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ABSTRACT

ANALYSIS AND STRATEGIES TO ENHANCE INTENSITY-BASED IMAGE
REGISTRATION

by
Roshni R. Bhagalia

Co-chairs: Jeffrey A. Fessler and Boklye Kim

The availability of numerous complementary imaging maddsdiallows us to obtain
a detailed picture of the body and its functioning. To aidgdiastics and surgical plan-
ning, all available information can be presented by viguaigning images from different
modalities using image registration. This dissertatimestigates strategies to improve the
performance of image registration algorithms that usensitg-based similarity metrics.

Nonrigid warp estimation using intensity-based regigtratan be very time consum-
ing. We develop a novel framework based on importance sagand stochastic ap-
proximation techniques to accelerate nonrigid regisiratnethods while preserving their
accuracy. Registration results for simulated brain MRladatd human lung CT data
demonstrate the efficacy of the proposed framework.

Functional MRI (fMRI) is used to non-invasively detect ractivation by acquiring
a series of brain images, called a time-series, while th@gstiperforms tasks designed
to stimulate parts of the brain. Consequently, these ssuatie plagued by subject head

motion. Mutual information (MI) based slice-to-volume (B\gistration algorithms used



to estimate time-series motion are less accurate for eoesdi.e., slices near the top of
the head scans), where a loss in image complexity yieldy Migstimates. We present a
strategy, dubbed SV-JP, to improve SV registration acgui@ctime-series end-slices by
using joint pdf priors derived from successfully registehégh complexity slices near the
middle of the head scans to bolster noisy Ml estimates.

Although fMRI time-series registration can estimate heaatiom, this motion also
spawns extraneous intensity fluctuations called spin atur artifacts. These artifacts
hamper brain-activation detection. We describe spin aatur using mathematical expres-
sions and develop a weighted-average spin saturation (\Wé&®ection scheme. An al-
gorithm to identify time-series voxels affected by spirusation and to implement WASS
correction is outlined.

The performance of registration methods is dependant otuthieg parameters used
to implement their similarity metrics. To facilitate findjroptimal tuning parameters, we
develop a computationally efficient linear approximatidnh@ (co)variance of Ml-based
registration estimates. However, empirically, our appr@tion was satisfactory only for
a simple mono-modality registration example and broke dfm&realistic multi-modality

registration where the MI metric becomes strongly nonlinea
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CHAPTER 1

I ntroduction

The advent of various medical imaging modalities has altbws to obtain a more
detailed glimpse of the brain’s functioning and its anatontye information afforded
by diverse imaging modalities is usually complementaryr &@ample, Magnetic Reso-
nance Imaging (MRI) systems give a detailed descriptiorraianatomy, while Positron
Emission Tomography (PET) techniques depict the funatigind metabolic activity of
the brain.

Often it is advantageous to visually align images from défé modalities so as to be
simultaneously presented with all the available informrattontent. This requires some
spatial transformation of structures in the various imagess to bring them all into a
common frame of reference. Hence, it is necessary to eslastime type of one-to-one
mapping between the points in each image. This mapping mappked to an image
partially or in its entirety; however to be useful, it shouddlude all points of medical (di-
agnostic or surgical) importance. In image processingitestogy, the process of finding
this spatial transformation is called Image Registration.

To accurately describe image registration we start by defimihat constitutes an im-
age. We will restrict ourselves to medical images, suchthgeiomographic images like

Computed Tomography, Magnetic Resonance, Ultrasoundamag projection images



like conventional X-ray images. In this framework, we defareimage as an array of
discrete samples of a continuous function that assignsustdkensities to two or three
dimensional spatial coordinate locations. The image islsudlisplayed by assigning
varying levels of brightness known as gray levels, to eacéhtpo the image space.

Our interest in geometrical shapes and their interrelah@s requires us to impose
a coordinate system on each participating image space. dinéspn the image space
are specified by the usual Cartesian coordinates, i.e.,sé@ndes from the orthogonal
coordinate system axes. Medical image registration canb®udefined as the process of
finding the one-to-one mapping between the coordinatesanniiage spaces of interest
such that the points so transformed will correspond to theesanatomical point.

This spatial mapping may be modelled by rigid, affine or nigidrtransformations
[48]. Rigid transformations allow only rotations and treti®ns and preserve the distance
between any two points in the image. If the transformatiopsnzarallel lines into parallel
lines it is called an affine transformation. Transformagioinat map lines into lines are
called projective while those that map lines onto curvescatied curved or non-rigid
transformations. The transformations as mentioned abmwe & sequence of increasing
sets, in that each transformation is a special case of thesooeeeding it. Further, a
transformation is said to be global if it applies to the enimage and is local if it is
constrained to small sub-regions within the image. Mosisteggfion methods treat rigid
or affine transformations as global, while using curved dfammations to model local
deformations.

After estimating the transformation, it is applied to theage(s) in question so as to
view it in the transformed image space. The images availalbls are digital, that is two
types of quantization processes have been effected on themspatial quantization or

sampling and intensity quantization. To view the transtednimage, we need to retrieve



intensity values at its transformed coordinates from tlud$ke acquired image. However
these transformed coordinates may not correspond to tHoameyosample point in the
digital image and hence may not have an intensity value agedcwith them. In such
cases the intensity value at these transformed coordimsatsterpolated from the pixels
or voxels in their neighborhoods. This method of deterngnirtensities at new locations
not necessarily corresponding to sample points of the eedjunage is called resampling.

Registration algorithms estimate the transformatiortseeitlirectly in a one step pro-
cess or, as is more often the case, as the optima of a trarsfomtdependent objective
function. The objective function is typically some simitgrmeasure between the two
images, given a particular guess of the transformation éetvthem. Objective functions
are usually fairly simple for the single modality case; epéans include correlation coeffi-
cients, correlation functions or a sum of absolute diffeesn However, in some situations
using these similarity measurements may lead to erroneappimgs. This is because the
criterion values may not account for some physically obs@mariations, such as changes
in the amount of contrast medium during angiography or tlesgmce of a tumor in only
one image. These objective functions are not as useful wéggstering images from dif-
ferent modalities. This is due to the lack of a direct relasioip between pixel or voxel
intensities in images acquired using varying modalitiese Tulti-modality case can be
tackled with objective functions that are robust to vaadas in the intensity value corre-
spondences or the amount of contrast in the two images; dgrarmzlude information
theory related metrics.

The objective function should be constructed to be wellavel, so that the transfor-
mation parameters optimizing it will closely approximdte true mapping that transforms
one coordinate system into the other. Numerous optimizagohniques are commonly

used to search for the transformation parameters; nonegrabdased methods like the



Nelder-Mead simplex or Powell’s method may be used if thectje function is not dif-
ferentiable. Gradient based techniques like Steepesede<Lonjugate Gradients and the
Levenberg-Marquardt optimization are popular when thdigra of the objective function
(or an estimate of it) is available.

The registration process estimates the transformatidreredt each group of corre-
sponding points in the images or only on certain specifiedggaf points or landmarks
and then applies it to a larger region of interest. In thetatase, the registration algorithm
is extrinsic, i.e., based on foreign markers introduced ihé image space. These markers
are designed to be well-defined and clearly visible for theveant imaging modality. The
transformation is calculated based only on the relativendations of these markers and is
then applied globally to the entire image.

In contrast, intrinsic registration methods operate ongeneontent obtained from the
subject only. If complexity is not an issue, intrinsic régasion algorithms may operate
directly on some function of all image gray scale values. [Bayer images, to reduce
the search space and time complexity of the optimizationgss, the registration may be
based on the alignment of segmented object surfaces or éesmet of identified ‘land-
marks’. Landmarks are anatomical, accurately locatabietpof the morphology of the
visible anatomy and are usually identified interactivelythy user. Landmark based reg-
istration is flexible in that, at least in theory it can be agglto any image. Also, a
priori information from the user’s knowledge is straightf@rdly introduced in the regis-
tration process. Another possibility to reduce compurtatime is to use a coarse-to-fine
optimization strategy that starts by estimating simpledfarmations for downsampled
images and progessively increases both image and traresfiormtomplexity [44].

Finally, image registration can be categorized with respe@atient space [58], as

intra-subject, where all the images in the registratiorcess are from the same patient;



inter-subject where images from different patients aredadyistered and atlas-based,
where the images from one patient are to be registered withatestgcally determined
atlas.

As described above image registration is a rich field offgnamerous options. One
can choose from a multitude of objective functions, trameftion models and optimiz-
ers. Chapter 2 gives an overview of image registration #glyos that use non-rigid trans-
formation models and gradient-based optimizers. Thesgstratjon methods have been
found to be capable of handling many types of deformationswéver their versatility
necessitates transformations with high degrees of freedem many parameters. This
makes the computation of the gradient of the objective fonstwith respect to these
transformation parameters very time consuming. Chaptetr8duces a strategy employ-
ing the ‘importance sampling’ technique, to accelerateaascbf non-rigid registration al-
gorithms that use intensity-based objective functionsclsstic Approximation (SA) op-
timization methods amenable for use with such random sagphiethods are described.
We conclude with registration results comparing the penéorce of SA optimization with
importance sampling versus SA with a commonly used unifarmgding scheme and a
deterministic gradient descent optimizer. Experimenttugie applications of importance
sampling to mono-modality and multi-modality registratifor both simulated and real
image datasets.

Chapter 4 describes functional Magnetic Resonance Img@uhgl), a non-invasive
imaging modality used to study brain function. This is aebeby acquiring a long se-
guence of images, called a time series, while the subjeetrfsning some tasks designed
to stimulate (parts of) the brain. Statistical analysishef time series is used to detect ac-
tive brain regions. Brain activation detection is plagugdbbject head movement during

data acquisition. Head motion alone can be estimated angexsated for by using, for



instance, slice-to-volume (SV) registration. Howeverche®tion also spawns voxel in-
tensity fluctuations called spin saturation artifacts amdhier processing is necessary to
combat their effect. Chapter 5 develops a method, dubbedS\&fBrection, to identify
and correct time series voxels affected by spin saturatittiaets. We present mathemat-
ical expressions describing the spin saturation artifact @esign the WASS correction
starting from Bloch equations. A procedure to implement \@A®rrection based on SV
registration motion estimates is described. Results comgpahe statistical analysis of
a realistic simulated fMRI time series following SV-basedtian and WASS correction
demonstrate the efficacy of these methods in improving @abinn detection.

Given the vital role of image registration to estimate moilfMRI time series, Chap-
ter 6 compares the performance of existing slice-to-vol(8¥ and volume-to-volume
(VV) time series registration methods. We analyze the sbantngs of these registration
approaches and discuss possible techniques to improveditregion. Lastly we draw
on these techniques to propose a new registration schemeetmeelieve will combine the
advantages of existing methods. The performance of the netivad is evaluated using
simulated time-series data.

The main contributions of this dissertation are summarizddw:

1. A novel framework to accelerate nonrigid intensity-lthseage registration meth-
ods that use gradient optimization schemes is developetiapt€r 3. For nonrigid
warps, the computation of the gradient of the similarity meetvith respect to the
warp parameters is very time consuming. To save time thidigmais approximated
using a small random subset of image voxels [67]. We use itapoe sampling to
improve accuracy and reduce the variance of the gradiemogippation. Our frame-
work is based on an edge-dependent adaptive samplingoditsbm designed for use

with intensity-based registration algorithms. Resultsiomulated and real data show



that a combination of stochastic approximation methodsiammbrtance sampling

can improve the speed of registration while preserving iaayu

. Spin saturation artifacts in fMRI time-series data areanifiestation of the effect
of head motion during data acquisition on spin magnetimatibhese artifacts are
motion-dependant voxel intensity fluctuations that hantpain-activation detection
using fMRI time-series. In Chapter 5 we describe the spioratibn effect using
mathematical expressions and develop a weighted-avepageaturation (WASS)
correction scheme starting from Bloch equations. An atgorito identify fMRI
voxels affected by spin saturation artifacts and to comgtentheir intensities using
WASS correction is described. Results using simulated-gprees data show that

WASS correction can improve brain-activation detectioimg$MRI time-series.

. An improved mutual information (MI) based registratiorthnod for fMRI time-
series data is developed in Chapter 6. Commonly used Midbslése-to-volume
(SV) registration is shown to be less accurate at time-sexm-slices (i.e., slices
near the top of the head scan). This is because a loss of inmegplexity yields
noisy probability density function (pdf) estimates, affeg the MI approximation.
Results on simulated data show that using joint pdf priorsveé from registered
high complexity center-slices (i.e., slices near the nadiflthe head scan) to bolster

noisy pdf estimates can improve SV registration accuracyiffite-series end-slices.

. A computationally efficient linear approximation for thevariance of registration
estimates obtained by completely maximizing a differdniéglug-in M| estimate
is developed in Appendix A. Such an approximation, if readby accurate, can
be used to efficiently find ‘optimal’ tuning parameters (sashthe window width
in kernel density pdf estimates or the bin width in histogitaased pdf estimates) to

improve the performance of Ml-based registration. Whileapproximation was sat-



isfactory for a simple registration estimating a singlesiation between 2D mono-
modality images, it broke down for more realistic multi-nadit registration for

which the MI similarity metric becomes strongly non-linear



CHAPTER 2

Nonrigid | mage Registration

Given a set of images of the same subject obtained in digttwtinate systems, image
registration is the process of finding transformations ompsdetween the image coordi-
nates so that anatomically similar image features aregmalent. Typically, to reduce the
search space the desired spatial warps are parameterstidratheir nature and domain.
In such cases, image registration estimates the parantieé¢icharacterize the warps.

For simplicity, consider registration between a pair of ges{u,}Y, and {ﬁj}j-vil,
called the reference and homologous image respectivegsd mages are assumed to be
arrays of discrete samples from continuous intensity fonst:(.) andv(.) at coordinates
r, €eR*i=1,2,...Nandy; € R} j =1,2,... M. LetT,, : R* — R? with unknown
parameter®,, be the optimal warp that maps the homlogous image onto feeeree
image. Registration algorithms iteratively obtain anreste of these parametefisby
maximizing some similarity metrid’(#) between the two images. Since only discrete
image samplego;} are available, for each parameter guésan approximation of the
homologous image at transformed coordinafe$ = Tj(z;)} is used to compute the
similarity metric¥ (0).

In this framework registration consists of four major comenots: the deformation

model used to model the warp, the interpolation kernel useg@pproximate the trans-
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formed homologous image, the similarity metric and the raation scheme used to
estimated. This chapter briefly discusses some of the popular chomesdch of these

four components in nonrigid registration applications.

2.1 Deformation Models

Nonrigid registration is a prolific technique applied to aiety of medical image data.
Numerous deformation models, including locally affine vgawith very few degrees of
freedom, smooth elastic deformations and models that adbmi voxel to be transformed
differently, have been utilized to describe the observestiodions. The more flexible
the warp, the larger the number of parameters to be estim@aaking nonrigid registra-
tion time consuming. In general while rigid registrationyrtake only a few seconds;
its nonrigid counterpart requires minutes or in some cages bours depending on the
deformation model.

