − l)− 1

2
di(l̂i − l)2

= −
[
1

2
di(l̂i − l)2 − ni(l̂i − l)− hi

(
l̂i

)]
where

di ≜ −ḧi(l̂i) = c2i
Yi

(ci l̂i + ri)2

is called nder2 (since it is the negative of the second derivative) and

ni ≜ −ḣi(l̂i) = ci

[
1− Yi

ci l̂i + ri

]
is called nder1 (since it is the negative of the first derivative). Note that if we use (6), then ni = 0, so the linear term
disappears and we are left with the quadratic term discussed in [6].

Renaming l̂i just yi, we can maximize the quadratic objective function

Lq(x) =

nd∑
i=1

ni(yi − [Gx]i)−
1

2
di(yi − [Gx]i)

2

= n′(y −Gx)− 1

2
(y −Gx)′D(y −Gx)

or equivalently minimize its negative

Ψ(x) = −Lq(x) +R(x) =
1

2
(y −Gx)′D(y −Gx)− n′(y −Gx) +R(x).

11

6 System Models (Projector/backprojectors)

ASPIRE includes implementations of several different tomographic system models. Users specify the choice and pa-
rameters of these models with the sys type argument which, not surprisingly, describes the system type2. This string
tells the software what type of system model (i.e., projector/backprojector) to use.

Not all of the system models are documented here. To see what choices are implemented, type i proj3 and the
output will include something like the following.

sys_type (imaging system model) choices:
2dsc@... separable block 2d system matrix on the fly
2z@... separable block 2d system matrix precomputed
3a@... forward/back projector
3b@... forward/back projector (improved)
3c@... forward/back projector for cylindrical geom
3l@... cone-beam line integrals
3s@... SPECT with depth-dependent response
3u@... user-defined forward/back projector

...

Additional usage information is printed for each system model choice, and by comparing the examples detailed here
to the built-in documentation, you should be able to figure out how to use some of the undocumented ones. Ask me if
interested!

6.1 User-defined projector / backprojector

If you need a different projector / backprojector than those described below, you can write your own projector / back-
projector and compile it as a dynamic library, then call it using the 3u option for sys type. The details are explained
in a separate document that can be downloaded from the web page where the ASPIRE binaries are located, including a
working example. If you want to attempt this, I recommend that you discuss it with me first.

6.2 Separable 2D projector

The simplest “3D” projector is the separable block-2D projector having the form:

G =

 G2D 0
. . .

0 G2D

 = Inz ⊗G2D,

where I is the nz × nz identity matrix, ⊗ denotes Kronecker matrix product, and G2D is any of the 2D projectors
that one can generate using ASPIRE. In this case G2D has dimensions (nanb) × (nxny) and thus G has dimensions
(nanbnz)× (nxnynz).

To use this system model, the sys type argument is

2z@file.wtf@-

where file.wtf is the name of the .wtf generated using ASPIRE corresponding to G2D.
2Prior to Sep. 2001, I used the string fi type instead of sys type, as an abbreviation for “Fisher Information Type.” I called it the Fisher

Information because G′WG is the Fisher information for estimating x from y under the Gaussian model

y ∼ N
(
Gx,W−1) .

This made some sense for PWLS, but less sense for Poisson models. If you have code that says “fi_type” in the built-in documentation, then
you have an old version.

12

• Since this model uses the same G2D for each slice, it is inappropriate for SPECT problems that require different
attenuation maps for each slice. Use the 3s model for such problems.

• This model requires that the data be organized as a set of nz sinograms each of size nb×na, rather than as projection
views. If necessary, apply op transpose to your data.

• The third argument (hyphen) is work in progress that may lead to somewhat reduced compute time in the future.
• The only reason to do “3D” reconstruction with a separable system model is to obtain the benefit of 3D regularization.

Conventional PET and SPECT reconstruction using FBP usually involves 3D post-filtering. So for fair comparisons
between regularized iterative reconstruction and FBP, one should also use 3D regularization even if a slice-by-slice
system model is used (which is reasonably appropriate for “2D” multi-slice PET scans).

