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ABSTRACT

This paper examines the spatial resolution properties of
penalized-likelihood image reconstruction methods by analyz-
ing the local impulse response. The analysis shows that stan-
dard regularization penalties inducespace-variantlocal impulse
response functions, even for space-invariant tomographic sys-
tems. Paradoxically, for emission image reconstruction the
local resolution is generally poorest in high-count regions.
We show that the linearized local impulse response induced
by quadratic roughness penalties depends on the object only
through its projections. This analysis leads naturally to a modi-
fied regularization penalty that yields reconstructed images with
nearly uniform resolution. The modified penalty also provides
a very practical method forchoosing the regularization param-
eter to obtain a specified resolutionin images reconstructed by
penalized-likelihood methods.

I. I NTRODUCTION

Statistical methods for image reconstruction can provide im-
proved spatial resolution and noise properties over conven-
tional filtered backprojection (FBP) methods. However, itera-
tive methods based solely on maximum-likelihood criteria pro-
duce images that become unacceptably noisy as the iterations
proceed. Methods for reducing this noise include: stopping
the iteration before the images become too noisy (long before
convergence) [1], iterating until convergence and then post-
smoothing the image [2], using smooth basis functions [3], and
replacing the maximum-likelihood criterion with a penalized-
likelihood (or maximuma posteriori) objective function that in-
cludes a roughness penalty to encourage image smoothness [4].

Penalized-likelihood approaches for reducing noise have two
important advantages over alternatives such as stopping rules
and sieves. First, the penalty function improves the condition-
ing of the problem, so certain iterative algorithms converge
very quickly. Second, one can choose penalty functions that
control desired properties of the reconstructed images, such as
preserving edges [4] or incorporating anatomical side informa-
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tion [5,6]. In contrast, the smoothness that one obtains through
stopping rules is limited by the characteristics of the iterative al-
gorithm. A possible disadvantage of penalized-likelihood meth-
ods has been the absence of an intuitive method for choos-
ing the value of the regularization parameter, even for simple
quadratic penalties. One contribution of this paper is a new
object-independent method for specifying the regularization pa-
rameter in terms of the desired resolution of the reconstructed
image.

This paper describes another possibly undesirable property of
penalized-likelihood image reconstruction methods that has not
been previously documented (except in [7] to our knowledge),
and then proposes a solution to the problem. Through analysis
and empirical results we demonstrate that when one uses stan-
dard space-invariant roughness penalties, the reconstructed im-
ages haveobject-dependent nonuniform spatial resolution, even
for space-invariant tomographic systems. For emission imaging
the resolution is generally poorest in high-count regions, which
is opposite to what one might expect or prefer. In Section V we
propose a new modified space-variant roughness penalty that
yields images with nearly uniform resolution. Based on our
analysis, one could extend the method to provide other reso-
lution characteristics, such as “higher resolution in high count
regions” etc., in a manner similar to methods for space-varying
regularization [8, 9], but in this paper we focus on the goal of
providing uniform resolution.

This paper is somewhat in the spirit of previous studies that
used thelocal impulse response[10–14] or an effective lo-
cal Gaussian resolution [15] to quantify the resolution prop-
erties of the unregularized maximum-likelihood expectation-
maximization (ML-EM) algorithm for emission tomography.
However, there is an important difference in our approach: since
the ML-EM algorithm is rarely iterated until convergence, pre-
vious studies examined the spatial resolution properties of ML-
EM as a function of iteration. In contrast, since there are
now fast andglobally convergentalgorithms for maximizing
both penalized-likelihood [16–19] and penalized weighted least
squares [20–22] objective functions, rather than studying the
properties of thealgorithmsas a function of iteration, we study
directly the properties of theestimatoras specified by theobjec-
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II LOCAL IMPULSE RESPONSE 2

tive function(Sections II and III). This simplifies the practical
use and interpretation of our analysis since the specifics of the
iterative algorithm are unimportant (provided one uses a glob-
ally convergent method). Our main results (14) and (16) should
therefore be applicable to a broad range of inverse problems.
(Although we focus on image reconstruction, most of the issues
also pertain to quantum-limited image restoration.)

In conventional FBP image reconstruction, one controls the
tradeoff between resolution and noise by adjusting the cutoff
frequencyfc of a filter. Sincefc has units of inverse length,
there is an intuitive (and object-independent) relationship be-
tweenfc and the spatial resolution of the reconstructed image.
For idealized tomographs, one can use the Hankel transform
to compute the point spread function (PSF) as a function of
fc [23]. But for real systems, one usually determines the (mono-
tonic) relationship betweenfc and the full-width half-maximum
(FWHM) of the PSF through the following empirical approach.
First, acquire a sinogram using a point or line source, possi-
bly at several locations within the scanner. Then pick a filter
type (e.g. Hanning) and reconstruct images for several differ-
ent values offc. Finally, compute the FWHM of the PSF for
each case, and record a table of (fc, FWHM) value pairs. In
subsequent studies, one typically chooses the desired resolution
(FWHM) by experience or by visually observing the resolution-
noise tradeoff, and then obtains the appropriatefc from the ta-
ble. One needs to perform this tabulation only once for a given
scanner, since FBP is linear (and hence its resolution properties
are object-independent).

In contrast, in penalized-likelihood image reconstruction, a
regularization parameterβ controls the tradeoff between res-
olution and noise, but the units ofβ are at best opaquely re-
lated to spatial resolution. Therefore it is not obvious how to
specify the regularization parameter. As a further complication,
one finds that for a fixedβ, the reconstructed spatial resolution
varies between subjects, and even within the same subject (Sec-
tion IV). One could chooseβ using statistical criteria such as
minimum mean-squared error [24,25]. However, mean-squared
error is composed equally of both bias (resolution) and variance
(noise), whereas those two contributions usually have unequal
importance in medical imaging, particularly when images are to
be interpreted visually. Furthermore, data-driven methods for
choosingβ can be unstable in imaging problems [26]. Many
other alternatives have been proposed, e.g. [27], [28], most of
which have again been assessed with respect to mean-squared
error. One practical contribution of this paper is that we de-
velop a method for normalizing the penalty function such that
the object-dependent component ofβ is nearly eliminated. This
allows one to build an object-independent table relatingβ to
spatial resolution (FWHM) for a given tomographic system, so
that one can selectβ to achieve a consistent specified resolu-
tion within planes, between planes, and even between subjects.
The task of choosing the “optimal” resolution is left to the user,
just as the “optimal” cutoff frequency (and filter) for FBP are
determined by different criteria in different contexts.

Nonuniform resolution properties are not unique to
penalized-likelihood methods. The ML-EM algorithm for emis-
sion tomography also exhibits resolution variation and asym-

metry [11] [29]. An advantage of the penalized-likelihood ap-
proach is that one can modify the penalty to overcome the reso-
lution nonuniformity (Sections V, VI, and VII), whereas it is not
obvious how to modify ML-EM to achieve uniform resolution.