Often in cases where bone meets soft tissue (e.g., neckr Evewomen) the appro-
priate deformation model for the bone is rigid while that &mft tissue is a nonrigid
warp [61, 67]. Polyrigid and Polyaffine transforms [1] arfebmorphic (i.e., invertible
and differentiable), locally rigid/affine deformation nedd that depend on very few pa-
rameters. Each affine transform component is specified esioglinates of its center, the
associated affine transform and its radius of influence. Aectbn of such components
is utilized, with the influence of each component waning atseradius of influence ac-
cording to a smooth, spatially decaying weighting functidine effective displacement
at each image coordinate is calculated by integrating te&irianeous average speed at
that location due to each affine component. These transtmnsacan be applied only to
situations well-modelled by locally affine deformations.

In many medical applications where a globally nonrigid defation model suffices,
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spline-based warps using control points are common. ThatePSplines (TPS) popu-
larized by Bookstein [4], are 2D/3D interpolating surfatiest relate control point pairs
between the two images. Control points represent locaadmghich the spline remains

fixed. The TPS warp is based on the functiofr), where,r is the distance from the Carte-

sian origin,U(z,y) = U(r) = r?log(r?),r = /a2 + y? for 2D warps and/(z, y, z) =
Ulr) = |r]3,r = y/x2+ y? + 22 for 3D warps. This function is the fundamental so-

lution of the biharmonic equatioA? = 0, whereA is the Laplace operator given by
A=2Z ¢+ Zin2DandA = Z; + £, + % in 3D.

For simplicity, we only describe the 2D TPS warp here. The 3@pacan be con-
structed similarly using/(r) = |r|> and three dimensional control points. GivBrcon-
trol points(x;, y;);¢ = 1...P in one image, a TP$(x, y) represents a thin metal sheet that

passes though all the control points and minimizes the bgrehergy
5‘2f 24 82f 2 (Pf
//Rz 01'2 8xy) +(0y ) )d dy.
The TPS is a sum of a linear affine part and a non-linear pagingoy
= Z w;U(|(x — i,y — yi)|) + ao + a1 + agy, whereU(r) = r?log(r?).

Two separate TPS function(z,y) and f,(z,y) are used to model the displacements
in the z and y coordinates respectively. GiveR corresponding control points =
(xl, yl) = 1...P in the other image, the weights and coefficients,, a1, a, of the func-
tions are calculated to give an exact correspondencesolite.,z; = (f(zi, vi), fy(zi, vi))-
A regularization term may be added when the data is noisy arekact solution is not
desirable. This warp is computationally expensive due #oitisreased degrees of free-
dom. Furthermore, since the basis functiéiis) are global, a change in any control point
affects the deformation at each location in the image. A sorepact local control on the

warp is afforded by B-splines.
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B-splines have been used to develop free-from deformaftiefB). The deformation
at a particular voxel location is governed by a set of unifigrplaced control points and
the support of B-spline basis functions used to define th@ wior a set ofA + 1 control
points, p;, 7 = 0...A, a smooth 1D curve can be defined using polynomial functidns o
degree:; 1 < k < (A+1). These basis functions; , are defined using a vector of internal
knots (tg, t1, ..., tavs) With ¢; < t;41,Vi. The curve, a piecewise continuous function

whose order is independent of the number of control poistgivien by:

A
c(t) = ZpiBi,k(t>7 t € (to,tate)-
=0
These B-spline curves are affine invariant, i.e., constiga curve from an affine image
of the control points is equivalent to applying the affinengf@rm to the original curve.

The basis functiorB; ;, within each knot interval is given by a recursive formula:

t—t; tiop — 1
Biy(t) = ———Biga(t) + ———— B p(t)
ti—l—kz—l — 1 ti-‘,—kz - tz—l—l

) 1 t<t< tiv1
with B, 1(t) =
0 else.

While the spacing of the knots can be irregular, most regjistn algorithms use uniform
knots, so that;_; — ¢; is constant for all. In particular for a given spline of degrée
the basis functions simply become shifted versions of e#ttbroThe above formulation
can be used to generate a parameterized FFD (where the paraiae the control point
locations) as follows. For simplicity we assume registmatof 2D images with extents
(10, s0) and (ry, spr) in image space. Consider a grid df x B control pointsp;; €
R%i = 0..A — 1,7 = 0..B — 1; in parametric space each control pojnt is initially
given byp?j = (i,7). Let the spacing of the control points in image spac&bandq);.

Then given a set of control point Iocation{lp;j}, a B-spline warp of degrele maps each
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image coordinatér, s) to new locationu(r, s) € R? such that

ko ok
(2.1) w(r,s) = Z Z Bl,k(u)Bmk(v)p,(Hl)(jer).

=0 m=0

Where image space coordindtes) is given by((r —rq)/Q,, (s — s0) /@) in parametric

spacej — M—J 1= LséjoJ ~landu = 5™ —i+ 1,0 = 5% — j + 1. Theinitial
mapping Withp;j = py; is given byw(r, s) = (r, s).

The B-spline warp in (2.1) is—m times differentiable at locations where the same knot
is duplicatedn times and is one-to-one as long as it does not fold. A sufficdendition to
prevent folding in a 2D cubic B-spline warp, is approximgigiven by|p;; —p?j\oo <0.48
in parametric space. Whilgp;;, — p?jk|oo < 0.40 is sufficient to avoid folding in a 3D
cubic B-spline warp [7]. Since the deformation at image dowtes(r, s) depends only
on its neighborhood of + 1 x k& + 1 control points, the deformation has fine local control.
Thus if a subset of the control points changes, only the t#ftepart of the homologous
image needs to be updated.

Lastly as discussed in [13] other nonrigid warps like EtaMidels treat the anatom-
ical structures to be deformed as elastic solids. The salidgdeformed according to a
deformation force derived from an intensity based simylanktric between the reference
and homologous images. The deforming force is opposed hytarmal force dictated by
the elastic model. The deformation proceeds until the twoe® are in equilibrium. This
model works well only with small deformations, since theskn elasticity assumption is
violated for large deformations. Viscous Fluid models oa ¢ither hand can be used for

very flexible deformations where each voxel can be transédrdifferently, however this

large flexibility may lead to large mis-registration errors
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2.2 Interpolation

At each iteration, nonrigid registration algorithms use tlrrent estimate of warp pa-
rameterd) to find homologous image coordinatgg = Ty(z;)} that map onto reference
coordinates{x;}. The warped homologous intensity mégf ~ v(Ty(z;))} is approxi-
mated from discrete sampl¢s; } by modeling the underlying continuous intensity func-
tion v(.) using an interpolation kernel. The approximation eithexatly interpolates the
discrete values or in case of noisy images approximatesqgras) them. Various func-
tions such as the truncated Sinc, Gaussian, Bi-lineargotation kernels can be used for
this task. Lower degree interpolants like the Bi-linearniawith a narrow support are
computationally efficient but introduce aliasing artifactn contrast kernels with a large
support (e.g. Sinc) reduce aliasing considerably; howeygart from being computation-
ally expensive they increase ringing artifacts. A reastabmpromise can be obtained
by using a differentiable B-splinB,, of degreek > 2 as the interpolation kernel [70]. The

continuous function(.) is approximated by a curve similar to that used in (2.1),

M

o) = 0(Ty(w:)) = Z b; By (Ty(xi) — vj)-

j=1
The coefficientsh; are computed such thaty;) = o, and are consistent with certain
boundary conditions (e.g., extending the images on eitdensing mirror images). Unser
et al. [73] describe an efficient filter designed to calcuthtse coefficients frorfiw; }. In
case of noisy data, smoothing can be incorporated in theeafepresentation.

Differentiability of the interpolation kernel is necesgarhen using fast gradient based

optimization methods. Due to its finite support and twickedentiability the cubic B-
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spline B;, mathematically given by

4
=S < 1y < 1

6 [— i
By(t) = { =X 1<t <2

0 else

\

is often used as the interpolation kernel.
2.3 Similarity Metrics

Image registration algorithms aim to find ‘accurate’ estieseof the unknown warps
that will bring a set of images into alignment. These imaggscally have a common
theme in that they are either images of the same scene talkerime or from different
poses with respect to the imaging devise. While the praotti restricts the warp esti-
mates to a family of (usually parameterized) deformatiordet® to reduce their search
space, the chosen deformation model may not adequatelyilskeshe unknown warp.
Hence, except in the case of simulations where the ‘truepwsaknown, the only indica-
tion of the quality of registration is some quantificatiorhaiv the similarity between the
image sets has improved as a result of their undergoing theaged deformation.

Based on the type of images being registered various sityilaretrics can be em-
ployed. Registration of images acquired using the sameimgagodality use the simplest
gauges of similarity, such as the sum of squared differeram@gelation and metrics that
rely on the correspondences of voxel gray-level intersitighe images. However when
the images belong to multiple modalities such gray-levelespondences are lost; for in-
stance the same tissue may appear bright in one image andhgmewnother. Thus more
complicated similarity measures are needed for multimtdahage registration. The
most prominent of these is an information theoretic apgrasing Mutual Information

and its variations.
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Mutual Information (MI) between a pair of random variablegidicative of the amount
of information one random variable gives about the otherisadunction of their individ-
ual and joint entropies. The entropy of a random variablernseasure of its uncertainty
and quantifies the amount of information required to desditifl2]. Assuming that the
reference and homologous intensity images are obsergatfaandom variables with un-
known joint and marginal probability distributiody,, P, andP,, their marginal entropies

H, andH, are given by
H, = —/Pu log(P,)dP, andH, = —/Pv log(P,)dP,
respectively. Similarly their joint entropsf,, is
Hu = [ Pulog(Pu)dPus.

The MI I,,, between the two images is the relative entropy between jihiairprobability

distribution and the product of their marginals
]uv - Hu + Hv - Huv~

In practice a plug-in estimate of Ml is obtained by approxXimgthe probability densities

and replacing integrals by summations,

Mh

K
jgv - = Zpu(fk) log

k=1 =1

K
Z uv fkugla 1Og( (fk7917 ))

1 k=1

P, (g1;0) log(P,(g1;6))

(2.2) +

M) =

l

P,(f) is an approximation of the probability that € [f, — €, fu + €], fe = f1, f2- .. [x-
Similarly P,(g;; ) approximates the probability thét € [g;— 7, g +n], 91 = 91. 92 - - - g1
andﬁuv(fk, g1; 0) is the corresponding joint probability approximation. Tiheensity lev-
els{f.}5 and{g,}} are chosen so that the probability density functions arepzarsuf-

ficiently finely. For each guess of the warp parameten®int observations,, ©¢) are
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drawn from the (fixed) reference and the interpolated (wdrpemologous image. Hence
these joint observations vary with changegljrcorrespondingly updating the similarity
metricI? through variations in the plug-in probability estimafes.; §) and P, (.; 0).

The differentiability of the Ml approximatiorfigv in (2.2) depends on the method used
to approximate the joint and marginal pdfs. To ensure thist shmilarity measure is
differentiable, kernel density estimation (given by (3)1dan be used to estimate the
pdfs [57, 74], as opposed to the histogramming method [4]sdme situations MI is
known to be sensitive to the varying overlap between theeafee and warped homol-
ogous image, this sensitivity may be reduced by using NomedlMutual Information
(NMI) [68]. Lastly, other information theoretic measuragh as alpha-entropy can be

approximated using entropic graphs and require no prabaténsity estimation [31].
2.4 Optimization Strategies

Registration is an optimization problem that depends ompthperties of the similarity
metric U(0) and the deformation model used. Estimated warp parametersbéained
such that) = arg max, ¥(0).

The Nelder-Mead simplex optimizer [53] is common when tmilsirity metric is not
differentiable and uses only cost function evaluations. ilApsex in p dimensions has
p + 1 vertices and is a generalized triangle. To find the local maxof ¥ (0),0 € R,
the optimizer is initialized withp + 1 metric values that form the vertices of the simplex.
The vertex with the smallest value is replaced by a new veotéorm a new simplex. The
process continues forming a series of simplexes with vgrghmapes and concludes when
the size of the simplex reduces significantly. The coordimaf the vertex with the largest
value is the estimated function maxima.

Another optimizer often used with non-differentiable damty metrics is Powell’s
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Method. Given an initial gues%, € RP, this method proceeds by generating a set of
search direction§uy, us...u,,). At each iteratiom, the scheme successively finds the max-
ima of the function along the directions in the set, ife.= ¢;...¢, = 0, whereg, is the
maxima alongu;. The new gues8, ., is given by the maxima of the function along the
new directionu’ = 6, — 6,,. The set of directions is updated usiago replace one of the
older directions and the process is repeated until a stgapiterion is reached.

Both Nelder-Mead and Powell’'s method may become ineffiordmn the number of
parameter® to be estimated is large, since each iteration required similarity metric
evaluations. First or second order differentiable sintyametrics can be employed to
improve optimization speeds by using higher order gradidatmation. Steepest Descent
(SD) is the simplest gradient based optimizer. The SD algoridrives iterates in the

direction in which the similarity metric increases fastddte update rule is given by:
(23) 9n+1 - en + anveq’(e)b:en = en + ang(en)a

wherea,, is the step-size. The speed of convergence can be improvetbmging:,, such

that updatd,, . ; is the maxima ofl'(0) in the chosen direction, that is

ov (b, 00,
M = g(en-‘rl)T—H = 9(9n+1)Tg(9n) = 0.

oa,, day,
Thus the step-size should be selected to mgke, 1) orthogonal tog(6,,). This value
of the step-size is typically computed using a line searahagplications where the line
search is computation intensive, is a pre-determined decreasing sequence of positive
reals or is set to a fixed value. Though only one gradient &atiom is needed per itera-
tion, if the number of parametepss large, the gradient calculation can take very long and
is often the bottle-neck of the optimizer. Further SD can lagyed with very slow con-
vergence wher () does not have strong gradients especially when nearingittetion

optima and in some cases even for long narrow peaks the opéimiae strongly dependent
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on the initialization.

Figure 2.1: Search directions for the Steepest Descenhizeti for a simple quadratic function. Step sizes
were computed to keep consecutive search directions arttadg

As shown in Fig. 2.1 the SD search direction at each pointisgonal to the previous
search direction. Hence the algorithm ends up looking facfion optima in directions
parallel to previously used search directions. This is drth@reasons for its slow con-
vergence and is remedied by the Conjugate Gradient (CGjitdgo The update rule for
CG has the form of (2.3). However, the new direction is chdsdpe anA conjugate of
the old direction, i.e. such that6, )" Ag(6,) = 0, where A is the Hessian of?'(f).
If the Hessian is accurate CG prevents any search direation being repeated; specif-
ically, CG finds the optima of @ dimensional quadratic function in exacyiterations.
In most practical cases howevar(.) is not quadratic and computing its Hessian is very
costly. Further, approximate or inaccurate Hessians makeearch directions lose their
conjugacy. Variations of the search direction update ligkethe Fletcher-Reeves and the
Polak-Ribiere formula try to deal with this issue.