• In large problems (such as X-ray CT), it can be impractical to precompuate and store a file.wtf. In such cases, one
can instead use the following sys type

2dsc@file.dsc@-
where file.dsc is the ASCII system geometry description file described in [1]. With the system model, the nonzero
elements of G2D are computed on the fly during each forward and backprojection. This requires much more compute
time, but much less memory than using a file.wtf. The 2dsc projector/backprojector is threaded so it can exploit
dual-processor machines [1].

6.3 Point-based 3D projector/backprojector

A simple 3D forward projection method is to treat each pixel as a point in 3D space, and project its value by bilinear
interpolation onto a 2D projection view at some angle θ, ϕ, where θ is the axial “tilt” and ϕ is the transaxial rotation
angle. A 3D data set consists of nview such projection views, where each view corresponds to a unique (θ, ϕ) pair. Each
view has nu × nv samples. I assume the image volume has unit sampling in x and y, and let sz denote the (relative)
slice spacing (in the z direction), and su and sv the sample spacing in the projection views. The size of G in this case
is essentially (nunvnview)× (nxnynz). The sys type for this projector is

3a@nu,nv,su,sv,sz@iv.file@angles.file

The output projection will have dimension (nu × nv × nview).
The file iv.file must have dimension 2× nview and should consist of the pairs

(imin
1 , imax

1), (imin
2 , imax

2), . . . , (imin
nview

, imax
nview

),

where i is an integer index in the v-dimension of projection views. When processing projection view k, the program
will only project to and backproject from rows iv for which imin

k ≤ iv < imax
k . If the default hyphen - is used, then

all rows of each view are used. In most geometries, not all rows are valid data, so the ranges almost surely should be
provided by the user.

The file angles.file must have dimension 2× nview and should consist of the pairs

(θ1, ϕ1), (θ2, ϕ2), . . . , (θnview , ϕnview),

where the angles are in radians. The projection data will be arranged in the same order. Typically nview = nθnϕ, in
which case I recommend making ϕ vary fastest. The reason for this recommendation is the following. After creating
the projection data using i pwls3, it may useful to display the data in sinogram format rather than projection format.
The command

op transpose sino.out proj.in 1,2

will switch the 2nd and 3rd dimensions of proj.in, so the output size will be (nu × nview × nv) = (nu × nϕ · nθ × nv),
which may be more intuitive to view, at least for small nθ.

The 3a projector is now obsolete due to improved 3b projector. Ask me if you want documentation for it.
A concrete simple example for sys type is

3a@128,64,1,1,1@-@angles.fld

13

6.4 GE 3D projector

If (and only if) you are associated with GE (e.g., UW), then you should also have access to the 3D projector written by
Chuck Stearns, which has the same setup as the 3a projector above, except you replace 3a with 3ge. However, the
GE projector and backprojector are not transposes of each other, which may be fine for FBP reconstruction, but causes
problems with iterative reconstruction since they are used repeatedly and therefore any discrepancies will accumulate.
I recommend the 3a projector instead, since the corresponding backprojector is the transpose of the forward projector.

The GE projector also does not have the iv.file argument or capability, which may cause problems.

6.5 Cylindrical PET systems

The 3c system model is designed for cylindrical PET systems with septa removed. It is still somewhat under develop-
ment. Bug me if interested.

Type i proj3 to see brief documentation.

6.6 SPECT system model

The 3s system model includes both nonuniform attenuation and user-specified depth-dependent detector response. The
implementation is based on a rotate, attenuate, depth-dependent filter, then sum approach. Attenuation uses a “center
ray” approximation. The projector and backprojector are adjoint operators.