PET and SPECT systems usually have intrinsically nonuni-
form spatial resolution [30] (although PET systems are usually
nearly space invariant near the center of the scanner [30]). In
this paper our simulations focus on an idealized PET system that
is essentially space invariant, except perhaps for the effects of
discretizing the Radon transform. Thus, the resolution nonuni-
formities we report are due solely to the interaction between the
log-likelihood and the penalty terms of the objective function,
and not due to the system response. We hope to study the effects
of penalty functions in systems with intrinsically space-variant
resolution in future work.

This paper is condensed from [31]. In [31] we also analyze a
continuous idealization of penalized least-squares image recon-
struction.

II. L OCAL IMPULSE RESPONSE

Let Y = [Y1, . . . , YN ]′ denote a random measurement vec-
tor (e.g. a noisy sinogram) with density functionf(y; θ), where
θ = [θ1, . . . , θp]

′ is an unknown parameter in ap-dimensional
parameter spaceΘ, and ′ denotes vector transpose. In imag-
ing problems,θ typically denotes image pixel values in lexico-
graphic ordering andΘ = {θ : θj ≥ 0, j = 1, . . . , p}. Given a
particular realizationY = y, an estimator of the form̂θ = θ̂(y)
has mean:

µ(θ) = Eθ[θ̂(Y )] =

∫
θ̂(y)f(y; θ) dy. (1)

For linear and space-invariant problems, one can characterize
the properties ofµ either in the spatial domain by specifying the
(global) impulse response, or in the spectral domain by speci-
fying the frequency response (Fourier transform of the impulse
response), as in [31].

Spectral methods are generally inapplicable to nonlinear es-
timators for which the impulse response is space variant. For
nonlinear estimators one can analyze thelocal impulse response
(cf [11]). For an estimator with meanµ(θ), we define the local
impulse response of thejth parameter (pixel) to be:1

lj(θ) = lim
δ→0

µ(θ + δej)− µ(θ)

δ

=
∂

∂θj
µ(θ), j = 1, . . . , p, (2)

whereej is the jth unit vector of lengthp. This impulse re-
sponse is local in two different senses. First, it is a function of
the indexj, reflecting the space-variant nature of nonlinear es-
timation. Second, it depends on the location in the parameter
spaceΘ through the argumentθ, reflecting the nonlinear ob-
ject dependence. The local impulse response also depends on

1We restrict our discussion to estimators where the above limit is well de-
fined. The reader is cautioned that non-convex penalties can lead to estimates
that arediscontinuousfunctions of the data [32]. We focus here on well-behaved
convex penalties.
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the measurement distribution through (1). Thus, the local im-
pulse response characterizes the object, system, and estimator
dependent properties. The local impulse response measures the
change in the mean reconstructed imagedue to perturbation of
a particular pixel in the noiseless object2.

To confirm that (2) is a natural generalization of the usual def-
inition of impulse response, consider an estimator whose mean
is linear inθ: µ(θ) = Lθ. Then the conventional definition of
impulse response isµ(ej), which is thejth column ofL. Eval-
uating (2), one finds thatlj is also thejth column ofL. (If
in additionL is a circulant matrix, then the impulse response
is space-invariant, andL corresponds to a convolution [33].)
Also note thatµ(θ) = θ for unbiased estimators, in which case
lj = ej . Penalized-likelihood estimators are always biased, so
local impulse responses will typically be bump-like functions,
rather than the ideal impulseej (e.g. Fig. 1).

As a specific example, consider the penalized weighted least-
squares estimator [21]:

θ̂ = θ̂(y) = argmin
θ
(y −Aθ)′W(y −Aθ) + βθ′Rθ,

whereW andR are symmetric nonnegative definite matrices
for which the null spaces ofR andWA are disjoint. For a fixed
W, this estimator is linear iny:

θ̂(y) = [A′WA+ βR]−1A′Wy,

and assumingEθ[Y ] = Aθ, one can evaluate (2) to show

lj = [A′WA+ βR]−1A′WAej . (3)

For such linear estimators, the local impulse response is inde-
pendent ofθ. As we show in Section III, the local impulse
responses of the nonlinear penalized-likelihood estimators for
image reconstruction have approximately the same form as (3),
except thatW andR may depend onθ.

There are at least three reasons to study the local impulse re-
sponse. The first reason is simply to understand the resolution
properties of penalized-likelihood estimators. The second rea-
son is that the local impulse response allows one to quantify lo-
cal resolution, which in turn allows one to choose the smoothing
parameterβ sensibly. The third reason is that comprehension
of the resolution properties enables the design of better penalty
functions. In particular, we show how to modify the standard
regularization penalty to achieve nearly uniform resolution.

A. Brute Force Evaluation of Local Impulse Response

Unlike the simple penalized weighted least squares estimator
described above, most estimatorsθ̂(y) do not have an explicit
analytical form. When there is no explicit form forθ̂(y), there
is usually no explicit form for the estimator meanµ(θ) either.
Thus it would at first appear that to investigate the local impulse
response of a nonlinear estimator of interest, one must resort to
a numerical approach based on (1) and (2), replacing the expec-
tation in (2) by the sample mean in a computer simulation. The
following recipe illustrates this brute-force approach.

2Because of this interpretation, we use the termpoint spread function(PSF)
synonymously with local impulse response, even though this stretches the usual
meaning of PSF.

• Select an objectθ of interest and generate multiple realiza-
tions{y(m)}Mm=1 of noisy measurements according to the
densityf(y; θ).

• Apply the estimator of interest to each of the measurement
realizations to obtain estimates{θ̂(y(m))}Mm=1.

• Estimate the estimator mean using the sample mean:

µ̂(θ) =
1

M

M∑
m=1

θ̂(y(m)). (4)

• Choose a pixelj of interest and small valueδ, and gener-
ate a second set of noisy measurements according to the
densityf(y; θ + δej).

• Apply the estimator to the second set of noisy measure-
ments, and compute the sample mean to obtain an estimate
µ̂(θ + δej).

• Estimate the local impulse response:

lj(θ) ≈
µ̂(θ + δej)− µ̂(θ)

δ
. (5)

By taking δ sufficiently small andM sufficiently large, one
can obtain arbitrarily accurate estimates of the local impulse re-
sponse.

B. Unbiased Estimator for Local Impulse Response

If one wants to evaluate the local impulse response for pixels
j1, . . . , jL of interest, the above procedure requires(L + 1)M
image reconstructions. The following method [34–36] reduces
the computation to onlyM image reconstructions. Note that
from (2),

lj(θ) =
∂

∂θj
µ(θ) =

∂

∂θj
Eθ[θ̂(Y )] =

∂

∂θj

∫
θ̂(y)f(y; θ) dy

= Eθ[θ̂(Y )
∂

∂θj
log f(Y ; θ)].

Thus one can show [35,36] that

̂lj(θ) = 1

M − 1

M∑
m=1

(θ̂(y(m))− µ̂(θ))
∂ log f(y(m); θ)

∂θj
(6)

is an unbiased estimator forlj(θ), whereµ̂(θ) was defined in
(4). Once one performs theM reconstructions{θ̂(y(m))}Mm=1,

then one can estimate the local impulse responsêlj(θ) for many
pixels with little additional effort.