Finally though we do not discuss it here, the Levenberg-Mardt (LM) algorithm is
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commonly used in the optimization of non-linear functioiisuses a blending parameter
to gradually switch between an SD-like iteration and anlisgdHessian based step-size.
The LM scheme enjoys an improved rate of convergence sineeg SD-like step-sizes

away from the optima and gradually switches to the inversestaa based step-size in low

gradient regions near the function optima.



CHAPTER 3

Accelerated | ntensity-based Nonrigid | mage Registration !

Nonrigid registration algorithms estimate a warp or defation with many degrees
of freedom that appropriately maps one image onto anothkis ill-posed problem is
often facilitated by parameterizing the warp. Mathemdlfcamage registration is an

optimization problem:
(3.1) 0 = arg max, ¥ (0);

whereV is the similarity metric and is the estimate of the dimensional vector of warp
parameters.

In registration scenarios that use differentiable intigrisased similarity metrics and
gradient optimization methods, it is possible to derive aa\tical expression for the gra-
dient of the similarity metrié/, W (#). However for large image volumes, the large number
of warp parameters in most nonrigid registration methodkasahe gradient calculation
time consuming. A simple strategy to reduce this computéatioe is to use a small ran-
dom subset of image voxels to approximate the gradient [40].

Since this randomization of the gradient in effect makessdch direction a ran-

dom variable, these techniques cannot be used with algusitike Congugate Gradients

IThis chapter is based on material from [2].
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that endeavor to maintain the conjugacy of successive safirections. Furthermore

while it is possible to approximate the Hessian, becauseatidom sample-size is small,
its accuracy is suspect. Hence step-sizes based on theenvkthe Hessian, as in the
Levenberg-Marquardt scheme, may not be reliable. It wasrteg in [40] that an analyt-

ical gradient-based optimizer [49, 70] using a random sarhgding technique to approxi-

mate the gradient, performed better than that using gradpgroximations based on finite
differences [37] and simultaneous perturbation [66].

The speed and accuracy of such registration algorithmsndiepe the quality of the
gradient approximation obtained via random sampling. Tuiesst of random voxel lo-
cations is typically drawn using uniform sampling (US). Eleve present an alternative
data-driven, non-uniform sampling strategy that can bel e$gciently to improve these
gradient approximations. We argue that image edges syonfjience intensity-based
registration estimates. Consequently, we propose the useportance sampling (IS)
based on a sampling distribution that emphasizes imagesedgenprove the gradient
approximations.

Section 3.1 casts image registration in a Stochastic Appraon framework. Impor-
tance sampling is described in Sec. 3.2; a non-uniform samglstribution for intensity-
based registration is developed in Sec. 3.3; and an effimgplementation strategy is
outlined in Sec. 3.5. In Sec. 3.6 we use simulated 3D MRI vesito compare the
performance of multi-modal image registration using b&hahd US with that using a
deterministic gradient descent optimizer. Lastly we desti@te the application of IS to
register real inhale-exhale lung CT data using deformaképlihe warps. The quality of
the registration for CT data is quantified using expert idiextk landmarks. These results
suggest that IS based on the sampling distribution designéds work can accelerate

intensity-based nonrigid registration algorithms whitegerving accuracy.
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3.1 Stochastic Approximation

In the random sampling framework, the registration procechecomes a stochastic

approximation technique, with the following updates:
(32) 8k+1 == ek + akg(ﬁk),

wheref),, is the warp parameter estimate at thk iteration,g(6;) is an approximation of
the gradien¥,V (0) atd, anday is the step-size. Stochastic approximation (SA) is used to
find the zeros of a function when only noisy function evaloiasiare available [37,42]. SA
methods aim to find the unknown zeros by successively redubim inaccuracy in their
estimates. They have been applied successfully to numengpigcations in the fields

of statistical modeling and controls. In gradient-basedgmregistration, SA techniques
can be used to estimate warp parameters that maximize thlardiyrmetric by steadily

reducing the imprecision introduced in successive gradipproximations.

Figure 3.1: Search directions for a Stochastic Approxioradiptimizer for a simple quadratic function. The
step-size at iteration was0.2/n.

A now common SA approach was first introduced by Robbins andrbi§69]. This
method aims to reduce the inaccuracy in warp parameter a&stinby gradually reducing

the step-size of the iterations; for brevity we call thishieique Step-SA. Step-SA re-
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quires that the number of points (image voxels) used to aqpede the gradient, i.e., the
sample-size, remains fixed over iterations. The step-sigaence, designed to guarantee
convergence of the optimizer, is a non-increasing nongegoencéay, }, k € N such that
>, ap = ocandd 2, a,? < oo. Clearly there are numerous sequences that describe a
valid step-size progression. In practice the step-sizaessee is chosen heuristically for a
given application.

Unlike Step-SA, sample-size controlled SA (Samp-SA) [16¢s the step-size con-
stant. Errors in parameter estimates are reduced by psigesincreasing the sample-
size used to approximate the gradient. The slowest sangdegsowth rate that en-
sures convergence is proportionalltdk) wherek is the iteration number [17]. Us-
ing a slow growth rate should reduce computation time. Inioylementation we use
Kok®In(k + (e — 1));0 < ¢ < 1 whereKj, is the initial sample-size, as the growth rate.
Both techniques effectively average out the approximatioor as the iterations progress,
yielding convergence.

Empirical results [2] comparing Samp-SA and Step-SA folistegtion of simulated
brain data indicated that under identical conditions S&Agias faster initial convergence
than Step-SA. However Step-SA appeared to be more staldeeaiterations than Samp-
SA. Solid lines in Fig. 3.2 indicate the mean behavior oftyhiealizations for each SA
method; dotted lines flanking the solid lines are +/- onedaiath deviation plots.

Irrespective of the SA scheme used, the efficiency of thedbkads for image registra-
tion applications depends on the bias and variance pregesfithe underlying gradient
approximation based on a small random subset of image voX¢ls work focuses on
the use of importance sampling to enhance the performancegddtration algorithms
by reducing the variance of such gradient approximatiorbouit introducing any addi-

tional bias. In the following section we briefly review therizgence reduction properties
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Comparison of Step—SA and Samp—SA
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Figure 3.2: Empirical comparison of the convergence priggeof Samp-SA and Step-SA under identical
simulation conditions.

of importance sampling and identify image regions thatrgjlpinfluence intensity-based
registration. Subsequently we describe an appropriateti@dasampling distribution that
emphasizes samples from these regions. Further, a simgtiegst to efficiently implement

the sampling distribution is discussed.
3.2 Importance Sampling

Importance sampling (IS) is a variance reduction technizppable of incorporating
knowledge of the quantity being approximated into the samggbrocess. IS recognizes
that certain types of random samples can affect the appedgtammore than others and
utilizes a sampling distribution that emphasizes theseonmapt samples. Such a biased
distribution would produce a biased estimator; however bighting the samples appro-
priately this bias can be preempted. For completeness vedlyosummarize IS along
the lines of [41]. To study the variance reduction affordgd®, consider estimating a
computationally intractable integrél = [, f(u)du. This integral can be expressed as the
expectation of a (non-linear) function of a continuous omiily distributed random vector

X up to a known constant such that,

(3.3) & = [ fludu Ex(F(X)), X = Py,
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where Px(z) = U(R) is the uniform distribution ovef2. This expectation can be re-
written as,
Ex(f(X)) = /f(x)PX(x)dx
: A
; P
/Q%PYW% w(y) = P;Ezg
(3.4) = EY(’L{J((?/)))’ Y « Py

The random vectol” is distributed according to the non-uniform distributién(y) =
Px(y)w(y). To gain any advantage by usittg-(.) over Ex(.), the functionw(y) should
be chosen carefully.

In practice, the expectations above are approximated by sheple means usiny
i.i.d. samples of random vectos «~ U(f2) andY « Py. Ignoring the proportionality

constant, we obtain the following estimates of the integr#B.3);

bui 2 =3 flen) ~ Bx(f(X))

N n=1
5. A i = f(yn)% f(Y)
P £ D (wm)‘

Dun corresponds to the uniform sampling case m is the estimate obtained by im-
portance sampling. Botin, andi)imp are unbiased with expectations proportional to the
original integral in (3.3). Since the random samples ard.j.the variances of the two

estimates are given by

var(®y,i) = %var(f(X)) and vat®;y,) = %var(ﬂy) )

IS based on the sampling distributid® is beneficial only ifPy (y) = w(y)Px(y) is

chosen to ensure that Véfy,,) < var(®,,). This is possible if and only if the function
%has lower variance thayi(.) alone. Thus the weights(.) and correspondingly the
sampling distributior?, should be chosen to be similar in shape to the original integr

f(.), ensuring that the functioﬁ% is smooth.
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3.3 Importance Sampling for I mage Registration

To use importance sampling in an image registration contegtbriefly outline the
basic assumptions and imaging model used in a registratonefvork. Consider regis-
tration between a pair of intensity images, namely the egfeg image and the homologous
image. These images are assumed to be sets of samptes(x;),i = 1,2,...N,, and
0; = v(y;), j = 1,2,...N,, drawn from continuous intensity functions.) andv(.) re-
spectively. These continuous functions are sampled adeuatesz; € R* andy,; € R?
respectively.

Most nonrigid registration algorithms assume that thesgdinates are related by a
warpTy, : R3 — R3. The vector of unknown warp parametérsc R? is estimated iter-
atively by the algorithm. At each iteration, the currenirastef = 6, is used to find in-
tensities at coordinatgg? = Ty(2;)}", in the homologous image corresponding to each
reference voxel location. These transformed coordinatesyr lie on the sampling grid
points and hence their corresponding intensity valés~ v(Ty(z;))} are not known.
Intensity-based similarity metrics commonly approximttese unknown intensities by
modeling the continuous intensity functiefl) using an appropriate interpolation kernel.

Specifically, we use
N’U

(3.5) o) =Y bB(Ty(x:) —y;), i=1,...Ny,
j=1

whereB is a cubic B-spline andb; } are spline coefficients obtained by pre-filtering the

original image{?; } [73]. Similarity metrics& employing this model can be written as
(3.6) V(0) = U({a;, o/ }).

Assuming differentiability and using the chain rule, thadjent of¥ is given by

Ny
@7 o(0) 2 V) =y Wi
i=1 i
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_[o 0 0
Wherevg_[a—el,a—%...%]

denotes the gradient operator.

The large number of warp parameterand the large number of voxelég, over which
the above summation is computed makes the gradient catmuhagry time consuming.
The above gradient can be expressed as the expectation ofliaeaw function of i.i.d
samples of a uniform random variable, up to a known propoality constant. To accel-
erate the gradient computation, (3.7) may be approximayesl/aluating the summation
over a small random subsg&tc {1,2,... N, } of image coordinates, i.e{{z;, Tp(z;))};

1 € R are i.i.d. draws from ainiform sampling distribution [40, 49]. Hence, given the

reference and homologous images, the approximate graseed on uniform sampling

is given by
ov ()

~0
V0
/\6 7"
0;

guni(e) =

i€ER

Thus any voxel pair is equally likely to be used to approxentite gradient, ensuring

that the resulting approximation is unbiased. Furthegesin; : € R are i.i.d. samples,
functions of these samples (under certain regularity dant) are i.i.d. themselves.
Reducing the variance of this gradient approximation (authintroducing any bias)

will not only improve the convergence of the SA optimizer imay also facilitate the use of
smaller sample-sizes. This may be possible by using IS tourage denser sampling from
image regions that strongly influence the gradient giver3oy)( To design a meaningful
sampling distribution for gradient-based image regigiratwe first identify image regions
that contribute significantly to the gradient of the simtlametric. These ‘important’
image regions can be identified by differentiating (3.5):

Ny
@9) Vait = { o0, (0m) ) HVaTi(o),

j=1
whereB(y) = V,B(y), y € R*is thel x 3 vector gradient of the B-spline kernel. The

term in the braces contains the directional gradients oegdfjithe homologous intensity
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image along the three coordinate axes. Recalling (3.7y,\@Xel intensities that lie on an
edge in the homologous imagé!} will contribute significantly tay(6).

Now consider registration by swapping the two images, treating{7, } as the refer-
ence image andlu; } as the homologous image. This corresponds to finding anr$eve
warp. In this case, the continuous functiof) will be modeled using an interpolation
kernel. Repeating the above analysis, we see that edges swiipped reference image
{ag} will now be vital in the gradient calculation. This suggetsitat our importance sam-
pling scheme should follow a distribution that emphasizigges in both the reference and
the homologous images.

At a given SA iteration with parameter gugsave base the design of oéfdependent
sampling distribution”? on the edge magnitudes of the two intensity images. The proba
bility that a voxel pair with coordinates:;, Ty(z;)) is selected is chosen as follows:

e?

0/ N\ A .
(3.9 P(i) = =x 5 i=12,...N,,
i1 €
where
8 t if _si t >T
Nu + Nu ) I Nu + Nu =
N s 2t s 2t
€ = j=1 j=1" =1 =

€ else

{s5;}N« and {t?} N are approximate edge magnitudes of the reference and ataeed
homologous images respectively.is a user-defined edge threshold and (0, T'). If the
normalized edge magnitudes in both images are smallerfh#me sampling distribution
becomes uniform with each voxel pair having an equal chahbeing selected.

Let (z;, Ty(z;));i € S whereS C {1,2,...N,}, be coordinates of the voxel pairs
chosen according t&?(i). Then the importance sampling-based approximate grattient

be used in (3.2) is given by

(3.10) i)=Y —20g,y
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wherew(i) = N, P?(i). This approximate gradient uses ohfij < NV, voxel pairs; hence
the time consuming sum in (3.7) is evaluated only at th&seample points.

Interestingly, Sabuncu et al. [63] recently developed ayeedkpendent sampling scheme
to reduce the approximation error in their Euclidean Minim8panning Trees (EMST)
based registration. However, they did not study the vaddmas properties of their ap-

proximation and assigned the same weight to all samples.

3.3.1 Application to Two Similarity Metrics

We demonstrate the use of IS for image registration with @ramonly used intensity-
based similarity metrics. Due to its simplicity, monomatalegistration algorithms often
use the (negative of) sum of squared differences (SSD) asiasty metric. In this case,
both the reference and homologous images are assumed tddyer@alizations drawn

from the same continuous function. Let the reference imaggien by a set of noisy

sampled[, ;. Then the negative SSD similarity metric is
R 2
(3.11) Ussp(f) = N, Z (@ —f)",

where the interpolated homologous imagé}Y , is given by (3.5). By differentiating
the above expression, image edges can be easily shown toploetamt in the gradient
calculation of the negative SSD metric.