The sys type string for SPECT is

3s@sx,sy,sz,orbit,orbit start,spline filter@mumap.file@filter.file@-nu,nv,nview

• (sx,sy,sz) are the voxel sizes (typically in mm or cm)
• Currently must have sx =sy, nx =ny, nu =nx, nv =nz
• orbit and orbit start are in degrees
• spline filter must be 0 (nearest neighbor), or 1 (for B1, linear interpolation), or 3 (for B3, cubic B-spline interpola-

tion). I recommend using 1 or possibly 3.
• The filter.file must be [n1 psf,n2 psf,ny], with n1 psf and n2 psf odd. This file must contain the user-specified depth-

dependent PSF for each of the ny planes parallel to the detector.
• Optionally, filter.file can be [n1 psf,n2 psf,ny,nview] for angle-dependent blurs, such as in noncircular orbits.
• The final argument -nu,nv,nview is required.

There are different ways of implementing the depth-dependent blurring. One way uses FFTs which is fast and
efficient, but may have problems near the end slices because the FFT uses zero-padding (to avoid effects due to the
circular nature of FFT-based filtering) but zero is often not a reasonable boundary condition in SPECT due to the “long
object” problem.

If you plan on using this system model, you probably want to ask me for an example script including a Matlab
m-file for generating the PSFs.

References

[1] J. A. Fessler. ASPIRE 3.0 user’s guide: A sparse iterative reconstruction library. Technical Report 293, Comm.
and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122, July 1995. Available from
web.eecs.umich.edu/∼fessler.

[2] J. A. Fessler and W. L. Rogers. Spatial resolution properties of penalized-likelihood image reconstruction methods:
Space-invariant tomographs. IEEE Trans. Im. Proc., 5(9):1346–58, September 1996.

[3] L. T. Chang. A method for attenuation correction in radionuclide computed tomography. IEEE Trans. Nuc. Sci.,
25(1):638–643, February 1978.

14

[4] L. T. Chang. Attenuation correction and incomplete projection in single photon emission computed tomography.
IEEE Trans. Nuc. Sci., 26(2):2780–5, April 1979.

[5] K. Sauer and C. Bouman. A local update strategy for iterative reconstruction from projections. IEEE Trans. Sig.
Proc., 41(2):534–48, February 1993.

[6] J. A. Fessler. Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE
Trans. Med. Imag., 13(2):290–300, June 1994.

[7] J. A. Fessler and H. Erdoğan. A paraboloidal surrogates algorithm for convergent penalized-likelihood emission
image reconstruction. In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 2, pages 1132–5, 1998.

[8] S. Ahn and J. A. Fessler. Globally convergent ordered subsets algorithms: Application to tomography. In Proc.
IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 2, pages 1064–8, 2001.

[9] H. Erdoğan and J. A. Fessler. Ordered subsets algorithms for transmission tomography. Phys. Med. Biol.,
44(11):2835–51, November 1999.

[10] J. A. Fessler and S. D. Booth. Conjugate-gradient preconditioning methods for shift-variant PET image recon-
struction. IEEE Trans. Im. Proc., 8(5):688–99, May 1999.

Most of my papers are available on WWW: http://www.eecs.umich.edu/˜fessler.
The remainder of this report is notes that are mostly to myself about various aspects of the implementation.

15

7 3D Projection Coordinate System - 3a

This section describes the coordinate system for the 3a projector.
Image-volume physical coordinates are (x, y, z), with

x = cx + (ix − (nx − 1)/2)sx = (ix − wx)sx where wx = (nx − 1)/2− cx/sx

y = cy + (iy − (ny − 1)/2)sy = (iy − wy)sy where wy = (ny − 1)/2− cy/sy

z = cz + (iz − (nz − 1)/2)sz = (iz − wz)sz where wz = (nz − 1)/2− cz/sz.

Pixel coordinate ix goes from 0 to nx−1 etc. If cx = 0 and sx = 1, then as ix ranges from 0 to nx−1, the x coordinate
ranges from −(nx − 1)/2 to (nx − 1)/2.

Projection view coordinates are u, v, with

u = cu + (iu − (nu − 1)/2)su = (iu − wu)su where wu = (nu − 1)/2− cu/su

v = cv + (iv − (nv − 1)/2)sv = (iv − wv)sv where wv = (nv − 1)/2− cv/sv.