By takingM sufficiently large, one can obtain arbitrarily ac-
curate estimates of the local impulse response. Unfortunately,
M may need to be very large for sufficient accuracy. Often
we would gladly accept anapproximationto the local impulse
response if we could avoid performing extensive numerical sim-
ulations. The remainder of this paper is devoted to approxima-
tions suitable for likelihood-based estimators in tomography.
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C. Linearized Local Impulse Response

In the context of emission tomography, several investiga-
tors have observed [13, 14, 37, 38] that the ensemble mean of a
likelihood-based estimator is approximately equal to the value
that one obtains by applying the estimator to noiseless data:

µ(θ) = Eθ[θ̂(Y )] ≈ θ̂(Ȳ (θ))
4
= θ̌. (7)

Here

Ȳ (θ) = Eθ[Y ] =

∫
yf(y; θ) dy (8)

denotes the mean of the measurement vector, andθ̌ denotes the
value of the estimator when given noiseless dataȲ (θ). This
approximation is equivalent to assuming that the estimator is
locally linear. Let∇y = [ ∂∂y1 . . . ∂

∂yN
] and consider the first-

order Taylor expansion of̂θ(Y ) aboutȲ (θ):

θ̂(Y ) ≈ θ̂(Ȳ (θ)) +∇y θ̂(Ȳ (θ)) · (Y − Ȳ (θ));

taking the expectation of both sides yields(7). The remainder
of this paper uses this local linearity approximation.

Substituting (7) into (2) yields the following definition of the
linearized local impulse response:

lj(θ) = lim
δ→0

θ̂(Ȳ (θ + δej))− θ̂(Ȳ (θ))

δ

=
∂

∂θj
θ̂(Ȳ (θ)). (9)

Since we focus on this form in the remainder of this paper, for
brevity we usually omit the adjective “linearized.”

The form of (9) leads to a much simpler recipe for numeri-
cally evaluating the local impulse response.

• Select an objectθ of interest, a pixelj of interest, and a
small valueδ. Generate two noiseless measurements vec-
tors: Ȳ (θ) andȲ (θ + δej).

• Apply the estimator of interest to each of the two noiseless
measurements, obtaining estimatesθ̂(Ȳ (θ)) andθ̂(Ȳ (θ +
δej)).

• Estimate the local impulse response:

lj(θ) ≈
θ̂(Ȳ (θ + δej))− θ̂(Ȳ (θ))

δ
. (10)

By takingδ sufficiently small, one can obtain very accurate es-
timates of the linearized local impulse response. Ifθ̂ is linear in
y, then (10) is exact of course.

To illustrate this method, Fig. 1 shows a profile through sev-
eral local impulse response functions of FBP and of the emis-
sion ML-EM algorithm [39] (stopped at 30 iterations, well be-
fore convergence). The objectθ was a uniform ellipse of activity
within a uniform elliptical attenuator (see [31] for details). De-
spite the fact that the elliptical object has uniform activity, the

resolution of the nonlinear ML-EM estimator is clearly nonuni-
form, whereas the FBP resolution is uniform since the smooth-
ing provided by the Hanning window is space-invariant. Us-
ing a similar perturbation approach applied to both the noise-
less mean of the datāY (θ) and to a single noisy realizationY ,
Stamoset al. [10] reported strongly object-dependent point re-
sponse functions for the ART and ML-EM algorithms.

Several investigators have used this easily implemented em-
pirical approach to study the properties of maximum-likelihood
estimators in emission tomography. However, being empirical,
it fails to reveal general estimator properties. Ananalyticalex-
pression for the linearized local impulse response would facil-
itate understanding general properties of image reconstruction
methods. The next section derives an analytical expression for
the local impulse response of implicitly defined estimators.

III. A NALYSIS OF LOCAL IMPULSE RESPONSE FOR

IMPLICITLY DEFINED ESTIMATORS

Many estimators in tomography are defined implicitly as the
maximizer of some objective function:

θ̂ = θ̂(y) = argmax
θ∈Θ
Φ(θ, y). (11)

We assumeΦ has a unique global maximum, so thatθ̂(y) is well
defined. There is often no analytical form for such estimators;
hence the ubiquitous use of iterative algorithms for perform-
ing the required maximization. Fortunately, the linearized local
impulse response (9) dependsonly on the partial derivatives
of the implicitly defined estimator̂θ(y). As discussed in [38],
even thougĥθ(y) itself is unknown, one can determine its par-
tial derivatives using the implicit function theorem and the chain
rule. Disregarding the nonnegativity constraint3, the maximizer
of Φ satisfies:

∂

∂θj
Φ(θ, y)

∣∣∣∣
θ=θ̂(y)

= 0, j = 1, . . . , p, (12)

for anyy. In vector notation:

∇10Φ(θ̂(y), y) = 0 ∀y,

where∇10 = [ ∂
∂θ1

. . . ∂
∂θp
] is the row gradient operator (with

respect to the first argument ofΦ). Now differentiate again with
respect toy using the chain rule:

∇20Φ(θ̂(y), y)∇y θ̂(y) +∇
11Φ(θ̂(y), y) = 0, (13)

where the(j, k)th element of∇20 is ∂2

∂θj∂θk
and the(j, i)th

element of∇11 is ∂2

∂θj∂yi
. For simplicity we drop the depen-

dence ofȲ onθ except where explicitly needed. Assuming that
−∇20Φ(θ̌, Ȳ ) is positive definite, substitutey = Ȳ into (13)
and solve for the partial derivatives ofθ̂(Ȳ (θ)):

∇y θ̂(Ȳ (θ)) = [−∇
20Φ(θ̌, Ȳ )]−1∇11Φ(θ̌, Ȳ ).

3Although it appears we are assuming that (12) holds for anyy, from (9) one
sees we really only need (12) to hold near the casey = Ȳ (θ), i.e. the noiseless
case. The nonnegativity constraint is often largely inactive for noiseless data,
so (12) is a reasonable assumption.
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Combining with the chain rule applied to (9):

lj(θ) =
∂

∂θj
θ̂(Ȳ (θ)) = ∇y θ̂(Ȳ (θ))

∂

∂θj
Ȳ (θ)

= [−∇20Φ(θ̌, Ȳ )]−1∇11Φ(θ̌, Ȳ )
∂

∂θj
Ȳ (θ). (14)

This equality expresses the local impulse response solely in
terms of the partial derivatives of the objective function and the
measurement mean, i.e., we have eliminated the dependence on
the implicitly defined estimator̂θ(y).

A. Penalized-Likelihood Estimators

In the remainder of this paper, we focus on penalized-
likelihood objective functionsΦ of the form:

Φ(θ, y) = L(θ, y)− βR(θ), (15)

whereL(θ, y) = log f(y; θ) denotes the log-likelihood,R(θ)
is a roughness penalty function, andβ is a nonnegative regular-
ization parameter that controls the influence of the penalty, and
hence the tradeoff between resolution and noise.