As discussed in Chapter 2, Ml is a prevalent similarity nogfior multimodality regis-
tration. The plug-in MI estimate between the two images mivg (2.2) is repeated here

for clarity;

P, (g1;0) log(P,(g1;6))

Mh

Ui (0) = —Z u(fk)lOg

k=1 =1

K
Z uv fk;gl; log(Pw(fk,gl,Q))

1 k=1

(3.12) +

M) =

l
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f%,(gl; 0) is the approximate probability that a homologous intensiyel o/ € [g, —
n, g1 + 0l P, and P,, are defined similarly over intensity levefs = fi, fa, ... fx and
g = g1, 92, -..9.. These sets of intensity leveld;.} ¢ and{g,}} are chosen to span the
dynamic intensity range of the reference and homologougésieespectively. Our interest
in gradient based optimizers requires that we approxinmaget pdfs using a differentiable

kernel density estimate. In this case the gradient of the kBtrimw.r.t.6 is given by

L
V@‘I’N” Z V@ v gl; log(P (gl7 ‘9)) + 1)
=1

ZZVG o(frr 913 0) (log(Puy(fi. g1:0)) + 1),

=1 1

(3.13)

+
B
Il

The differentiable kernel density estimatg(g;; ) is given by [15],
Ny N
(3.14) Polgi8) = — K<”i gl),

where, x(.) is a differentiable density kernel that integrates to umityd » > 0 is the

scalable width of the kernel. The gradientlaf(gl; ) with respect to the warp parameters

is given by
1 & ¢ — g
~ . i Yl ~
(3.15) VoPy(g;0) = N2 Z H( . )Vevf;
v =1

where /(.) is the derivative of the density kernel. This expressioninsilar to (3.7);

substituting (3.8) folv/,9¢ above yields

VP, (g1 0) = hQZ < '_gl){ébjB(Tg(xi)—yj)}ngg(xi).

The term in the parenthesis contains the edges of the homatagage along each coor-

dinate axis. At a fixed intensity level, only voxels that lie on an edge in the homologous
image and whose intensity is withip, — h/2, g, + h/2] will contribute tOVgpv(gl; 0).
Since the intensity levelsy; } 1 are chosen to span the range of homologous image intensi-

ties, every voxel in the edge map of this image will belongwnieighborhood of at least
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one intensity level. This implies that the entire edge mdjuémces the gradient calcu-
lation. Similar considerations apply ﬁv(.; 0), indicating that edges in the homologous
image are important for its gradient approximation too.

Consider now a registration scheme to find the ‘inverse’ nmapfrom the reference
to the homologous image, by swapping the two images. In #8g,aepeating the above
analysis illustrates that the reference image edges aresigisificant players in the gradi-
ent approximation.

In our MI implementation we use a cubic B-splifig.) as the differentiable density
kernel [70]. The number of intensity levelg and L at which to computé®,(.), P,(.; 0)
and Pm,(.; 0) was chosen to be proportional to the number of voxel paird tizeom-
pute the gradient of MI. The number of levels was approxitgaizen by Scott’s normal

reference rule [64]:

range of intensity values

No. of intensity levelss
y 3.406n 18

where,s is the approximate standard deviation anid the number of voxel pairs used to
estimate the pdf. Intensity levels; } X, and{g,}-, were chosen to uniformly span the
range of intensities in the reference and homologous imegectively.

As discussed in [70], an added advantage of using the cubfiBe B(.) as the density
kernel, is that it satisfies the partition unity:
(3.16) Y Bli—z)=1; VzeR.

1€l

The kernel widthh was chosen so the% € I,vk and% € I,Vi. This choice of. coupled
with (3.16) ensures tha@u(.), which is computed only from the fixed reference image

voxel intensities, remains independentof
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3.4 Optimization Scheme

As discussed previously we have two SA methods, Step-SA anthSSA, that can
estimate the unknown warp parameters. We explored two sshéoncombine the ad-
vantages of these two SA methods; (i) an ‘Hybrid-SA scheha started with Samp-SA
for a fixed number of iterations and switched to Step-SA foerlaterations and (ii) a
‘Pyramid-SA’ scheme that employed a variable combinatibstep and sample-sizes us-
ing a multi-resolution pyramid approach [70].

When the number of unknown warp parameters is very small,ay e sufficient
to empirically identify a single step-size value for SA algfoms. However for large-
dimensional vector valued parameters, the optimal step{sir each vector component
may vary widely. To remedy this, we adopt an adaptive step-sstimation technique
that has been shown to be convergent [36]. #,ebe the estimate of warp parameters
at iterationk, with elements{6i},i = 1,2,...p. The adaptive step-size strategy as-
sumes that for a stationary poifit of the similarity measure, rapid changes in the sign
of (i —01) — (9. _, — ') = 6. — 6i | indicate thaty! is closer to its optima. Simi-
larly, fewer sign changes are indicative of a greater dtdrom@:. Thus the step-size
associated with théeth warp parameter component is kept inversely proportiemahe
number of sign changes 6f — 0 _,. Our implementation estimates the step-size for the
ith component;, as follows:a;, = ao/(A + Q}), whereQ), is the number of sign changes
in{6:, — 6 .}, m=2,...kand@} = 0. A anda, are positive non-zero constants.

Initial experiments comparing the different SA techniqused a pair of 2256 x 256
T1 and T2 MRI brain images obtained from ICBM, with pixel dinsgonsimmx1mm.
These slices were initially in registration. We appliedeli€nt nonrigid warp§’ to the T2

weighted image, resulting in ground truth coordinadtés;),: = 1... N,. This T2 image
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was treated as the reference and the undeformed T1 sliceheasomologous image.
Warp estimate$; were obtained by registering the homologous image ontogtieeance.
These warp estimates were modeled using cubic B-splins basttions given by (2.1)
and were obtained by maximizing a plug-in estimate of theualuhformation (Ml), given
by (3.12), between the two of images. The quality of the esstd warp{7j ()}, was

evaluated by computing the RMS error between the warp etdiaral the ground truth,

N,
1 2
(3.17) RMS error= J A ; 1T (z5) — Ty(z)|)*.

To compare Hybrid-SA with Step-SA, a known B-spline warpo(grd truth) using
5 x 5 equally spaced control points, was applied to generatesfieeance T2 image. This
ground truth warp represented zero model mismatch. We atgdrthe B-Spline warp
that mapped the homologous image onto the reference, usibgp-SA withay = 1500,

A = 15 and fixed sample-size 5% of the total number of pixels and (ii) Hybrid-SA
using Samp-SA witf Ky = 2%) and step-size- 75 for the first159 (of 2000) iterations.
For the remaining iterations, Step-SA used a fixed sampées®rto the average sample
size of the firstl59 iterations. The step-size sequence parametenwas75 x min; Q'
andA = 1.

The two SA methods were tested using both uniform samplirg) &hd importance
sampling (IS) withP? defined by (3.9). Thirty realizations of both SA methods Wit&
and IS were obtained. Registration accuracy was quantifiedjuhe RMS error between
the estimated warp and the ground truth, given in (3.17). &g shows the mean perfor-
mance of the SA techniques. Hybrid-SA reduces RMS error niaster than Step-SA.
In this and subsequent figures error bars have been omitietptove clarity; all+ one
standard deviation error bars were withig5 pixels of the mean behavior plots.

To compare the performance of Hybrid-SA with US and IS agaleterministic Gra-
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Comparison of the different SA techniques with and without IS

»
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Figure 3.3: Comparison of Hybrid-SA and Step-SA.

dient Descent (GD), we applied a known warp using randonmdggud Gaussian blobs to
the T2 image. This known warp had an inherent mismatch assacivith the B-spline
warp model used to register the two images. For simplicgtyistration was performed at
a single resolution, usingt intensity levels to approximate the pdfs. Hybrid-SA optiadi
tion with US and IS, used Samp-SA wifki, = 0.5% for the first159 of 2000 iterations.
The remaining iterations used Step-SA with= 20 x min; Q},, andA = 1. Determin-
istic gradient descent was found to perform best by usinglaptave step-size sequence,
similar to that described earlier, withh = 1500 and A = 15. Thirty realizations were
obtained for each of the three optimization methods, witheeaalization of the determin-
istic GD method initialized with a small random warp guesseav values of the RMS
error obtained using the three optimizers shown in Fig.iBdicate that Hybrid-SA with
IS outperforms Hybrid-SA with Uniform sampling and detenmstic gradient descent. To
account for the effect of warp model mismatch, we computezhatisquares fit between
the applied B-spline warp model and the known ground truttpw&he model mismatch
RMS error wag).615 mm. Thus the effective registration error of Hybrid-SA wi8) after

accounting for model mismatch, was less thanmm.
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Comparison of Hybrid—SA with IS and
deterministic gradient descent
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Figure 3.4: Comparison of Hybrid-SA with IS and determiicigtadient descent. The ground truth (applied)
warp was based on randomly placed Gaussian blobs.

Lastly, to evaluate the efficacy of using 1S-based SA in thaelyi used Pyramid regis-
tration scheme [70], we applied a B-spline warp with a grid bfx 11 control points to
the T2 image and left the T1 image undistorted. The registratigorithm used a B-spline
warp model. Our SA trials used a 3 level pyramid: The firstllesged5 x 5 control points
to model the deformatior32 intensity levels to approximate the pdfs and both images
were down-sampled by a factor ¢f Level 2 had7 x 7 control points 58 intensity levels
and a down-sampling factor @ The last level used x 9 control points,64 intensity
levels and no down-sampling. Levdlgnd2 operated at44 and128 iterations of Samp-
SA each. The initial sample-siZ€, was 1% of the total number of pixels at both levels
and the step-sizes were fixedlaand5 respectively. The last level usedé iterations of
Step-SA withay = 150, A = 1 and sample-size- 5% of the total number of pixels at this
level. The final warp estimate at a lower level was up-samalatiused to initialize the
optimizer at the next level. As the highest level used énly9 control points to estimate
the B-spline warp and the true (applied) warp was generatied)a set ofl 1 x 11 control
points, there was an inherent mismatch in the registratioogss. A least square fit of the

applied B-spline model with x 9 control points to the known ground truth warp revealed
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a model mismatch RMS error 6f553 mm.

Further, the same Pyramid structure and number of iteratigre used for determin-
istic GD, which gave the best results by using an adaptive ggguence with, = 10 at
level 1 anday, = 100 at levels2 and3. A was1 at all levels of the pyramid. As before,
thirty realizations were obtained for all three methodshwhe deterministic optimiza-
tion initialized by a random seed point for each realizatiBesults in Fig. 3.5 show that
Pyramid-SA with IS performed well giving a large speed upha tate of convergence.

The effective registration error using Pyramid-SA with&8er accounting for model mis-

match, was less than5 mm i.e. less than half a pixel.

Importance sampling

—_
(=)}
T

26F : Comparision of SA with deterministic gradient
: descent using a pyramid optimization strategy
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0 500 1000 1500 2000 2500 3000
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Figure 3.5: Improved convergence of Pyramid-SA with IS

These empirical results indicate that both Hybrid-SA anthRyd-SA are viable can-
didates for faster nonrigid image registration using randampling. However, given the
recent prevalence of pyramid optimization schemes and #mpirically demonstrated
robustness to local minima [49, 70], we used Pyramid-SA fisubbsequent experiments
described here.

In our experiments all levels of Pyramid-SA used cubic Brepkepresentations of
both images. Lower levels of the pyramid used coarse imageo&nations with small

amounts of data to obtain initial warp estimates. These watimates were then refined
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at higher levels of the pyramid using more precise imageessptations by including
more intensity data. Since coarse image approximations@empanied by a loss of
detail, low level warp estimates capture gross global alignt and are explained using
fewer parameters. As image detail increases with pyramildethe warps become more
elaborate and depend on a larger number of parameters. Thasssive levels of the
pyramid use an increasing number of intensity pairs to eg@rthe similarity metric. In
an SA framework, this corresponds to implicitly increasihg sample-size between each
level of the pyramid. ‘Optimal’ warp parameters within egginamid level were estimated

using Step-SA. For simplicity we call this optimization sahe ‘Pyramid-SA.
3.5 Implementation I ssues

To use IS effectively for image registration, it is crucialdesign a meaningful sam-
pling distribution that requires minimal computationaioef. The sampling distribution
P? depends on the changing warp parameter estimates thrafight;, so it has to be
recomputed with significant variations in the SA estimaties.oThus it is important to
use a fast and simple approximation of the edge maps. Siegefdrence image does not
change throughout the registration, we pre-compute itedjiedge mags; . How-
ever the homologous image geometry changes with updateand corresponding edge
magnitude values need to be recomputed. For large homadag@ages, edge maps based
on higher order kernels such as the cubic spline in (3.5) eamomputationally expensive.
Hence we approximate edge magnitudes using fast lower firdier central differences
of the intensity images along each image dimension.

As described in Sec. 3.4, the coarse-to-fine framework oPthramid-SA scheme in-
herently results in large scale changes in the warp estiatdbaver levels of the pyramid,

while finer warp adjustments occur at higher pyramid levatseach iteration, large scale



39

(@) Example Sampling Distri- (b) Importance Sampling (c) Uniform Sampling
bution

Figure 3.6: Comparison of samples obtained using the sampistribution given by (3.9) versus samples
obtained by Uniform sampling. Images were created whenlgaithm was not near registra-
tion.

warp changes are more likely to significantly affect the eahgg than finer refinements.
Hence, we update the sampling distribution frequently ateloPyramid-SA levels and
increase the number of iterations between updates as the optimizer switches to higher
levels. SA algorithms are characterized by small stepgalamdom search directions that
point uphill (or downhill when minimizing a cost functionh@verage. Thus the sampling
distributionP? is updated eveny. iterations to reflect the average change in thesearp
estimates. At pyramid levél= 1,2, ... we usedn = 2.

Lastly, at every update, the approximate homologous imdge enap need be recom-
puted only at locations where the effective deformatioraigé enough to significantly
change the edge magnitude. That is, we incrementally updatinite central difference
based edge estimate only at geometric coordinates that moresthan the dimensions of
a voxel in any direction on average. These measures enairthéhoverhead required to
compute and update the sampling distribution is reasorsabblil. Further, this fractional
overhead reduces steadily with increasing sample-sizgs3F6 shows the sampling dis-
tribution and corresponding samples obtained using inaped sampling for registration

of simulated brain datasets.
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In the following sections we used simulated and real dataudysthe performance
of nonrigid registration using 1S-based SA versus unifoempling based SA. IS-based
gradient approximations used a small subset of random ssngpawn according to the

sampling distribution designed in (3.9).
3.6 Results

We demonstrate the use of IS for image registration usinig siotulated and real data.
Results include pair-wise monomodality and multimodalé@gistration using two com-
mon intensity-based similarity metrics. All registrati@sults using 1S-based Pyramid-SA
(IS-SA) and US-based Pyramid-SA (US-SA) described herd@rag the pyramid opti-
mization framework detailed in Sec. 3.4. For comparisogisteation was also performed
using deterministic Gradient Descent (GD) in the same mne#olution pyramid frame-
work. GD used all image voxels to compute the analytical igratcht each iteration. All
three methods utilized multi-resolution representatwitsoth images using cubic splines

and estimated deformable warps based on B-splines.

3.6.1 Behavior of |S-SA with Variationsin Step-size

A limitation of SA approaches is their sensitivity to tunipgrameters such as step-
sizes. If the sampling distributioR’ designed in (3.9) reduces the variance; @), IS-
SA can be expected to have an increased tolerance to vasaticstep-sizes. Simulated
datasets were used to compare the behavior of multi-modmitration using 1S-SA and
US-SA with various step-sizes.