For a parallel projection at polar angle θ and azimuthal angle ϕ:

u = x cosϕ+ y sinϕ

v = (−x sinϕ+ y cosϕ) sin θ + z cos θ.

Useful relationship:

iu =
u

su
+ wu

=
x cosϕ+ y sinϕ

su
+ wu

=
(ix − wx)sx cosϕ+ y sinϕ

su
+ wu

= ix

(
sx
su

cosϕ

)
+

(
wu +

−wxsx cosϕ+ y sinϕ

su

)
.

Similarly

iv =
v

sv
+ wv

=
(−x sinϕ+ y cosϕ) sin θ + z cos θ

sv
+ wv

=
[−(ix − wx)sx sinϕ+ y cosϕ] sin θ + (iz − wz)sz cos θ

sv
+ wv

= −ix
(
sx
sv

sinϕ sin θ

)
+ iz

(
sz
sv

cos θ

)
︸ ︷︷ ︸
iv_inc : δv

+

(
[wxsx sinϕ+ y cosϕ] sin θ − wzsz cos θ

sv
+ wv

)
︸ ︷︷ ︸

vv_factor

= iz

(
sz
sv

cos θ

)
︸ ︷︷ ︸
iv_inc : δv

+

(
[wxsx sinϕ+ y cosϕ] sin θ − wzsz cos θ

sv
+ wv

)
− ix

(
sx
sv

sinϕ sin θ

)
︸ ︷︷ ︸

ivd

.

16

8 3D Projection Coordinate System - 3b

This section describes the coordinate system for the 3b projector.
Image-volume physical coordinates are (x, y, z), with

x = [ix − (nx − 1)/2− cx]sx = (ix − wx)sx where wx ≜ (nx − 1)/2 + cx

y = [iy − (ny − 1)/2− cy]sy = (iy − wy)sy where wy ≜ (ny − 1)/2 + cy

z = [iz − (nz − 1)/2− cz]sz = (iz − wz)sz where wz ≜ (nz − 1)/2 + cz.

Pixel coordinate ix goes from 0 to nx − 1 etc., and the voxel “centers” (cx,cy,cz) are in units of voxels (not mm) since
the most likely shifts will be 0 or 0.5 voxels.

Projection view coordinates are (u, v), with

u = [iu − (nu − 1)/2− cu]su = (iu − wu)su where wu ≜ (nu − 1)/2 + cu

v = [iv − (nv − 1)/2− cv]sv = (iv − wv)sv where wv ≜ (nv − 1)/2 + cv.

We assume projections are “sampled” at the center of each projection view bin. If cu = 0 and su = 1, then as iu ranges
from 0 to nu-1, u ranges from −nu−1

2 to nu−1
2 .

For a parallel projection at polar angle θ and azimuthal angle ϕ:

u = x cosϕ+ y sinϕ

v = (−x sinϕ+ y cosϕ) sin θ + z cos θ.

Useful relationship:

iu =
u

su
+ wu

=
x cosϕ+ y sinϕ

su
+ wu

=
(ix − wx)sx cosϕ+ y sinϕ

su
+ wu

= ix

(
sx
su

cosϕ

)
+

(
−wxsx cosϕ+ y sinϕ

su
+ wu

)
.

The second term is uu_factor.
Similarly

iv =
v

sv
+ wv

=
(−x sinϕ+ y cosϕ) sin θ + z cos θ

sv
+ wv

=
[−(ix − wx)sx sinϕ+ y cosϕ] sin θ + (iz − wz)sz cos θ

sv
+ wv

= −ix
(
sx
sv

sinϕ sin θ

)
+ iz

(
sz
sv

cos θ

)
+

(
[wxsx sinϕ+ y cosϕ] sin θ − wzsz cos θ

sv
+ wv

)
.

The last term is called vv_factor. The middle term is called iv_inc, and is essentially div/diz: the change in iv
per slice. The sum of the first and last term is ivd. We write:

iv = v0 + izδ.

If θ = 0 and sx = sy = sz = su = sv and wz = wv, then v0 = 0 and δ = 1, as expected.