DefineR(θ) = ∇2R(θ) to be the Hessian of the penalty, and
note that∇11R = 0. For penalized-likelihood estimators of the
form (15) we have from (14) the following expression for the
local impulse response4:

lj(θ) = [−∇20L(θ̌, Ȳ ) + βR(θ̌)]−1∇11L(θ̌, Ȳ )
∂

∂θj
Ȳ (θ).

(16)
This expression should be useful for investigating estimators in
a variety of imaging problems. Next we evaluate expression
(16) for Poisson distributed measurements, which will be the
focus of the remainder of this paper.

B. Poisson Statistics

Both emission and transmission tomographic systems yield
independent measurements with Poisson statistics; the primary
difference is in the form of their assumed measurement means
Ȳ (θ). In both cases the assumed log-likelihood has the form:

L(θ, y) =
∑
i

yi log Ȳi(θ)− Ȳi(θ),

neglecting constants independent ofθ. In this paper we focus
on emission tomography; we derive parallel results for the trans-
mission case in [31].

For emission tomography [39],θj denotes the radioisotope
concentration in thejth voxel, and the measurement mean is
linear inθ:

Ȳi(θ) =

p∑
j=1

aijθj + ri. (17)

The {aij} are nonnegative constants that characterize the to-
mographic system, and the{ri} are nonnegative constants that

4We consider the class of objectivesΦ for which the Hessian
−∇20L(θ̌, Ȳ ) + βR(θ̌) is positive definite; i.e.,Φ(θ, y) is at leastlocally
strictly concave near the noiseless case(θ̌, Ȳ (θ)).

represent the mean contribution of background events (random
coincidences, scatter, etc.). Simple calculations [31] using (17)
show that

−∇20L(θ, y) = A′D

[
yi

Ȳ 2i (θ)

]
A

∇11L(θ, y) = A′D

[
1

Ȳi(θ)

]
,

whereA = {aij} is anN×p sparse matrix andD[ui] denotes a
N ×N diagonal matrix with diagonal entriesu1, . . . , uN . Not-
ing that ∂∂θj Ȳ (θ) = Ae

j and substituting into (16) yields the
local impulse response:

lj(θ) = [A′D

[
Ȳi(θ)

Ȳ 2i (θ̌)

]
A+ βR(θ̌)]−1A′D

[
1

Ȳi(θ̌)

]
Aej .

For moderate or small values ofβ, θ̌ is a slightly blurred version
of θ (see (7)). Since the projection operationAθ is a smooth-
ing operator, the projections̄Y (θ) andȲ (θ̌) are approximately
equal. Therefore5, we simplify the above expression to

lj(θ) ≈ [A′D
[
uemisi (θ)

]
A+ βR(θ̌)]−1A′D

[
uemisi (θ)

]
Aej ,

(18)
where

uemisi (θ) =
1

Ȳi(θ)
(19)

is the reciprocal of the variance ofYi under the assumed Pois-
son model. For penalized-likelihood estimators in emission to-
mography, (18) is our final approximation to the local impulse
response.

To summarize, we have derived a general local impulse re-
sponse expression (14) for penalized-likelihood estimators, and
specific expressions (18) for emission (and transmission [31])
tomography.

IV. RESOLUTION PROPERTIES

The local impulse response approximations for penalized-
likelihood image reconstruction in emission tomography (18)
and transmission tomography [31] differ only by the definitions
of theui terms in the diagonal matrix. Thus, the local impulse
response has the following generic form:

lj(θ) ≈ [A′DθA+ βR(θ̌)]
−1A′DθAe

j , (20)

whereDθ = D[ui(θ)] is an object-dependent diagonal matrix
with ui(θ) defined by (19) for emission tomography and simi-
larly [31] for transmission tomography.

Many penalty functions used in tomography can be written in

5The diagonal terms in (18) and the preceding equation are sandwiched be-
tween the backprojection and projection operatorsA′ andA, which smooth
out most differences between̄Y (θ) andȲ (θ̌). In a sense, the heavy-tailed1/r
kernel that makes tomography ill-posed works to our advantage when making
the above approximations.
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the following form6:

R(θ) =

p∑
j=1

1

2

∑
k∈Nj

wjkψ(θj − θk), (21)

whereNj is a neighborhood of pixels near pixelj, ψ is a sym-
metric convex function, andwjk = wkj . For a “first-order”
neighborhood one chooseswjk to equal 1 for horizontal and
vertical neighboring pixels, and 0 otherwise; for a “second-
order” neighborhood one also includeswjk = 1/

√
2 for di-

agonal neighbors. With either of these standard choices for the
wjk ’s, we refer toR(θ) as auniform penalty, since it is shift-
invariant; i.e., translating the image yields an identical value of
R(θ).

One of the simplest uniform penalties is theuniform
quadratic penalty, which refers to the case whereψ(x) = x2/2.
In this case the penalty has a quadratic form:

R(θ) =
1

2
θ′Rθ,

whereR is aθ-independentp× p matrix defined by:

Rjk =

{ ∑
l∈Nj

wjl, k = j

−wjk, k 6= j
.

In the quadratic case the local impulse response simplifies to:

lj(θ) ≈ [A′DθA+ βR]
−1A′DθAe

j . (22)

A. Projection Dependence

WhenR(θ) is a quadratic form so thatR is independent ofθ,
then remarkably the local impulse response approximationlj(θ)
given by (22)depends on the objectθ only through its projec-
tionsȲ (θ) (see (19)). Even if the object is unknown, its projec-
tions are approximately known through the noisy measurements
y. Thus, even for real noisy measurements, we can predict the
local impulse response simply by replacingȲ (θ) with y in (18).
This simple approach is effective primarily because the diago-
nal terms in (18) are sandwiched between the backprojection
and projection operatorsA′ andA, which greatly smooth out
the noise iny, i.e.

A′D
[
Ȳi(θ)

]−1
A ≈ A′D[yi]

−1
A. (23)

B. Nonuniformity

One might expect that a uniform penalty such as (21) would
induce uniform spatial resolution, just as space-invariant sieves
do [2]. Using the preconditioned conjugate gradient [22, 40] or
Gauss-Siedel [20, 21] algorithms, one can evaluate (20) or (22)
and then display the local impulse response for several locations
within the object. Upon doing this, one immediately finds that

6If ψ̈(x) > 0 for all x, then it is easily shown that the only vectors in the
null space of the matrix∇2R(θ) are of the formv = 1pv1, where1p is the
length-p vector of ones. For any tomographic system that satisfiesDθA1p 6=
0 (i.e. the projection of a uniform image is nonzero), we can then conclude
thatA′DθA+ βR(θ̌) is positive definite and therefore invertible, as required
by (16).

the local impulse response is verynonuniform, even for standard
uniform quadratic penalties. (See Section VI.)