Mutual Information (MI) based registration was performestvireen180 x 260 x 60
T1 and PD-weighted simulated MR volumes withx 1 x 3 mm?® voxels, obtained from
ICBM [9]. A plug-in estimate of MI between the two volumesyen by (3.12) , was used

as the similarity metric. Analysis outlined in Sec. 3.3.bwh that image edges strongly



41

influence the gradient of this Ml estimate.

All results using IS-SA optimization schemes in this seattised the sampling distri-
bution given by (3.9). A known synthetic waff).) derived using radial blobs of vary-
ing severity was applied to the T1 volume, yielding groundhrcoordinate§’(z;),i =
1,...,N,. This warped volume was treated as the reference, whileribbamged PD
volume was the homologous image. B-spline wakgs) were estimated by mapping the
homologous volume onto the reference volume. Quality oéttenated warg7j(z;)
was evaluated using the RMS error between the warp estinmatg@und-truth, as in
(3.17).

A two level Pyramid-SA scheme was used to register the twa dats. Level one
used64 histogram bins, a B-spline control point spacingl6fx 16 x 8 voxels and both
images were down-sampled by a factor of two in all dimensidhe second level ha?8
histogram bins, afl x 8 x 4 voxels B-spline control point spacing and no down-sampling
Both levels implementetl50 and250 iterations of Step-SA respectively and used only a
fixed percentage of all available voxel pairs at that levéke $tep-size: , corresponding to
componend: of the warp parameters’ estimate at iteratiomvasa;, = ao/(10+Q5%), i =
1,2,...,p. Where, Q! was the number of sign changes{iff, — 6: |}, m =2,... k.
Thus the only tuning parameter in the step-size sequencegvas

To study the effect of varying step-size parametgrwarp estimates from0 regis-
tration runs were obtained using IS and US, for six systerabyiincreasing values of
ap from 1000 up to 16000 in increments of3000. Independent realizations of Gaussian
noise N (0,9) were added to both images prior to the registration runss ptocess was
repeated for four different sample sizes0df5, 0.5, 1 and2 percent respectively. Fig. 3.7
compares statistics of the final RMS errors obtained usiadgwio sampling strategies for

a fixed CPU time. As hypothesized, IS-SA yields lower errbentUS-SA over the entire
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range of step-sizes.

Empirically, IS-SA was significantly less sensitive to sgpe variations, while consis-
tently giving more accurate warp estimates. Further, US«&piired larger sample sizes
to achieve accuracies comparable to those using IS. As sasigds increase both IS and
US will capture similar levels of image complexity makingthperformance compara-
ble. The minimum sample-size beyond which both samplindhods give similar results
will depend on the complexity of the datasets. In generalwil&oe effective at smaller

sample-sizes when image edge features are roughly unifatisppersed.

3.6.2 Application to Real Data

Encouraged by the observations made in the previous seat@msed IS to register real
datasets. Intensity-based registration using B-splimpswaas used to align CT inhale and
exhale lung datasets from 8 subjects. These CT scan paiesokésined using a helical
CT scanner (CT/I, General Electric, Milwaukee, WI) With 87 x 0.187 x 0.5 cm? voxels.
Each scan pair was acquired during coached voluntary bredthperiods of 18 to 35
secs; the first scan at normal exhale followed by one at noimhale. A more detailed
description of the data can be found in [11].

Monomodality registration was performed using the negabvSum of Squared Dif-
ferences (SSD) as a similarity metric. In this case, bothréfierence and homologous
images are assumed to be noisy realizations drawn from the santinuous function.
Let the reference image be given by a set of noisy samfalgs’,. Then the negative

SSD similarity metric is

(3.18) Ussp(f) = N Z (@ — ﬁf)Qv
Uoi=1

where the interpolated homologous imagé f.Vzul is given by (3.5). Differentiating the

above expression shows that image edges are important goatient ofl ssp.
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Figure 3.7: Comparison of the performance of IS-SA (redhed) versus US-SA (blue/plain) with varia-

tions in step-sizes. Figures show RMS error statistics @ondnrigid multimodality registration
runs at six step-sizes and fowr.Z5, 0.5, 1 and2%) sample-sizes. The line at the center of each
boxplot shows the median RMS error value and top and bottayasedre th&5 and25 percent
quantile RMS errors. ‘Outliers’ are shown by (o) for IS and(ky for US. IS does significantly
better than US at all four sample-sizes. Specifically, I8lte$n lower variance values and shows
better tolerance to variations in step-sizes. Trends ifidbeplots indicate that the performance
of both sampling strategies will become comparable witmangase in sample-size.
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Effective use of US-SA or IS-SA to register a population dlréatasets requires an
efficient strategy to estimate the step-size parameteHere we outline a simple pro-
cedure to estimate thig value using a single randomly chosen dataset from the target
CT population. In the absence of known ground truth, B-gplrarp estimates obtained
using deterministic GD optimization were treated as thaigeeground-truth. This is a
reasonable assumption since the goal of our SA algorithmasuise only a small subset of
strategically selected image voxels to attain registrediccuracy comparable to that using
GD with all image voxels. To mitigate local minima, regisioa estimates from multiple
runs of a GD algorithm were used. Each run was initializedgisi small randomly gen-
erated warp. The final registration estimate correspontdirige largest similarity metric
value was treated as the best attainable warp. For a giveplsaiae, optimak, values
using both IS-SA and US-SA were chosen to consistently fingh watimates that yielded
the smallest RMS error values with respect to this pseudongkaruth warp.

For training purposes, we employed a two-level pyramidstegiion scheme. Level 1
downsampled the images by a factor of 2, estimated B-splampswvith al6 x 16 x 8
voxels control point spacing and usegas the step-size parameter. The second level used
no downsampling, 8 x 8 x 4 B-spline control point spacing and the step-size parameter
wasl.5 x ag. Each level used”% of the total available voxels at that level. Ten registnatio
wrap estimates were obtained using both IS-SA and US-SA festaof five different
ap values. Each registration run was terminated aftemins and at every iteration we
recorded RMS errors of the estimated B-spline warp witheespo the pseudo ground-
truth warp. Step-size parameter valye= 1 was found to yield the best results for both
SA methods. Fig. 3.8(a) shows statistics of RMS error valoeall 10 1IS-SA and US-SA

registration runs at all five, values. Fig. 3.8(b) shows speed and accuracy comparisons
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of GD, IS-SA and US-SA (both usingy, = 1) with respect to the pseudo ground-truth
warp. All subsequent SA based registrations were perfomset this trained pyramid

scheme withyg = 1.

Validation

To gauge the performance of IS-SA and US-SA based on thesttgapramid scheme
described above, we applied both methods to register all 8n@dle-exhale lung scan
pairs. To quantify registration accuracy, six expert idfiet feature points were used per
scan pair. These features included both bronchial and \asbifurcations. For each
subject, registration was performed by treating the exbada as the reference and the
inhale scan as the homologous dataset. Following reg@trdhe estimated B-spline warp
was used to transform the six exhale feature point coorelsniat obtain predicted inhale
feature point coordinates. The average of the Euclidedardis between the coordinates
of each predicted and expert identified inhale feature pea# used as an error metric to
guantify registration accuracy for each dataset.

Since in reality we wish to replace a single GD registratiom by a single SA regis-
tration run it is important that the method of choice givesistently good warp estimates
with as little variance as possible. To empirically demaoatst the estimate variance as-
sociated with both SA methods, each CT dataset registratzsrepeated ten times. For
comparison each dataset was also registered using GD. [Etehten GD repetitions was
initialized with a small random independently generatedpwdach SA registration run
was completed in approximately 5 to 8 mins on a moderate PAimgrC++ code; in con-
trast, each successful GD registration required about 30 tmins. Fig. 3.9 summarizes
statistics of the resulting feature point error metric fbt@n registration warp estimates

using IS-SA and US-SA for all 8 datasets. In general IS-SAilted in better accuracy
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Figure 3.8: Comparison of the speed and accuracy of IS-Sir(oéched) and US-SA (blue/plain) for reg-
istration of CT Lung data. The optimal step-size parametenvas empirically chosen to con-
sistently produce warp estimates closest to the pseudmdrtyuth warp in an RMSE sense.
Fig. 3.8(a) shows that, = 1 was the best value for both methods. The line at the centexalf e
box-plot is the median RMS error, while top and bottom edge§aand25 percent quantiles.
Outliers are represented by)(for IS-SA and §) for US-SA. Fig. 3.8(b) shows how the speed
and accuracy of the best IS-SA and US-SA schemgs= 1 and sample-size- 1%) compare
with those using GD (sample-size 100%) on average. Dotted lines atel standard deviation
plots.
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than US-SA and showed a reduction in estimate variance.
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Figure 3.9: Comparison of the accuracy and variation inn&di|S-SA (red/notched) versus US-SA
(blue/plain) registration using expert identified featpants for CT inhale-exhale lung data.
The line at the center of each box-plot is the median errorimethile top and bottom edges
are25 and75 percent quantiles. Outliers are representeddydr 1S-SA and ¢) for US-SA.
Dataset 5 was used in the training step.

The average Euclidian distance between the expert idehékbkale and inhale feature
points can be used as some measure of the severity of thed ohefiormation. Table 3.1
indicates that for datasets with larger deformations @1, 2 and 3) IS-SA showed
a marked improvement in accuracy over US-SA. For datasetssmaller deformations
(datasets 6, 7 and 8) both methods performed comparably848A doing only slightly
better than US-SA. The datasets are presented in order@asag initial deformation for
ease of comparison. For most datasets IS-SA showed acotwagyarable to that using
GD. Empirically, for datasets with larger deformations, 8&thods appeared to be less
susceptible to local minima than GD. For datasets 1, 2 ands? rapeated GD registration
trials got stuck in local minima and terminated after 5 to hsniThese GD registrations

resulted in poor inhale feature point predictions and weseaitded as unsuccessful. In

particular no GD registration run was successful for dasa8eand 3, while only one run
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managed to escape local minima for dataset 1.

Results in Table 3.1 indicate that on average GD registratezs more accurate than SA
registration for datasets 1, 4, 5 and 8. The accuracy of th&&#®d registration schemes
could have been improved by increasing the sample-3$iZ¢ (sed in the training step to

obtain registration warp estimates that fit the pseudo gtdaurth warp more closely.

Avg. CT Dataset Number
Error

mm) |1 |2 |3 |4 |5 |e |7 |8

Initial | 15.19 14.53 13.31] 11.74 9.13| 8.62| 7.77 | 6.89
Final
US-SA | 4.64| 7.52| 3.40 || 3.06 | 4.29 | 1.92| 1.76 | 3.95
IS-SA | 3.31|6.41| 297 3.05| 3.84| 1.83| 1.66 | 3.89
GD 3.14 | - - 2.15| 3.29 | 1.95| 2.12 | 3.63

Table 3.1: Comparsion of the average Euclidian distanae & inhale feature points predicted using US-
SA, IS-SA and GD.

3.7 Discussion and Conclusion

We have developed and validated an importance samplingl lsé@ehastic approxima-
tion (1S-SA) approach to accelerate nonrigid image regfigtn. We leveraged the signifi-
cant influence of image edges on gradients of intensityebsseilarity metrics to design
an adaptive non-uniform sampling distribution that eneges sampling from these re-
gions. Results for both synthetic simulations and real @Qifldata show that registration
using IS-SA can yield better speed and accuracy than SA sshdmat use uniform sam-
pling (i.e., US-SA). In particular, Fig. 3.7 shows that thember of samples required to
attain a particular registration accuracy was halved bygi$-SA. For a fixed sample-size
in Fig. 3.8(b) IS-SA was more than 2 times faster than US-SAwarage.

The use of SA methods in practical applications can be hettey their dependence on

the step-size parameter. To effectively apply these mettmgdopulations of real data, we
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introduced a training strategy to empirically estimateasomable value for this step-size
parameter in the absence of ground-truth. The training atatises only a single randomly
chosen dataset from the target population and its correspgisuccessful’ deterministic
GD registration warp estimate. This approach should beipedevhen several scans from
the same protocol need to be registered. Finding automatanmeter selection methods
for a single image pair is a challenging open problem.

Though we have demonstrated the efficacy of IS-SA only witspBre warps, our
framework is mostly independent of the warp model. Spedifiéar more global warps
(such as Thin-plate Splines) where each warp parametendspn a larger number of
image voxels, we expect to see more marked improvementgistr&ion performance
using IS-SA.

The data used here to demonstrate improvements in regstraing IS-SA had few
or sparse edges. In a random subsample drawn using a unifstmbwtion, the fraction
of voxels that lie on an image edge will on average equal theifsn of total image voxels
that belong to edges. Thus as the percentage of edges iesrgmsbenefit of using an
edge-based importance sampling distribution will be d@iut=ig. 3.10 shows the sampling
distribution for a dataset with a large number of edges, foictvboth IS-SA and US-SA
gave comparable registration speeds. In such cases it ntagniedicial for IS-SA to use a
more stringent criterion to retain fewer edges in the samgdiistribution, however, more
empirical experiments will be needed to quantify the appnae percentage of edges that
need to be retained. Further, an edge-based samplinggstragey not be the best choice
for registration when one image has significant stronglyateated structures absent from
the other image(s). Finally, we note that low discrepan@usaces were used in [69]
to improve the performance of uniform sampling based regisin by utilizing Highly

Uniform Point-sets (HUPS). A similar strategy, i.e. trasfing such HUPS to obtain
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samples that follow the target sampling distribution im§3.may further augment the

performance of importance sampling based registration.

Figure 3.10: Sampling distribution for a high resolutioaibrvolume with dense edges.



CHAPTER 4

Functional M agnetic Resonance I maging

This chapter briefly reviews the principles, acquision pecots and challenges of func-
tional magnetic resonance imaging (fMRI), an increasimglgular modality used to non-
invasively study brain function. The prevalence of hydrogeclei in the human body is
exploited by Magnetic Resonance Imaging (MRI) to non-inxely obtain images of the
spatial distribution of different tissues. MRI is based ba huclear magnetic resonance
properties of nuclei having an odd number of neutrons arutfions (such as Hydrogen
LH), which have an associated nuclear spin and magnetic mor&awh tissue type has
a characteristic concentration of hydrogen nuclei and eesponding bulk magnetic mo-
ment per unit volume, called ‘magnetization’; in the abseotan external magnetic field
this net magnetization is zero. However, when placed inttioeg static magnetic fiel&,
of an MRI scanner, the individual magnetic moments aligmibelves either parallel (low
energy state) to the external magnetic field or anti-pdr@ligh energy state) to it. The
number of magnetic moments in the low energy state is alwlaystly greater than those
in the high energy state, resulting in a net magnetizatifgnn the direction ofB,. The
magnitude ofl/, is a function of the proton density of the tissue typethe magnitude of
By and the absolute temperatuifra.e. M, po%.