17

Useful facts about ⌈·⌉ and ⌊·⌋:

x ≤ ⌈x⌉ < 1 + x, x− 1 < ⌊x⌋ ≤ x.

For bilinear interpolation in the u direction, we must have

0 ≤ ⌊iu⌋ ≤ ⌈iu⌉ ≤ nu − 1.

So there is a problem if ⌊iu⌋ < 0 or if ⌈iu⌉ ≥ nu. This can be verified by the 3b_check routine.
For bilinear interpolation in the v direction, to have both points inside the valid range we must have

imin ≤ ⌊iv⌋ ≤ ⌈iv⌉ ≤ imax − 1,

or equivalently ⌈iv⌉ < imax for the last term. So we require

imin ≤ ⌊v0 + izδ⌋ .

Suppose we choose as the starting slice:

k0 ≜
⌈
imin − v0

δ

⌉
,

then since x ≤ ⌈x⌉ we have
imin − v0

δ
≤ k0

so (provided of course that δ > 0)
imin ≤ v0 + k0δ.

If m ≤ x for integer m, then m ≤ ⌊x⌋, so as required

imin ≤ ⌊v0 + k0δ⌋ .

We also require that
⌈v0 + izδ⌉ ≤ imax − 1.

Suppose we choose as the ending slice:

k1 ≜
⌊
imax − 1− v0

δ

⌋
.

Since ⌊x⌋ ≤ x,

k1 ≤
imax − 1− v0

δ

so (for δ > 0 again)
v0 + k1δ ≤ imax − 1.

If x ≤ n for integer n, then ⌈x⌉ ≤ n. So as required

⌈v0 + k1δ⌉ ≤ imax − 1.

18

9 3D Projection Coordinate System - 3c (Cylinder PET)

This section describes the coordinate system for the 3c projector.
Image-volume physical coordinates are (x, y, z), with

x = [ix − (nx − 1)/2− cx]sx = (ix − wx)sx where wx ≜ (nx − 1)/2 + cx

y = [iy − (ny − 1)/2− cy]sy = (iy − wy)sy where wy ≜ (ny − 1)/2 + cy

z = [iz − (nz − 1)/2− cz]sz = (iz − wz)sz where wz ≜ (nz − 1)/2 + cz.

Pixel coordinate ix goes from 0 to nx − 1 etc., and the voxel “centers” (cx,cy,cz) are in units of voxels (not mm) since
the most likely shifts will be 0 or 0.5 voxels.

Projection view coordinates are (u, v), with

u = [iu − (nu − 1)/2− cu]su = (iu − wu)su where wu ≜ (nu − 1)/2 + cu

v = [iv − (nv − 1)/2− cv]sv = (iv − wv)sv where wv ≜ (nv − 1)/2 + cv.

We assume projections are “sampled” at the center of each projection view bin. If cu = 0 and su = 1, then as iu ranges
from 0 to nu-1, u ranges from −nu−1

2 to nu−1
2 .

For a parallel projection at polar angle θ and azimuthal angle ϕ:

u = x cosϕ+ y sinϕ

v = (−x sinϕ+ y cosϕ) sin θ + z cos θ.

d

0 1 2 3 4 5 6 7 8 9 10 11

sv = sz cos θ, tan θ = nsdc
2rc

where ns is the span, and dc is the crystal width, which for an Exact is 6.75mm, and rc is
the crystal radius, which for an Exact is 412.5mm.

19

Useful relationship:

iu =
u

su
+ wu

=
x cosϕ+ y sinϕ

su
+ wu

=
(ix − wx)sx cosϕ+ y sinϕ

su
+ wu

= ix

(
sx
su

cosϕ

)
+

(
−wxsx cosϕ+ y sinϕ

su
+ wu

)
.

The second term is uu_factor.
Similarly

iv =
v

sv
+ wv

=
(−x sinϕ+ y cosϕ) sin θ + z cos θ

sv
+ wv

=
[−(ix − wx)sx sinϕ+ y cosϕ] sin θ + (iz − wz)sz cos θ

sv
+ wv

= −ix
(
sx
sz

sinϕ tan θ

)
+ iz +

(
[wxsx sinϕ+ y cosϕ] tan θ

sz
+ (wv − wz)

)
.