The next section elaborates on this property, but one can par-
tially understand the source of the resolution nonuniformity by
considering (22). If the measurement noise was homoscedas-
tic with varianceν, thenD would be simply a scaled identity
matrix: D = ν−1I, and from (22) the local impulse response
would be

lj(θ) = [ν−1A′A+ βR]−1ν−1A′Aej

= [A′A+ νβR]−1A′Aej . (24)

In other words, noise with varianceν leads to an impulse re-
sponse that corresponds to an “effective” smoothing parameter
νβ. Thus, the influence of the smoothing penalty isnot invari-
ant to changes in the noise variance, which perhaps explains in
part why choosingβ is considered by many investigators to be
a difficult process. The Poisson case is more complicated since
the values ofDθ vary along the diagonal. Since a given pixel is
primarily affected by the detectors whose rays intersect it, each
pixel sees a different “effective variance” and hence a different
effective smoothing parameter.

This resolution nonuniformity can also be explained from a
Bayesian perspective. The Fisher informationA′DθA is a mea-
sure of thecertainty in the data. For pixels where this data
certainty is smaller (due to higher noise variance in the rays
that intersect that pixel), the posterior estimate will give more
weight to the prior, which (being a smoothness prior) will cause
more smoothing. In emission tomography, pixels with higher
activity yield rays with higher counts and hence higherabsolute
variance orlowercertainty. Paradoxically, penalized-likelihood
methods using the standard uniform penalty thus havelower
spatial resolution in high-count regions. This property is cer-
tainly undesirable, and may explain in part why many authors
have characterized the uniform quadratic penalty as causing
“oversmoothing,” since the most prominent image features are
generally smoothed the most!

C. Choosingβ for one pixel

Since (22) allows one to predict the local impulse response
(and hence the spatial resolution) at any pixelj as a function
of β, one could use (22) to choose a value forβ that induces
a desired resolution at some pixelj of interest in the image.
However, the induced resolutions at other points in the image
would still be different, which motivates the modified penalty
developed in the next section.

V. RESOLUTION UNIFORMITY

This section analyzes the problem of resolution nonunifor-
mity more closely. This analysis leads to a natural modified
penalty function that induces more uniform resolution. For sim-
plicity we focus on emission tomography; parallel arguments
apply to transmission tomography.

A. Emission Tomography

In emission tomography, the Fisher information matrix
A′DθA is an operator that, due to the lexicographic ordering
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of pixels, one can treat as a mapping from image space to im-
age space. The operatorA′DθA is shift-variant for emission
tomography, which is the crux of the problem of resolution
nonuniformity. The previous section noted that the nonuniform
diagonal of theDθ term is partially responsible for the nonuni-
form local impulse response. But even without that term, the
spatial resolution would still be nonuniform because typically
evenA′A is a shift-variant operator in PET and SPECT. How-
ever, one often models the system matrixA as a product of three
factors: aij = cigijsj , such thatG′G is approximately shift-
invariant, whereG = {gij} represents the object-independent7

geometric portion of the tomographic system response. Theci’s
represent ray-dependent factors that change between studies, in-
cluding detector efficiency factors, dead time, radioisotope de-
cay, and (in PET) attenuation factors. Thesj ’s represent pixel-
dependent factors such as spatial variations in sensitivity, and
(in SPECT) “first-order” attenuation correction factors (cf the
image-space Chang method [41] for SPECT attenuation correc-
tion). For our PET work thus far, we have simply usedsj = 1.
In matrix notation:

A = D[ci]GD[sj ] . (25)

This factorization is not unique. If one desires resolution uni-
formity, then the analysis that follows suggests that one should
strive to choose{ci} and{sj} so thatG′G is “as shift-invariant
as possible” (cf (38) below). (See [42] for additional analyses
of shift-invariant and shift-variant imaging systems.)

Substituting (25) into (18) and simplifying:

lj(θ) ≈ [D[sj]G
′D[qi(θ)]GD[sj ] + βR(θ̌)]

−1

·D[sj ]G
′D[qi(θ)]GD[sj ] e

j, (26)

where
qi(θ) = c

2
i /Ȳi(θ). (27)

In PET, theseqi’s are very nonuniform due to attenuation cor-
rection factors that range from 1 to 100, detector efficiencies
that vary over an order of magnitude in block crystal systems,
and the intrinsic count variations of Poisson measurements.

The Fisher information matrix for estimatingθ is:

F(θ) = A′D[ui(θ)]A = D[sj]G
′D[qi(θ)]GD[sj ] . (28)

As a consequence of the nonuniformity of theqi’s, the diagonal
of F(θ) is also nonuniform, which contributes greatly to the
shift-variance of theF(θ) operator in PET.

Understanding the structure ofF(θ) is the key to correcting
the resolution nonuniformity. From (28) the diagonal elements
of F(θ) can be written:

Fjj(θ) = s
2
j

∑
i

g2ijqi(θ) = κ
2
j(θ)
∑
i

g2ij , j = 1, . . . , p, (29)

where we define

κj(θ) = sj

√∑
i

g2ijqi(θ)/
∑
i

g2ij . (30)

7In SPECTG will only be approximately object-independent due to atten-
uation.

Due to the1/r response of tomographs,F(θ) is fairly concen-
trated about its diagonal, so (29) suggests the approximation:

F(θ) = D[sj ]G
′D[qi(θ)]GD[sj ] ≈ ΛθG

′GΛθ, (31)

where
Λθ = D[κj(θ)] (32)

is a p × p diagonal matrix. From (29) one sees that approxi-
mation (31) is exact along the diagonal ofF(θ), and would be
exact on the off-diagonal elements if theqi’s were equal. The
approximation (31) turns out to be reasonably accurate even for
very nonuniformqi’s because theκj ’s vary slowly as a function
of j, due to the smoothing implicit in (30). This approximation
also reflects the fact that the local impulse response of pixelj
depends primarily on theqi’s that correspond to rays that inter-
sect pixelj.

To visualize (31), Fig. 2 shows the various matrices for a
toy PET problem8 (with sj = 1). The nearly Toeplitz-block-
Toeplitz structure ofG′G is apparent.

Substituting (31) into (26) and rearranging yields the follow-
ing approximation to the local impulse response:

lj(θ) ≈ [ΛθG
′GΛθ + βR(θ̌)]

−1ΛθG
′GΛθe

j

= Λ−1θ [G
′G+ βΛ−1θ R(θ̌)Λ

−1
θ ]
−1G′GΛθe

j

= κj(θ)Λ
−1
θ [G

′G+ βΛ−1θ R(θ̌)Λ
−1
θ ]
−1G′Gej , (33)

becauseΛθej = κj(θ)ej .
What doesΛθ represent statistically? From (30), we see that

κj(θ) is a normalized backprojection of{qi}, whereqi is the
inverse of the variance of theith corrected measurementyi/ci.
Thusκj(θ) represents an aggregatecertainty of the measure-
ment rays that intersect thejth pixel. Since the local impulse
responselj is typically concentrated about pixelj, a somewhat
cruder but nevertheless very useful approximation that follows
from (33) is

lj(θ) ≈ [G′G+ β/κ2j(θ) R(θ̌)]
−1G′Gej , (34)

(cf (24)). The accuracy of this approximation improves asβ
decreases (and hencelj approaches the impulseej). This ex-
pression again illustrates the property that the effective amount
of smoothingβ/κ2j(θ) increases with decreasing measurement
certaintyκj(θ).