To obtain contrast images of various tissues in the badyis tipped away from its

51
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equilibrium state using an RF pulse of field stren@thapplied perpendicular to the direc-
tion of By. The angle by which\/ is tipped away fromB, depends on the strength Bf

and is called the flip angle. In the absence of extraneous fields, such a tipped magnetiza
tion will precess about the static field at the Larmor frequegiven byw, = v By, where

the gyromagnetic constant ~ 2.68 x 10® rad/s/Tesla for Hydrogen. This precessing
magnetization has a longitudinal componghftalong the direction o3, and a transverse
componentl/,, in the plane perpendicular 8.

Owing to thermal energy interactions bff protons with the lattice of neighboring
atoms, the longitudinal magnetization, exponentially grows back to its equilibrium state
M, over time. This regrowth is characterized by a ‘spin-lattielaxation’ time constant
T1. In addition toB,, spins experience variations in local fields due to the méagfields
of their neighbors. Thus the local precession frequencay, \causing the individual
spins to fan out. This fanning out is commonly called ‘depigisand over time results
in an exponential decay in the transverse magnetization This exponential decay is
characterized by the ‘spin-spin relaxation’ time constietTypical T1 and T2 values for

some tissues [30] are given in table 4.1. MRI uses differeivcd 1 and T2 values for the

Tissue Tlms| T2ms
gray matter (GM) 950 100
white matter (WM) 600 80
cerebrospinal fluid (CSF) 4500 | 2200
muscle 900 50

fat 250 60
blood 1200 | 100-200

Table 4.1: Typical T1 and T2 relaxation time constants,asdpced from [30].

various tissue types to create tissue contrast images, plogimg various timing and RF
excitation strategies.
An additional dephasing of the transverse magnetizationp otaur due to external

magnetic inhomogeneities. This reduction in the inifiaJ, magnitude is characterized
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by a different time constant T2such thatrr = 5 + = where T2 accounts for the
effect of external field inhomogeneities.

While MRI can be used effectively to create T1 or T2 weightaedges of spatial distri-
bution of different tissue in the body, the very abundanceydrogen in water that make
this possible precludes the use of MRI to examine the sulitets of brain function. To
study brain activity, MRI should be able to detect direceet$ of neural activity or indi-
rect variations in metabolic activity due to brain functidiunctional MRI (fMRI) satisfies
the later condition, in that it can identify changes in blaxggenation levels that depend

on the energy requirements of active brain cells, i.e., 10 B effect.

4.1 BOLD Effect

Neuronal membrane potentials required for signaling asplareding to various stimuli
need energy for their maintenance and restoration. Simce Hre few energy storage sites
in the brain, this energy has to be supplied in the form of gdecand oxygen by blood
flow to the brain. Oxygen binds to hemoglobin molecules inktw®d stream, which in
turn swap it for carbon dioxide in capillaries. fMRI studiegto discern brain activity by
capturing changes in blood oxygenation levels in the brarmetated to external stimuli.

In 1938 Linus Pauling and Charles Coryell discovered thaigerated hemoglobin
(Hb) has no unpaired electrons and hence no magnetizatekinmit diamagnetic; how-
ever deoxygenated hemoglobin (dHb) is paramagnetic (ias,unpaired electrons and
a considerable net magnetic moment) [35]. This Blood Oxggien Level Dependant
(BOLD) change in the magnetic properties of hemoglobin vasw to translate into MR
signal changes by Thulborn et al. [71].

The paramagnetic nature of dHb implies that there is higlaagbus magnetic suscep-

tibility in the vicinity of deoxygenated blood; causing adar dephasing of the transverse
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magnetization/,,, due to T2 decay leading to MR signal loss. However when blood is
oxygenated the same anatomical location will have a largeisinal since Hb is diamag-
netic and results in a reduction in external field inhomoggnd&hulborn et al. demon-
strated that this BOLD effect in the MR signal increases whithsquare of the strength of
the static magnetic fields,.

Blood consists of two main components viz. plasma and reddotells (RBCs). The
fraction of whole blood volume that is taken up by RBCs isexlthe hematocrit (Hct).
The magnetic susceptibility of the entire blood systesg.q for a fractional oxygenation

of RBCsY, can be expressed as [30];

Xblood = HCt(YXoxy + (1 - Y)Xdeoxy) + (1 - HCt)XpIasma

where xoxy, Xdeoxy @aNd xpasma@re the magnetic susceptibilities of oxygenated RBCs, de-
oxygenated RBCs and plasma respectively. Thus a changé the oxygenation level

will affect the susceptibility of blood by

AXblood = _AY(Xdeoxy — Xoxy)HCt;

wherexgeoxy — Xoxy = 47 x 0.18 ppm per unit Hct, assuming that oxygenation of plasma
does not affect its susceptibility. Finally, for a givén the changelY can be expressed

in terms of the relative change in blood flewand in the metabolic raté — 1 as,

140-8

AY = 1-Y).
1+ ( )

If the change in metabolic activity is negligiblé,~ 1 andAY = %(1 —Y). However
in some cases8 may be large enough to mask the effect of change in blooddlow

fMRI is based on fluctuations iRp0es. Changes in the oxygenation lev&l” due to
brain activity are manifested as variations the i ®2blood, resulting in differences in

MR signal. For instance, in a finger tapping experiment fMiBhal would increase due to
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an increase in blood flow to certain regions of the brain. lrately the metabolic activity
in these areas does not change significantly, fiesy 1 ensuring thatAY is dominated
by . As a result the blood has higher oxygen content leading tecedse in blood

susceptibility and increase in MR signal.

4.2 Echo Planar Imaging

Commonly used gradient-echo pulse sequences can in thearydal to record strong
BOLD signal in brain regions such as the visual or motor cortéowever each gradient-
echo pulse sequence sequentially samples k-space linegyyricreasing acquisition time.
This makes these methods too slow to capture smaller BOLDasis that are character-
istic of subtle behavioral or though related processes.

Echo Planar Imaging (EPI) is a fast image acquisition pmtdicat traverses all k-
space, within a 2D slice, after a single excitation pulsas Téduction in acquisition time
allows EPI to achieve the higher temporal resolution resgliio capture fleeting BOLD
effects while allowing sufficient time for the BOLD contrast develop. However the
increase in temporal resolution is offset by a reductionpatisl resolution. EPI pulse
sequences are based on the same echo-forming mechanisim spadecho or gradient-
echo for ordinary MRI. Fig. 4.1 shows a generic EPI pulse sage and the resulting
k-space traversal for a thin 2D slice, adapted from bitc.lemery.edu. For this pulse
sequence, the 2D slice is excited using slice-selectiodigma G and the entire k-space
is traversed in a zig-zag manner. Eatlyradient cycle in the frequency encode direction
Gt acquires one line alongKEvery blip in the phase encode directiop.@dvances the
k-space location in [Kto the beginning of the next line to be acquired in Khough each
gradient cycle in the frequency encode directigat@s it own echo, the overall echo time

TE is adjusted to coincide with the primary and strongesbetihe center of k-space with
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Kx = Ky = 0. This is because the net reduction in the MR signal for theesithage is
dependant on the signal loss incurred at the center of kespéaving acquired one slice,
the slice-select gradients(3s adjusted and the entire pulse sequence in repeated te exci

and acquire the next slice.
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(a) Generic EPI pulse sequence. (b) EPI K-space traversal.

Figure 4.1: A generic Echo Planar Imaging pulse sequencéhencorresponding k-space traversal, repro-
duced from bitc.bme.emory.edu.

Gradient-echo recalled EPI is very sensitive to local vemes in T2. As image con-
trast due to the BOLD effect stems from small field inhomogesse this EPI pulse se-
guence is commonly used to acquired fMRI data. Further, @waglity can be improved
by using smaller flip angles to reduce scan times. While spim recalled EPI pulse
sequences are more susceptible to inhomogeneities duedd bhpillaries, they display
reduced overall sensitivity to field inhomogeneities. Arpimmvement in the sensitivity
of these pulse sequences to the BOLD effect can be achievedibg an asymmetric
spin-echo [18].

The main objective of EPI is to cover k-space quickly. It hasi shown that a spi-
ral k-space trajectory results in fast scanning technitheggproduce comparatively higher
BOLD signal to noise ratios (SNR). However the k-space det@aequired at non-uniform
intervals and possibly non-uniform distributions. Henpea k-space data have to be re-

gridded for use with conventional FFT reconstruction mdgd\lternatively, nonuniform
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FFT-based gridding can be used to reconstruct the image43R0

4.3 Artifactsin fMRI

fMRI experiments measure changes in the magnetizationaih lliissue via current
induced in a detector coil in the MR scanner. Thus the recbgieantity is a mixture
of relevant MR signal and noise introduced due to, amongrstlieermal interactions in
the subject. Images reconstructed from this noisy k-spate will inevitably have an
associated noise component. Raw signal-to-noise-rabiiR{Ss the ratio of the mean
intensity of the image over a region containing MR signasi@le the brain) over the noise
standard deviation, computed over a region without any MjRali(outside the brain). For
MR datasets a more cogent measure is the contrast-to-ratiea-(CNR). Contrast in an
MR image refers to the physical properties to which it is gems(e.g., T1, T2) [35]. The
CNR is a measure of how the difference in the intensities abua tissues compares to
the noise in their measurements. However, the most impont@asure for fMRI is the
functional signal-to-noise ration (fSNR) which is the cadif the magnitude of the change
in signal intensity at two distinct states of a brain regiant{/e versus inactive) and the
associated noise.

At a given field strength the amount of magnetization deteesithe level of MR sig-
nal, whereas the noise associated variation in fMRI dataik bpatial and temporal in
character. Any spatial variability in fMRI data not corresgling to image contrast due
to intrinsic tissue properties (such as T1, T2 etc.) and ampbral fluctuations along the
time series not correlated to the stimulus of interest @&&d as noise.

The most common and prevalent source of noise in MRI is therthkfluctuations of
electrolytes in the subject or body being scanned [55]. TiH@smal noise increases with

body temperature. Collisions between free electrons amtisin the electrical compo-
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nents of the MR receiver are another (smaller) source ofrthenoise. Receiver ther-
mal noise increases with system temperature. Apart frony badsystem) temperature,
thermal noise is linearly proportional to the strength of #tatic magnetic field,. As
discussed in [5], in MR magnitude images, thermal noiselayspa Gaussian distribution
inside the brain and a Rayleigh distribution outside it.

Imperfections inB, are another source of artifacts that can lead to geomestortions
and signal variation in fMRI data. Static field inhomogerssit i.e., deviations in the
actual strength oB3, from its desired theoretical value at different spatial rclmates,
result in unwanted variations in voxel spin frequencieshasé spatial locations. Large
changes in spin frequencies in k-space result in inaccs@déal displacements of the
voxel, while smallerB, inhomogeneities are embodied as loss of signal cohereree du
to extraneous T2effects. Further fMRI artifacts are introduced by nonlinias in the
gradient fields. As x and y-gradients are used to controldcsitrajectories, irregularities
in these gradients skew the path traveled through k-spateducing shear in the fMRI
data. Similarly, discrepancies in the slice select or digrat will degrade slice thickness
accuracy and signal strength.

Thermal noise and image distortions due to field inhomogseare evident in both
animate and inanimate subjects. However, the BOLD effeatistl by fMRI data, is a
combination of the brain’s response to a variety of intenand extrinsic stimuli, vol-
untary and involuntary muscle activity and other metabadtvity driven chemical reac-
tions. These factors result in fMRI signal being plagued bysgiological noise and motion
related artifacts.

Motion is a prominent source of noise in active fMRI subjediairing the course of
fMRI experiments subjects may voluntarily move due to fagigor may speak, swallow

etc. Involuntary movements due to periodic activity sucl@athing or the cardiac cy-
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cle also cause motion related artifacts. As the subjectsl meoves with respect to the
scanner the MR signal at a fixed voxel coordinate will varyisTéffect is most evident
at head boundaries, where a voxel that corresponded pradattyi to CSF in one scan
may depict grey matter in another scan along the time sefib variability at a given
coordinate location along the time series confounds $talsanalyses of fMRI data used
to study brain function. In many instances head movememhalsand can be corrected
retrospectively using registration algorithms. Howevesome cases head motion can be
significant enough to render the fMRI data unusable.

Further, head motion may cause some magnetic spins to beiteebat irregular time
intervals. Voxels excited prematurely do not get sufficiiamie to relax to their equilib-
rium states resulting in signal loss, while others are atidw longer time to regain their
longitudinal magnetization resulting in a stimulus-indedent increase in intensity. This
effect results in spin-history or spin-saturation arti$aaf the same order of magnitude as
the BOLD effect. These spin saruration artifacts reducefSR and may result in an
incorrect activation analysis. We address this effect infiér 5.

Lastly, subject responses to various impertinent stinsulth as scanner noise or unre-
lated memory and thought related stimuli, resultin incidéneural activity. Other sources
of variability include changes in the attention span angease time of the subject over

the duration of the scan.
4.4 Statistical Analysis

FMRI experiments are designed carefully to increase thé&SIypically, experiments
use an epoch based scheme. Each epoch consists of an ‘opédiind, when the external
stimulus is presented; followed by an ‘off’ period during iain the stimulus is absent.

The duration of the on period is designed to be sufficient lmwathe BOLD contrast to
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develop while that of the off period is long enough to allowisubside. This on-off cycle
is repeated a fixed number of times to improve the fSNR. Tocedhe total scan time
during which the subject is assumed to remain still and a#erthe number of repetitions
is kept at a minimum. This series of repeated on and off scanstitutes an fMRI time

series.

Having processed the time series to remove some motion dddrffeemogeneity re-
lated noise, it remains to be determined whether the obdelifferences in voxel intensity
along the time series are statistically significant and caatlributed to stimulus related
BOLD contrast. Statistical analysis of fMRI data is aimediscriminating between the
research hypothesis and the null hypothesis at each vaaidém. The null hypothesis as-
sumes that the external stimulus being examined has nd efiebe voxel intensity while
the research hypothesis postulates that intensity vansire correlated to the presence or
absence of external stimuli. Statistical tests are dedigmevaluate the probability, called
a p-value, that intensity differences at each image lonaitxur by pure chance, i.e., can
be explained under the null hypothesis. Only voxels withapisgs below a user defined
alpha-threshold are marked as significant or active.

The probability of a false positive or labeling a voxel aetiwhen in reality it does
not respond to the stimulus, is given by the alpha-thresh®ichilarly accepting the null
hypothesis at voxels that are actually active results isefalegatives. Clearly statistical
tests that minimize the number of false positives while@asing the probability of a true
positive (i.e., 1-false negative) are desirable.

The simplest statistical tests for epoch based fMRI paradigxamine the difference
between the means of voxel intensities at the on and offstH#téhe experiments. The

Student’s t statistic, given by (4.1), is commonly used tewéhte the effect of intrinsic
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stimulus independent intensity variation along the tinmeese
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where,n, andn, are the number of on and off time series volumes with sampbnraed
sample varianc&on, 6 ¢, and Xof, 6%, respectively.