The last term is called vv_factor. The middle term is called iv_inc, and is essentially div/diz: the change in iv
per slice. The sum of the first and last term is ivd v0. We write:

iv = iz + v0.

If θ = 0 and wz = wv, then v0 = 0 as expected.
Useful facts about ⌈·⌉ and ⌊·⌋:

x ≤ ⌈x⌉ < 1 + x, x− 1 < ⌊x⌋ ≤ x.

For bilinear interpolation in the u direction without cumbersome end condition checking, we must have

0 ≤ ⌊iu⌋ ≤ ⌈iu⌉ ≤ nu − 1.

So there is a problem if ⌊iu⌋ < 0 or if ⌈iu⌉ ≥ nu. This can be verified by the 3c_check routine.
For bilinear interpolation in the v direction it is reasonable (and necessary) to check end conditions. For a given

slice iz to contribute something to the valid v range, we must have:

imin − 1 < iv < imax.

For the left condition we require
imin − 1 < iz + v0,

so we choose as the starting slice:

k0 ≜
⌊
imin − v0

⌋
.

Since x− 1 < ⌊x⌋, we have imin − 1 = (imin − v0 − 1) + v0 <
⌊
imin − v0

⌋
+ v0 = k0 + v0 as required.

For the right condition, we require that
iz + v0 < imax,

so we choose as the ending slice:

k1 ≜ ⌈imax − 1− v0⌉ .

Since ⌈x⌉ < 1 + x, we have k1 + v0 = ⌈imax − 1− v0⌉+ v0 < imax as required.

20

10 Computing the Objective Function

Computing the objective function in the code is somewhat different since only b is available and not y etc.
From (5):

Ψ(x) =
1

2
(y −Gx)′W (y −Gx)− n′(y −Gx) +R(x)

=
1

2
y′Wy − x′G′Wy +

1

2
x′G′WGx− n′y + x′G′n+R(x)

= (
1

2
y′Wy − n′y)− x′G′(Wy − n) +

1

2
x′G′WGx+R(x)

= (
1

2
y′Wy − n′y)− b′x+

1

2
x′Fx+R(x),

where F = G′WG. The first term is a constant independent of x, so is ignored. The second term is trivial to compute.
The third term is computed using fi_inc. The final term is computed using r3_penal.

10.1 Line Search

Ignoring the penalty term:

f(α) = Ψ(x+ αd)−Ψ(x) =
1

2
(x+ αd)′F(x+ αd)− 1

2
x′Fx− b′(x+ αd) + b′x

= αd′(Fx− b) +
1

2
α2d′Fd,

so
d

dα
f(α) = d′(Fx− b) + αd′Fd.

11 Initial Scale

Suppose we have an initial guess x of the image, but that initial guess may be “improperly” scaled. Then we would like
to find

argmin
α

Ψ(αx) .

Actually, we can just consider the likelihood term and ignore the penalty term to find α, since this one-parameter
estimation problem is (very) well-conditioned.

Ψ(αx) ≡ −b′(αx) +
1

2
α2x′Fx

so
∂

∂α
Ψ(αx) = −b′x+ αx′Fx

so

α =
b′x

x′Fx
is the WLS initial scale value.

12 Penalty Gradient and Hessian

We need to consider the z component of the penalty function more carefully, since the “border of zeros” trick that is
used for the in-plane penalty will not work for the z component. For x = [x0, x1, . . . , xnz−1] (in C notation):

R(x) =

nz−1∑
j=1

1

2
(xj − xj−1)

2.

21

So the gradient is

∂

∂xj
=


x0 − x1, j = 0
(xj − xj−1) + (xj − xj+1), 1 ≤ j ≤ nz − 2
xnz−1 − xnz−2, j = nz − 1,

and the Hessian diagonal is

∂2

∂x2j
=


1, j = 0
2, 1 ≤ j ≤ nz − 2
1, j = nz − 1.

22