Approximation (34) illuminates the paradoxical oversmooth-
ing of high-count regions with the uniform penalty. If pixel
j is transected by rays with high counts, then from (27) and
(30) we see thatqi and henceκj(θ) will be small, so the effec-
tive smoothing parameterβ/κj(θ)2 above will be large, causing
lower resolution. Asθj increases, the rays that intersect it will
also increase, so the local resolution decreases9.

8The object was a6×2 uniform rectangle in a8×6 image. We usedci = 1,
so the only nonuniformity in theqi’s was due to the1/Ȳi(θ) contribution of
Poisson noise.

9However, note that even uniform objects (e.g.θ = [1 . . . 1]) lead to
nonuniform resolution (i.e. to shift-variant local impulse response), sinceȲ (θ)
will be a nonuniform vector due to the different lengths of the line integrals
through the object.
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B. A Modified Penalty

The form of (33) suggests several possible methods for modi-
fying the penalty function to improve resolution uniformity. We
focus on one approach that is easily implemented. LetR?(θ)
denote a “target” penalty function of the form (21) (presum-
ably shift-invariant) whose properties would be suitable if we
hadDθ = I. Suppose we have estimates{κ̂j} of {κj(θ)}, and
consider themodified penalty:

R(θ) =
1

2

∑
j

∑
k∈Nj

wjkκ̂j κ̂kψ(θj − θk). (35)

If R(θ) = ∇2R(θ) denotes the Hessian of this modified
penalty10, then one can show that

Rjk(θ) =

{ ∑
l 6=j wjlκ̂jκ̂lψ̈(θj − θk), j = k

−wjkκ̂j κ̂kψ̈(θj − θk), j 6= k
,

so that ifD[κ̂j ] ≈ Λθ and we letR?(θ) = ∇2R?(θ), then

R(θ) ≈ ΛθR
?(θ)Λθ . (36)

This approximation relies on the fact that neighboring pixels
have very similar certainties, i.e.κk(θ) ≈ κj(θ) for k ∈ Nj ,
which again follows from the smoothing effect of (30). Sub-
stituting (36) into the expression for the local impulse response
(33) yields the new approximation

lj(θ) ≈ κj(θ)Λ
−1
θ [G

′G+ βR?(θ̌)]−1G′Gej . (37)

If the geometric responseG is nearly space invariant, then to
within our approximation accuracy, (37) corresponds to nearly
uniform resolution except for the following features.

• Unlike the uniform quadratic target penalty, for whichR?

is constant along its diagonal, nonquadratic penalties lead
to object-dependent HessiansR?(θ̌). However, users of
nonquadratic penalties presumably desire certain nonuni-
formities, i.e. more smoothing in flat regions and less
smoothing near edges. Our modified penalty (35) pre-
serves this important characteristic of nonquadratic penal-
ties. Our modification only corrects for the resolution
nonuniformities that are induced by the interaction be-
tween the nonuniform statistics and the penalty function.
Essentially we are correcting for theΛ−1θ RΛ

−1
θ term in

(33).

• Sinceκj(θ)/κk(θ) ≈ 1 for k ∈ Nj , the termκj(θ)Λ
−1
θ in

(37) effectively acts as an identity matrix for pixels nearj,
so for local impulse responses that are fairly narrow we can
disregard theκj(θ)Λ

−1
θ term, leading to the approximation

lj(θ) ≈ [G′G+ βR?(θ̌)]−1G′Gej . (38)

By “narrow” we mean relative to the scale of the spatial
fluctuations inκj(θ). However, in regions where the cer-
tainty κj(θ) is more rapidly varying as a function of spa-
tial position (such as near the edge of an object), the pres-
ence of the termκj(θ)Λ

−1
θ indicates that there will be some

10One can easily verify that this Hessian is nonnegative definite ifψ̈ > 0.

asymmetry in the local impulse response. As illustrated in
Section VI, such asymmetry can occur with or without our
modifications to the penalty. Further work is needed to
correct these asymmetries.

C. Practical Implementation

In practice, the termκj(θ) is unknown, since it depends on
the noiseless measurement meanȲ (θ). Fortunately, we can ma-
nipulate the noisy data to provide a reasonable estimateκ̂j of
κj(θ).

We first compute from the measurements an estimateq̂i of
the termqi(θ) defined by (27):

q̂i =
c2i

max{yi, 10}
. (39)

The “10” factor ensures that the denominator is not too close to
zero, and hopefully provides a little robustness to model mis-
match by giving no rays an inordinate weighting. We then re-
place theqi(θ) term in (30) with q̂i to precomputêκj , which
we then use in (35). Thus, implementing the modified penalty
(35) simply requires one extra backprojection. (To save a little
computation, one could probably replace (30) with an approx-
imate backprojector.) The cost of multiplying bŷκj κ̂k in (35)
is negligible compared to the forward projections required by
iterative reconstruction algorithms.

Since theκ̂j ’s depend on the data, our modified penalty
(35) is data-dependent! Bayesian-minded readers may find the
idea of a data-dependent “prior” to be somewhat disconcert-
ing. We make absolutely no pretense that this approach has any
Bayesian interpretation. The purpose of the penalty is solely to
control noise, and the purpose of our modification to the penalty
is solely to control the resolution properties. As an alternative
to (39), one could periodically update theκ̂j ’s by substituting
one’s current estimate of̂θ into (30) within an iterative algo-
rithm. But the extra effort is unlikely to change the final esti-
mate very much, since, as noted earlier, small changes in the
qi’s have minor effects on the estimate due to the “sandwich”
effect described in footnote 5 and by (23).

Since (35) and (39) define the modified penaltyR(θ) to be
a function that depends ony, the matrix∇11R is no longer ex-
actly 0, so strictly speaking the steps between (14) and (16) need
modification. However, because of the effective smoothing in
the definition (30), the partial derivatives with respect toy of
the modified penalty are very small, so we ignore this second-
order effect.

D. Choosingβ

For a quadratic target penaltyR?(θ), the local impulse re-
sponse (38) induced by our modified penalty (35) is indepen-
dent of the objectθ. Thus the process of choosing the smooth-
ing parameterβ is significantly simplified by the following ap-
proach. Letj be a pixel in the center of the image, for example.
For a given system geometric responseG, precompute the local
impulse response (38) for a range of values ofβ. For eachβ,
tabulate some measure of resolution, such as the FWHM oflj .
Then, when presented with a new data set to be reconstructed
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at someuser-specified resolution, simply interpolate the table to
determine the appropriate value forβ. Finally, reconstruct the
object using the modified quadratic penalty. Section VI presents
results that demonstrate the effectiveness of this approach. An-
alytical results in [31] further simplify the process of building
this table for certain tomographs.

Many (but not all) nonquadratic penalties are locally
quadratic near 0, and it is this quadratic portion of the penalty
that is active within relatively flat regions in the image. For such
penalties, one could use the table approach described above to
specify the desired “resolution” in the flat parts of the image,
and then adjust any remaining penalty parameters to control the
influence of edges etc. For penalties that are not even locally
quadratic, such as the generalized Gaussian Markov random
field prior [32], further investigation is needed.