When the activation pattern is expected to have a specifio,fesuch as when prior
information about the haemodynamic response is availablegrrelation test between
the observed and expected activation patterns can be ugbdr €atistical tests include
the Fourier transform to identify voxels with componentghe frequency domain that
correspond to the stimulus frequency, use of the GeneradrtiModel (GLM) [26, 29],
Principal Component Analysis and clustering techniqudse fesult of combining such
statistical tests at all voxel locations is a statisticabpaetric map (SPM) of brain activity.
Without any priors on the anatomical location of active Jsxthe entire SPM is assessed
for significant effects related to the BOLD contrast. Thisessment of the SPM also
accounts for the multiplicity that arises by testing all gbbocations simultaneously.

All the methods mentioned above assume that fMRI data amaalty distributed and
are hence parametric. Randomization or permutation testsduced by Holmes et al.
[33], present a simple non-parametric alternative that ltamdle multiple comparisons
[54]. If the ‘on’ and ‘off’ states of an fMRI time series arestited as condition labels, then
under the null hypothesis randomly permuting these labeds the time series volumes
should not significantly affect our test statistic (e.gudgnt’s t test). In this sense the
acquired time series data are fixed while the ‘on’ and ‘offhdiion labels are assumed
to be random realizations. Hence by randomly permutingetivesdition labels we can
obtain a non-parametric distribution of the test-statjsgiiven the acquired time series.

The value of the test-statistic corresponding to the aetrahgement of the ‘on’ and ‘off’
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labels is called the observed statistig,s. The uncorrected p-value is given by the fraction
of values in the test-statistic distribution that are gee#tanT,,,s A thorough discussion
of permutation tests with applications to fMRI data anayss been presented by Nichols
et al. [54].

Lastly we note that as the acquisition and analysis of fMR&daprove, it has become
possible to analyze variations in BOLD contrast followingiragle stimulus presentation.
Event-related fMRI experiments typically present differevents at irregular intervals in
arandom order. These experiments measure transient chiartgain activity in response
to the discrete stimuli, as opposed to the steady-state hrivity examined by epoch-
based paradigms. Statistical analysis methods for eetstied fMRI experiments are
different from those discussed above, examples includedhal t-test and an analysis of
the variance of voxel intensities described in [8].

In the following Chapter we focus on the effect of head motiarspin magnetization,
i.e., spin saturation artifacts. We describe spin satmartifacts using mathematical ex-
pressions and develop a correction scheme, called WASS8atiom, starting from Bloch
equations. An algorithm to implement WASS correction usiice-to-volume (SV) regis-
tration is described. Lastly statistical analyses for timodated fMRI time-series before
and after SV motion and WASS correction illustrate the rdlhese methods in improving

time-series activation detection.



CHAPTERS

fMRI Time-series Spin Saturation Artifact Correction ?

Functional MRI (fMRI) is a non-invasive tool for imaging lmafunction. The func-
tionality of the brain relative to a particular stimulus issassed by measuring stimulus
triggered blood oxygenation level dependent (BOLD) signt&nsity changes along a se-
ries of MR images acquired for the duration of the activastudy, i.e., an fMRI time
series. However, due to subject head motion, voxel intexssmay be altered causing sig-
nal intensity changes dependent on positions of the heddrespect to the scanner [28].
Though head restraints may reduce motion in some fMRI tabks;, use is impractical
for patient studies in which discomfort may cause adveraetiens. Since the activa-
tion hypotheses for various brain regions are tested usatigtical measures [25, 27, 54]
to identify significant fMRI signal changes, this analysisgreatly skewed due to head
motion during scans.

One manifestation of head motion is its confounding effectjgin magnetization, lead-
ing to an increase in signal modulation that is not relateiti¢odBOLD effect. Most fMRI
time series are acquired by a multi-slice scheme usingesisight Echo Planar Imaging
(EPI). Fast acquisition of an EPI slice makes it possibleati®lg neglect head motion

during a single slice excitation. However, due to changelead position during the

1This chapter is based on material from [3].
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multi-slice acquisition, slices in the EPI volumes no longamain parallel to each other.
Thus some nuclear spins in overlapping slice areas areciteebbefore being allowed suf-
ficient time to recover to their equilibrium states. Since &#ta are acquired at low spatial
resolution, each EPI voxel can be approximated by a mixtu@&ray Matter (GM), White
Matter (WM) and Cerebrospinal Fluid (CSF) isochromatsidPahead motion may result
in a loss of equilibrium magnetization states for some oisalthromats contributing to a
particular EPI voxel, due to excitation at irregular timéehvals. Thus these spin satura-
tion artifacts, also called spin history artifacts [28,52jpke signal intensities a function
of the subjects’ movement history and adversely affecistiedl analyses of fMRI data.

The spin saturation artifact at a particular single tissoeeVis a function of head po-
sition relative to B, repetition time (TR), echo time (TE), the effective flip &@nd
T1-dependent signal amplitude. Although recognized asenpial problem in fMRI ac-
tivation analyses [28], to our knowledge, spin saturatidificets have been handled using
only volume-to-volume registration estimates. Volumeadume registration schemes as-
sume that all slices in an acquired volume are aligned gartalleach other and may not
provide a reasonable approximation of inter-slice headanofThis precludes the use of
such volumetric motion estimates to assess and correctsgpimation artifacts induced
by relative changes in slice positions in the same EPI volumMeresan et al. [52] pro-
posed a spin correction scheme that is applied prior to masdimation. However, their
treatment was restricted to the correction of spin satmagffects arising due to head
translation between volume acquisitions only.

We devise a weighted average spin saturation (WASS) carestheme that uses
slice-to-volume (SV) registration motion estimates. Theection can handle full rigid
motion and tries to account for the mélange of differenfrbtssue isochromats at each

EPI voxel location, in removing spin saturation artifac&V rigid motion estimates are
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obtained by mapping each EPI slice onto a higher resolutiatoanical volume acquired
from the same subject. Since anatomical data voxels arelsdrfipely enough to be
approximated as tissue isochromats, they can be used magstunknown fractions of
GM, WM and CSF contributing to each mapped EPI voxel. SV mogistimates and data
acquisition parameters (TR, TE, etc.) can be used to idewmbikels with spin saturation
artifacts. To alleviate partial volume effects, the WAS$rection factor for each affected
EPI voxel is approximated by a weighted average of the choretactors of its constituent
brain tissue isochromats as identified by its mapping oré@ttatomical volume.
Sections 5.1 and 5.2 describe the spin saturation effentusathematical expressions
and develop the WASS correction to compensate EPI voxelsisgcpin saturation ar-
tifacts. Two realistic fMRI time series with known rigid moh and corresponding spin
saturation artifacts were simulated to evaluate the WASf&ction method. Ranges of the
induced 3D rotational head motion wet&° and+2°, respectively. Activation was intro-
duced in manually selected brain regions assuming an e@sgdlexperimental paradigm
with a box-car stimulation sequence. WASS correction uSikgmotion estimates was
used to correct these simulated data for spin saturatiatecthoxel intensity variation.
Receiver operating characteristic (ROC) curves were usedrhpare activation detection
for both simulated times series before and after motion aA&®\/correction with that ob-
tained from artifact-free data. Results indicate thaiosgiective WASS correction based

on SV motion estimates may have a significant role in imprgctivation detection.

5.1 Spin saturation artifactsin tissue isochromats

To acquire a multi-slice fMRI time series, longitudinal nm&gizations of spins in slice-
like regions of the subject’s brain are selectively excisad flipped onto the transverse

plane using amv-angle RF pulse. The intensity of a tissue isochromat at engooor-
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dinate in an MR volume is proportional to the effective flipggnand the magnetization
component in the XY plane, at that location [32]. For now weu® on the effect of pa-
tient head motion on the intensity of a single tissue isoctab Letm?(v) be the initial
magnetization (at rest) of a single tissue isochromat atios7 € R?3, characterized by
time constants T1 and T2. Let_,(%) be the longitudinal magnetization just before ttre
RF pulse with effective flip angle;(v). Imperfections in the slice excitation profile and
B, inhomogeneities may make the effective flip angle vary sfigtover the slice. The

longitudinal magnetizatiom;fi(ﬁ), just after theth excitation pulse is given by

(5.1) m7,(0) = m_,(¥) cos(a,(7)),

2,0

wherem_ (V) = ml(v). Lett;,i = 1,2,... be the time interval between thh and

i+ 1th consecutive excitation of the tissue isochromat, therdhgitudinal magnetization

between excitations recovers according to;

M (0) = mi (@) +md(W)(1—e 1)
(5.2) = m_;(¥) cos(a;(¥))e” 1T +ml(¥)(1 — e_%).
The brain volume of interest is repeatedly excited M timdsiteeconducting the activation
study so as to force all magnetization vectors to achieva@rhierent steady state [30]. In
such a state, if each tissue isochromat is excited every E&hss mn_,(v) = m$¥v), Vi >

M. This steady state magnetizatiof*(v) can be expressed in terms of the initial magne-

tization using (5.2),

M0 (0) = mZ, (9) cos(an(9)e™ T8 +mO(T)(1 — e 11)

(5.3) =>m(0) = ml(0)f0) wherefy(v) =
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Hence in the absence of head motion the artifact free irtieigic is proportional to the

— —

transverse magnetizatiom; (v') = mS¥v) sin(a(7)),

1—e Tt
(54)  luneld) o mI()e” 5 = m2(@) T sin(a(®)e .
1 — cos(a(¥))e™ 71

In the presence of head motion between slice acquisitidAkskces in a volume are not
parallel to each other. Hence the time difference betweerstitcessive excitations of
some spins cannot be maintained at TR ms, causing the irerdtsteady state established
by (5.3) to break down. Thus (5.4) is rarely an accurate sgp&tion of isochromatic
tissue intensities in an fMRI study. In particular, the mg#ty of a given tissue isochromat
will drop if less than TR ms have elapsed since its last eftoitacausing the longitudinal
magnetization at that location to be re-excited beforexmetato m$%v). The effect ofn
irregularly spaced excitations on_,, (¢) can be found by repeatedly using egs. (5.1) and

(5.2). Specifically it can be shown that
(5.5) m_,(0) = m3(0) fu(0);

where f,,(¢), a function of tissue T1 the effective flip angles and presibead positions

viat;, i = 1,2,..n — 1, is recursively given by
(5.6) fis1(8) = Fi(®) cos(oa(@))e™ + (1= e77), i =1,2,...

with f1(7) = (1 — e~ 711)/(1 — cos(a(%))e~ 71 ), assuming that the isochromat was ini-
tially in its incoherent steady sate given by (5.3). The esponding observed intensity
affected by the spin saturation phenomenkp,s(v, n), is proportional to the transverse
magnetizationn,,, , (0);

TE 0 TE

— —

(5.7) Tobws(U, 1) O Mgy (V)€™ T2 = m(0) f,, (V) sin( oy, (V))e™ 2.

The recursive (5.6) is valid only for tissue isochromatsroal voxels. However, to gain

temporal resolution, fMRI scans typically have relatividyge voxel sizes. Thus the in-
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tensity of each fMRI voxel is proportional to the averagensgerse magnetization of a

mixture of GM, WM and CSF isochromats.

5.2 Spin saturation artifact correction for EPI voxels

Spin saturation artifacts are a direct consequence of hedidmand voxels affected
by them can be identified using head trajectory estimatex] geometry and fMRI time
series attributes. As noted earlier EPI voxels have lowiajyasolution. Thus the intensity
of a single EPI voxel in an fMRI time series reflects the avergnsverse magnetization
over a small brain volume made up of a mélange of differeaititissue. Consequently the
effective time constants T4 and T2¢"' of the EPI voxel cannot be estimated satisfactorily
using a single brain tissue.

Consider the acquisition of an fMRI time series using EPlhwipetition time TR,
echo time TE andw-angle RF pulses. Let the time series confidimolumes withS slices
in each volume. Letey = (v —1)S+s,s =1,2,...5andv = 1,2,...V index the total
number of slices in the EPI time series by acquisition orderthe presence of subject
head motion, the observed intensity of an EPI voxel at coatédii € R? in slice nep of

the time series is given by:

TE

(5.8)  Lobvs(U, Mepi) X M opi(U, Nepi) sin(a(w))e” T2 wherenep = 1,2,... V.S

zepil
m_ ol nepi) IS the longitudinal magnetization of the EPI voxel just brefthe excitation
pulse for thenepith slice of the time series. Due to subject head motion, sointleeaS
slices in each EPI volume may overlap. Consequently, spirevérlapping portions of
these slices will be excited at irregular time intervalsssag them to deviate from their
induced steady state. This transitory response of somernsagnetizations will result
in spin saturation, causing the longitudinal magnetizatiba given coordinate location

to vary across volumes. However, in the absence of subjetbmdhe magnetization
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vectors in the entire brain volume can be assumed to be indaurcéd incoherent steady

state. The intensity of an EPI voxel at locati@assuming no motion is given by:

TE

(5.9) Tue(T) 0 mSp(@) sin(a(@@) e~ 729,

wherem$%,;(i) is the incoherent steady state magnetization of the EPIlvéxe¢he ab-
sence of subject motion and signal noise this steady stajaetiaation at a given location
« will not change across the time series volumes due to spimatain.

The relation between the observed intensity of an EPI voxti and without spin

saturation artifacts is given by

mzfepi(ﬁ)

u, nepi) .

(5.10) Tirue() = Lopys(T, Nepi) ——
mz,epi(
Thus spin saturation artifacts can be detected and codieiftere can approximate the
ratiom;*sn(.)/m; ¢pi(-) at each EPI voxel location. Since such a spin saturatiorecton
mechanism will appropriately scale observed intensityesl,.s(.), it will be unable to
correct spin saturation at locations where the artifacvese enough to make the observed
intensity zero.

For brevity, we assume without deliberation, the existari@n SV registration scheme
that can obtain reasonably accurate head motion estimgtesglstering each EPI slice
onto a high resolution anatomical MR volume of the same suljg8]. Further these
motion estimates can be used to map every large EPI voxelahteneighborhood of
finer anatomical volume voxels. Specific details of such &teggion process are outlined
in Sec. 5.4.1.

Approximating the minute GM, WM and CSF isochromats undedyeach mapped

EPI voxel by theK -neighborhood of small anatomical volume voxels; we canresgpthe

longitudinal magnetization of the EPI voxel at coordindte R? as the average magneti-



70

zation over this neighborhood

— 1 = Ss — 1 SS (=
mgepi(u) ~ ? Z m(z)(vk); mz7epi(u) ~ ? m, (Uk:)
ﬁkGN(ﬁ) Hke]\f(ﬁ)
— 1 — —
(5.11) aNdm_ op(i7, nepi) ~ = > mo, (B, g < nepi
ﬁkEN(ﬁ)

Where N (i) denotes the neighborhood containiRgfiner voxels,m? .(u) is the initial

(at rest) magnetization of the EPI voxel;*,,(u) is its incoherent steady state magneti-

zation assuming no head motion amg (i, nepi) is the longitudinal magnetization just

before the excitation of thee,th EPI slice at time point The number of consecu-

Nepi®
tive excitationsn,, for an approximated isochromat &, is the number of times series
slices that were mapped on to that ‘isochromat’ up to tije The time between each of
thesen,. consecutive excitations is given by the time elapsed betilezexcitation of the
corresponding EPI slices.