VI. EXAMPLES

This section demonstrates the improved resolution unifor-
mity induced by the modified penalty (35) within a penalized-
likelihood image reconstruction method for PET emission mea-
surements. Forθ, we used the128× 64 emission image shown
in Fig. 3, which has relative emission intensities of 1, 2, and 3
in the cold disk (left), background ellipse, and hot disk (right)
respectively. We included the effects of nonuniform attenuation
in the ci’s by using an attenuation map qualitatively similar to
Fig. 3, but with attenuation coefficients 0.003/mm, 0.0096/mm,
and 0.013/mm for the cold disk, background ellipse, and hot
disk respectively. The pixel size was 3mm. Rather than being
anthropomorphic, this phantom was designed to demonstrate
that the modified penalty induces nearly uniform spatial resolu-
tion even for problems where the standard penalty yields highly
nonuniform spatial resolution.

We simulated a PET emission scan with 128 radial bins and
110 angles uniformly spaced over180◦. Thegij factors corre-
sponded to 6mm wide strip integrals with 3mm center-to-center
spacing. We setri = 0.1 1N

∑
i′
∑
j ai′jθj , which corresponds

to 10% random coincidences.

A. Resolution Uniformity

We computed local impulse response functionslj(θ) for three
pixels j, corresponding to the center of the cold disk, the cen-
ter of the image, and the center of the hot disk. We used the
recipe following (9) withδ = 0.01 to evaluatelj(θ), for both
the standard penalty (21) and the modified penalty (35) with
ψ(x) = x2/2. For both penalties we used a first-order neigh-
borhood. We used this recipe rather than any of the approxima-
tions that followed it (such as (18)) to provide a more convinc-
ing demonstration; for routine work we usually just use (26).
(The results of (26) are not shown in Fig. 4 since they turn out
to be indistinguishable from the curves shown, which supports
the accuracy of the approximations leading to (26).) We maxi-
mized the objective function (15) to computeθ̂ in (5) using 20
iterations of the PML-SAGE-3 algorithm [18].

Fig. 4 displays horizontal and vertical profiles through the
local impulse responses for the estimators corresponding to the
two penalty functions. The circles in Fig. 4 are for the unbiased
estimator (6) forM = 2000 realizations. The standard penalty

has highly nonuniform spatial resolution, whereas the modified
penalty yields nearly uniform spatial resolution. These results
are typical.

B. Asymmetry

In part because of the large eccentricity of the ellipse in
Fig. 3, the local impulse responses of both penalties are asym-
metric. Fig. 5 displays contours at levels 25, 50, 75, and 99%
of the peak value for each PSF, computed using thecontour
function of Matlab. We hope to extend the analysis in this paper
to develop suitable modifications to the penalty that will reduce
this asymmetry. (The corresponding contours for FBP were vir-
tually circular.)

C. Choosingβ

We now describe how we selectedβ for this simulation,
which illustrates the effectiveness of the table-based approach
described in Section V-D. First, we decided for illustration pur-
poses to use a FWHM of 4 pixels. Using the analytical results
detailed in [31] for the system geometry described above, the
valueβ = 2−4.44 is required for the modified penalty11. Did
this choice ofβ actually give the desired 4 pixels FWHM res-
olution? Since Fig. 5 shows that the local impulse response
is asymmetric, clearly the resolution is not exactly 4 pixels
FWHM isotropically. In particular, for the same 3 pixels con-
sidered above, the horizontal resolutions were 3.10, 3.38, and
3.34 pixels FWHM, whereas the vertical resolutions were 5.28,
4.83, and 4.76 pixels FWHM. However, the averages of the hor-
izontal and vertical resolutions were 4.19, 4.10, and 4.05 pixels
FWHM, all of which are within 5% of the target resolution of 4
pixels FWHM. Thus, although further work is needed to correct
the asymmetry in such eccentric objects, the proposed method
for selectingβ appears to yield local impulse responses whose
averageresolution is very close to the desired resolution. These
results are typical in our experience.

VII. W HAT HAPPENS TO THEVARIANCE?

It is well known that the global smoothing parameterβ con-
trols an overall tradeoff between resolution and noise: larger
β’s lead to coarser resolution but less noise, and vice-versa.
The analysis in preceding sections shows that for the modi-
fied penalty to induce uniform spatial resolution, the “local”
smoothing parameter must effectively be larger in some areas,
and smaller in others. Thus, it is natural to expect that these
changes in the local resolution will also influence the noise—
but is the influence global or local? I.e., if the modified penalty
increases the resolution (and hence the noise) at a given pixel,
will that noise somehow propagate to distant pixels and lead to
an overall worse resolution/noise tradeoff?

To address this question, we generated 100 realizations of
Poisson distributed simulated PET measurements for the object

11For the standard penalty, we used the above value ofβ scaled down by
κ2j for the singlej corresponding to the pixel at the center of the image, as
suggested by (34) and described in Section IV-C. This choice matched the reso-
lution at the image center for the two penalties, as illustrated in the center plots
of Figs. 4 and 5.
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shown in Fig. 3, and for the system properties described in Sec-
tion VI. For each realizationy(1), . . . , y(100), we used 20 iter-
ations of PML-SAGE-3 [18] to compute penalized-likelihood
estimates{θ̂(y(m))}100m=1 for several values ofβ for both the
standard and the modified quadratic penalties. For each value
of β, we computed the empirical standard deviation ofθ̂j for
the pixels at the centers of the two disks in Fig. 3. (The results
were similar for the pixel at the image center, so are not shown.)

A. Just What You Expected

Fig. 6 shows the tradeoff between resolution (measured by
the average FWHM of the local impulse response) and noise
(measured by the empirical standard deviation) asβ is varied.
Fig. 6 also shows predicted standard deviations computing us-
ing the variance approximations described in [38]. (The good
agreement between empirical and predicted results in Fig. 6 is
further confirmation of the utility of the approximations in [38].)

In Fig. 6, the resolution/noise data points follow an essen-
tially identical tradeoff curvefor both the standard and the mod-
ified penalty. This is true both for the analytically predicted
tradeoff (the solid line and the dashed line overlap almost per-
fectly) as well as for the empirical results (the circle and the
plus symbols lie on the same curve). These results suggest that
the effects of the modified penalty are essentially local: a given
pixel moves up or down its own resolution/noise tradeoff curve
to the specified resolution, and then has a variance that is the
same value as would be obtained if one were to use the standard
penalty but globally adjustβ to enforce that specified resolution
at the given pixel. This property probably hinges on the fact
that theκj factors are spatially smooth. If one were to artifi-
cially create anκj map having discontinuities and then apply
the modification (35), then it is plausible that the results would
be less regular than indicated in Fig. 6. Readers who apply vari-
ations of (35) to induce some type of data-based non-uniform
resolution will need to consider the resolution/noise tradeoff in
more detail.

Fig. 7 shows central horizontal profiles through empirical
standard deviation maps of the penalized likelihood estimates
for both the modified and the standard quadratic penalties. Also
shown is a calculated prediction of the variance, an approxima-
tion developed in [31]. As noted in footnote 11, the penalties
were chosen to have matched resolution at the image center,
and in Fig. 7 the estimator variance is also matched at the image
center. Note however that whereas the variance for the standard
penalty is fairly uniform (at least for this object), the variance
for the modified penalty is nonuniform. (Of course as we have
shown it is the other way around for the spatial resolution.) This
nonuniformity is consistent with the results of Fig. 6.

B. Quadratic Penalties AreUseful

Fig. 8 compares the resolution/noise tradeoff of penalized
likelihood with that of images reconstructed by FBP with a
Hamming window and with a constrained least-squares (CLS)
window developed in [31]:

sinc(2u)/sinc(u)

sinc2(2u) + βu3
, u ∈ [0, 12 ], (40)

(where u denotes spatial frequency: cycles per radial sam-
ple). This window induces a PSF indistinguishable from that
of penalized-likelihood estimates with the first-order quadratic
penalty [31]. As shown by Fig. 8, at any given resolution the
empirical standard deviations for the FBP images are higher
than for the penalized-likelihood estimates. This demonstrates
that even using the oft-maligned quadratic penalty, penalized-
likelihood image reconstruction can outperform FBP in terms
of the tradeoff between resolution and noise. Of course non-
quadratic prior models may give even better results for objects
that are consistent with those models, but results such as Fig. 8
show that quadratic penalties provide a useful reduction in im-
age noise over a large range of spatial resolutions.

VIII. D ISCUSSION

We have analyzed the local impulse response of implicitly de-
fined estimators (14) and of penalized-likelihood estimators for
emission tomography (18) and transmission tomography [31].
The analysis and empirical results show that the local impulse
response is asymmetric and has nonuniform resolution for Pois-
son distributed measurements. We proposed a modified regular-
ization penalty (35) that improved the spatial resolution unifor-
mity but not the asymmetry.

For the space-invariant tomographs considered here, the res-
olution nonuniformity arises from the nonuniform diagonal of
the Fisher information matrix, which in turn is a consequence
of the nonuniform variance of Poisson noise. In principle one
could “avoid” this problem altogether by using anunweighted
least-squares estimator. We have shown qualitatively in [21]
that nonuniform weighting is essential to achieve the desirable
noise properties of statistical methods. In [31], we provide ad-
ditional analyses and quantitative results that demonstrate the
importance of weighting. Therefore we advocate retaining the
nonuniform weighting that is natural for Poisson statistics, but
modifying the penalty to compensate for the undesirable spa-
tial resolution properties. Fortunately this modification does not
destroy the benefits of the weighting, as shown in [31] and in
Fig. 8, apparently because the nonuniform weighting is applied
in sinogram space, whereas the penalty acts on the image space.
It is an open question as to whether the modified penalty would
be effective for problems such as restoration of quantum-limited
image measurements, where both the unknown parameters and
the data are images.

Some colleagues have argued that nonuniform resolution is
desirable and expected. This opinion is presumably based on
the idea that statistical methods can make better use of the
measurement information and thus provide higher resolution
in high-count regions. Ironically, our analysis shows that the
effect of uniform penalties is just the opposite: more smooth-
ing occurs in high-count regions. Although we have empha-
sized methods for achieving resolution uniformity, one could
apply our analysis to develop alternative modified penalties that
yield higher resolution in high-count regions according to some
user-specified criterion. Since we now see that the statistics
of the data themselves do not automatically provide a natu-
ral resolution-noise tradeoff in penalized-likelihood estimators
(contrary to what may have been a widely held misconcep-
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tion), any such user-specified criteria will probably be consid-
ered somewhat arbitrary.

We have shown the somewhat remarkable result that the local
impulse response induced by quadratic penalties depends on the
object only through its projections. Thus, one does not need to
know the object to predict the reconstructed resolution, since
the noisy measurements serve as an adequate approximation to
the object’s projections. In contrast, the local impulse response
for nonquadratic penalties depends explicitly on the (unknown)
object (cf (20)) through the Hessian of the penalty. Being able
to predict and control the resolution properties induced by such
penalty functions remains an important challenge.

For nonquadratic edge-preserving potential functionsψ, the
nonuniform diagonal in (20) may induce additional types of
nonuniformities beyond the resolution effects reported here.
Specifically, we conjecture that the “propensity to retain edges”
(as opposed to smoothing them out) will be space-variant, again
due to coupling between the Hessian of the log-likelihood and
the Hessian of the penalty in (20). If so, then modified penalties
such as (35) may be useful for restoring the (presumably desir-
able) space invariance of the effects of edge-preserving penal-
ties. The importance of such modifications is more likely to ap-
pear in rigorous studies of theensemblecharacteristics of edge-
preserving methods, rather than in anecdotal examples.

This paper has emphasized space-invariant tomographs. Fur-
ther investigation is needed for space-variant systems such as
SPECT emission measurements and truncated data such as fan-
beam transmission SPECT and 3D cylindrical PET.
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Figure 1: Horizontal profiles through the local impulse re-
sponse functions of FBP with a Hanning window (top) and
of the ML-EM algorithm at 30 iterations (bottom), for three
pixels located along the horizontal midline of an elliptical ob-
ject. Solid line: computed using the linearized approximation
(10); Circles: computed using the unbiased estimator (6) from
M = 2000 realizations.

Figure 2: Illustration of the approximation (31). Upper left: the
matrix G′G which is approximately Toeplitz-block-Toeplitz.
Upper right: the Fisher informationF = G′D[qi(θ)]G in-
cluding Poisson noise covariance. The nonuniform diagonal
is caused by the nonuniform Poisson noise variance. Lower
right: the approximationΛG′GΛ; note the agreement with
the upper right matrix, i.e.F ≈ ΛG′GΛ. Lower left:
Λ−1G′D[qi(θ)]GΛ

−1; note that this matrix is a reasonable ap-
proximation toG′G.

Figure 3: Digital phantom used to examine spatial resolution
properties.
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Figure 4: Horizontal and vertical profiles (concatenated left
to right) through three local impulse response functions for a
penalized-likelihood estimate of the image shown in Fig. 3. The
standard quadratic penalty yields highly nonuniform resolution
(upper profiles), whereas the proposed modified penalty leads to
nearly uniform spatial resolution (lower profiles). Note that for
the standard penalty the resolution is poorest in the high-count
disk.
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Figure 5: Contours of the local impulse response functions at
25, 50, 75, and 99% of each peak. Left: center of cold disk,
middle: center of image, right: center of hot disk.
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Figure 6: Resolution/noise tradeoff for penalized-likelihood
emission image reconstruction with standard and modified
quadratic penalties. The two penalties induce virtually identi-
cal tradeoff curves. (The dotted lines connect points that corre-
spond to the sameβ value.)
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Figure 7: Central horizontal profiles through empirical standard
deviation maps for penalized likelihood emission estimates with
the standard and modified penalties.
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Figure 8: Resolution/noise tradeoff of FBP with Hamming win-
dow and the constrained least-squares (CLS) window (40). At
any given resolution, the variances of the penalized-likelihood
estimates are smaller than those of FBP.