We define unknown correction factof$?(«) and f,‘jveapi(ﬁ, nepi), along the lines of (5.3)

and (5.5), such that

(5'12) mifepi(ﬁ) £ m(z),epi(ﬁ) sﬁa(ﬁ) and m;epi(ﬁv nepi) £ mgepi(ﬁ) ,ﬁii(ﬁ).

Approximating the longitudinal magnetizations, ¢(.) above by the approximations in

(5.11) gives:
7 pway i m3* (V)
sV\;a<u) ~ s“?(u) e Z z _
TREN () ZﬁjeN(ﬁ) m(7;)
1] pwa (7 m_ o, (Uk)
(5.13) andfie (i) ~ fU(i) =Y ‘

Since the anatomical volume voxels are approximated as GMahd CSF isochromats,

we can use (5.3) and (5.5) to estimate the two correctionfsict

D) = Y e (i)

(g
T, EN (i) ﬁjEN(ﬁ)mz( 7)

fwa mg(ﬁk) R
(5.14) andfy (i) = ) sy )
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where the incoherent steady state factfitsare given by (5.3). The spin saturation de-
pendence Om?,i is captured by the factor§,, , given by the recursion in (5.6) using time
constants Tdy, Tlwm or Tlcseas appropriate.

As each anatomical volume voxel has the same size and tie magnetization of an
isochromat is proportional to its proton density the equilibrium magnetizatiom® can
be replaced by, in (5.14). Further as only relative proton density value&df, WM and
CSF up to a common factor are required, relative proton teag (dependent on tissue

water contentp, gu= 0.80,p9wm= 0.72 andp, cs¢ = 1.0 can be used, i.e.

SS g

fwa Po(Uk N
Wa(g) = Z o () (@)
T EN (i) > s,ena) Po(U))

(5.15) andf*2(@) = ) po(i) For (T1)

Tepi -

TreN () Zﬁjesz) po(¥;)

Finally using (5.10), (5.12) and (5.13),e can be approximated by

(5.16) jtrue(ﬁa nepi) = ObVS(ﬁv nepi) -

In summary, the estimatérue(ﬁ, nepi) Uses knowledge of time series acquisition parame-
ters (TR,«, .. .) and approximate tissue T1 apglvalues at each anatomical volume grid
location. The algorithm used to implement (5.15) and (5i4@escribed in Sec. 5.4.2. In
subsequent sections, for clarity, we call this approachgifed Average Spin Saturation

(WASS) correction.

5.3 fMRI Time-series Smulation

Two simulated time series were derived from a synthetic ngglolution T2-weighted
volume with1 x 1 x 1 mm?® voxels, downloaded from the International Consortium of
Brain Mapping (ICBM) [9]. Each voxel in this volume was assdrto be a GM, WM

or CSF isochromat with known T1 values of 833ms, 500ms, 255%espectively. Head
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motion was simulated by rotating the T2-weighted volumehire¢ dimensional space
prior to extracting each EPI slice, to form an fMRI volume.€eTtiead was assumed to be
moving in the scanner’s frame of reference while the coaidis at which the EPI slice
was imaged by the scanner were fixed. Practically obseread totations over successive
volumes in the time series maintain continuity with prewdwead positions. Hence, the
applied motion was designed to be smooth without being gexio

The range of motion in an fMRI time series varies with the lefecorporation from
a subject as well as the tasks being studied. Typically vetum registration motion
estimates of up tat1 mm translation and:1° rotations have been reported for normal
subjects [28]. In contrast, registration results for ardesgéject in the same study included
translations up t6 mm and rotations up to°6

Typically, fMRI tasks involving verbal responses (for egicture naming) may result
in larger head motion due to jaw and mouth movements. To astithe range of realistic
through plane motion in such verbal tasks, real time MRI socaare obtained from a
normal volunteer without head restraints using 2D turbafeetho (TFE) in a Philips 3T
System. The images were acquired while the subject washarngavords typically used
in language tasks for fMRI studies. A hundrédd x 108,10 mm thick sagittal brain
images were obtained with a dynamic scan time of 251 ms. Th&we range of inter-
slice motion was estimated by registering each image toriti@aliimage as a reference.
Registration results indicated rotational and transhationotion of up tot5.4 degrees and
+5.2 mm.

To consider the range of motion commonly used to evaluaté fidl studies [23,52]
two time series were simulated with5° and +2° degree rotational head motion. The
average magnitude of rotation between consecutive sliggisiions wag).25° and0.09°

respectively. Each simulated time series consisted of bA@mes with 14 slices in each



73

volume. Rotation angles describing head position aboutitte® coordinate axes between
volume acquisitions were obtained by drawing three set2dfiil random numbers from

a uniform distribution. To ensure smoothness, a cubic paieting polynomial was fit

to the sequence of random angles for each coordinate axis.ofiéntation of the head
during each intermediate EPI slice scan was obtained bylgagrthe polynomials at ap-
propriate time points. The time series parameters for bothlations were TR = 3000 ms
for each EPI volumey = 90° and an interleaved slice acquisition sequence. Time series
parameters and head trajectories constructed above degetitme time instances at which
every voxel in the T2 weighted MR volume was imaged by the searSpecifically each
EPI slice, with acquisition indexep = 1,2,...120 x 14, was acquired approximately
at timetnepi = nepi X 3000/14 ms. Spin saturation artifacts were introduced in the T2
volume by treating each high resolution T2 voxel as a WM, GMC&F isochromat and
using (5.4) and (5.7). The activation task was assumed todbeci design, alternating a
stimulus and a control cycle every 10 volumes. Activatedel®xere created by increas-
ing intensities in manually marked regions of the high re8oh T2 volume by 2% before
simulating motion and spin saturation artifacts. Care \a&sr to ensure that the activated
EPI voxels would contain mainly GM and some WM isochromats. 2 x 6 mm?® thick

EPI voxels acquired at time points,

., Were obtained by averaging voxel intensities in

the corresponding x 2 x 6 neighborhood of the T2 volume. The ground truth activation
map was obtained by downsampling the high resolution aativanap to the resolution
of the EPI volumes. To account for signal noise in MR magrétidages, Gaussian noise
(N(0,4)) and Rayleigh noises( = 2) were added to EPI voxels with non-zero and no

signal intensities, respectively [5, 55].
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5.4 Motion and Spin Saturation Artifact Correction

Motion correction approaches using volume-to-volumestegiion are not designed to
detect subject head motion between slice acquisitiongctyr Numerous fMRI analysis
techniques apply the same rigid transform to the whole vel{24, 75] allowing no inter-
slice motion. Further many use L2-metrics which have beenvaho result in spurious
motion estimates in the presence of activation [22, 23]c&spin saturation artifacts have
magnitudes comparable to activation [52], these methodsgiva erroneous motion es-
timates for spin saturation affected time series. In cahtitte Mutual Information (MI)
metric has been shown to be relatively unaffected by aatinaelated intensity fluctua-
tions [23]. Hence we obtain motion estimates using MapeSice\Volume (MSV) [38], an

MiI-based slice-to-volume registration algorithm briefgsdribed in the following section.

54.1 Map-Slice-to-Volume motion estimation and hypothesistesting

The MSV registration algorithm has been shown to be effedtivthe post process-
ing and analysis of human fMRI data [38]. The MSV algorithmdals 3D motion of
multi-slice EPI data by allowing each slice to have its owgidibody transform with
six degrees of freedom. Each rigid transform maps the EE% slh to a high resolution
T1 volume acquired in the same fMRI session. The vector ofl ngotion parameters
o = [ty t,.t., 0,,0,,0,] for EPI slice number.p, is obtained by maximizing a plug-
in approximation of Ml between the EPI slice and the T1 volunkeobability density
function estimates, needed to approximate MI, are compusaty histograms of voxel
intensities in the region of overlap between the EPI slicg Bh volume. This makes the
plug-in MI metric non-differentiable; consequently MSVessthe Nelder-Mead downhill
simplex optimizer [53].

Though we have restricted our motion estimates only to rigidsforms, changes in
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field inhomogeneity may result in related geometric distot of EPI data. In such cases,
the subsequent WASS correction is assumed to be appliedcaitgpensating the time
series for effects of field inhomogeneity [14,51, 60, 76]tefhatively, in some cases SV
registration can be adapted to estimate non-linear warggefumetric distortion correction
[39,43].

Hypothesis testing of each candidate time series after iy motion correction or
both motion and WASS correction (described in the followsegtion) was performed
using 2000 random permutation tests [54]. The test statisted was Student’s t test
givenin (4.1). Activation maps were obtained by comparimg ¢alculated p-values with
different alpha threshold values in the rangdff 10~*,1]. Finally, ROC curves were
generated by computing fractions of false positive and prastive counts relative to the

known manually introduced activation pattern.

5.4.2 Weighted average spin saturation correction

The WASS correction proceeds in a sequential manner, pimgeeach EPI slice in-
dexed according to acquisition order by the same proced8imilar to MSV, WASS
correction uses a high resolution T1 volume acquired duhegame fMRI session. Each
voxel in the T1 volume is treated as an approximate GM, WM oF @&®chromat with
corresponding approximate T1 apglvalues. As described by the flow chart in Fig 5.1,
a ‘correction factor’ value and a ‘time elapsed’ countergsariated with every T1 voxel.
Each EPI slice is mapped onto the T1 volume using the correpg MSV motion esti-
mates. This mapping is then used to track the time elapsed #ire previous excitation
of each T1 voxel location, in the ‘time elapsed’ counters.e T¢orrection factor’ val-
uesf,, (Ux),Ur € R for each T1 voxel are recursively updated by (5.6), usingtihee

elapsed’ counters and appropriate approximate T1 values.
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For a given EPI voxel in slicee, excited at time point,_,, the factorsji"ye"’r‘,i are com-

Nepit
puted using the updated ‘correction factofs’ and approximatg, values in its T1 neigh-
borhood using (5.15). Eachy, in the T1 neighborhood could have been updated a distinct
number of times. This number of updates depends on the nuohlad?| slices that were
mapped onto the T1 voxel location up to tirhg,. Since f*2 s independent of the time
between excitations; it can be computed straightforwanding (5.3) and (5.15). Lastly,
the EPI voxel intensity is corrected using (5.16). This psxxis sequentially repeated for
every EPI slice in the time series. The T1 volume is used oslg aneans of approxi-
mating the percentage contributions of GM, WM and CSF in égehvoxel. The WASS
correction does not use any intensity values from the higblogion T1 volume.

For synthetic data we have access to an anatomical volunietlagt same accurate
classification of GM, WM and CSF, as that used to induce spinragon artifacts. In
reality spin saturation artifacts can be modelled as effetthe premature excitation of
a collection of infinitesimally small isochromats in the imity of the EPI voxel. In the
real data case, due to the finite resolution of the anatomalame, there is an inherent
inaccuracy in the classification of GM, WM and CSF isochranalo account for this
error in classification in our WASS correction, a ‘blurre€BM T1 volume was used
as the anatomical volume. The blurred volume was creatediog & single ‘dominant’
tissue to classify non-overlapping groups of 3 voxels (Banm) along the z-axis. This
dominant single tissue classifier was obtained fralnkal x 3 mm? resolution T1 volume
downloaded from ICBM. The mis-classification was applietiy@iong the longitudinal
direction as spin saturation artifacts occur mainly due uta¥-plane motion [28]. In
contrast, the time series simulation process used a highutas volume { x 1 x 1 mm?)

for the tissue classification.
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Figure 5.1: Flowchart describing the implementation of V8A&rrection.
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No Correction| Artifact-free | Only Motion | Reduction in AUC
Data Correction due to Spin Sat
+5° 0.614 0.826 0.793 0.033 (18.4%)
+2° 0.763 0.868 0.856 0.012 (12.9%)

Table 5.1: Approximate AUC values quantifying the effecspfn saturation on activation detection. Cor-
responding ROC curves are shown in Fig. 5.2. The loss in AU@éxen ‘Artifact-free’ data and
‘Only Motion Correction’ can be attributed to spin satuoatartifacts alone. This loss is denoted
as a percentage of the improvementin AUC after ‘Only Motiar€ction’ in parenthesis.

5.5 Resultsusing Simulated Data

Two simulated fMRI time series with induced rotational headtion of +5° and+2°
and corresponding spin saturation artifacts were treatéaobserved’ time series data. For
reference, two time series free of the spin saturation effece also generated using the
same motion trajectories. These time series were correi®d known true motion to
establish artifact-free data. This ‘artifact-free’ datasatreated as the reference pseudo-
ground truth.

The effect of only spin saturation artifacts on activatietettion was evaluated by
correcting both ‘observed’ time series for motion only gsthe known true motion pa-
rameters. ROC curves following hypothesis testing are shawrig. 5.2. The degrading
effect of spin saturation artifacts on activation detattias quantified by computing ap-

proximate area under the curve (AUC) values for both ROCewrlisted in Table 5.1.

As expected, the effect of spin saturation reduced almogigstionately with reduction
in head motion. In particular the loss in AUC due to spin sation alone wa$.033 for
the simulated time series with5° head rotations an@.012 for the time series witht-2°
rotations. Activation maps showing the effect of spin sation artifacts on activation

detection for both simulated time series are shown in Fig. 5.
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Figure 5.2: Effect of simulated spin saturation artifaatsactivation detection for two time series with in-
duced head rotations of (b deg and (b}2 deg (max/min). Plots show ROC curves for simu-
lated data with motion and related spin saturation arsfémffowing ‘No Correction’ and ‘True
motion recovery’ only. ‘Artifact-free’ data ROC curves aneluded for comparison.

5.5.1 Effect of Inaccuraciesin T1 Values on WASS Correction

In reality, T1 values for GM, WM and CSF vary across the subpepulation and
are known only approximately. To study the effect of inaecigs in T1 values on our
spin saturation correction, three WASS corrections weréopeed on both ‘observed’
time series with (1) exact ICBM T1 values, dyl = 833ms, T{u = 500ms and Tdse
= 2569ms, (2) approximate (text-book) T1 values [30]g E 900ms, Tiyw = 600ms
and Tksr=4000ms, and (3) a single T1 value,ciy= 833ms. In each case, the average
percentage error in voxel intensities after WASS correctioth respect to artifact-free

intensities for each time series volume, was obtained éaxsl

(5 17) A % 1 N Itrue(ﬁi> - jtrue(%’)
. Vv(Jg. Y0 error= — — ’
o N Z Itrue(uz')

=1
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(b)

Figure 5.3: Activation maps (alpha = 0.002) for simulatedetiseries with (a)}-5° and (b)+2° motion su-
perimposed on the anatomical T1-weighted volume. Rows gfieizcolumn) manually applied
true activation patterns for two selected slices, corradp@ activation maps from (second col-
umn) artifact-free data and (third column) simulated tisegies with spin saturation after only
exact (true) motion correction.
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where N is the number of non-zero intensity voxels in theargif interest (ROI) for each
fMRI volume. ftrue(ﬁ) is the intensity at coordinate in the WASS corrected time series
and Iyye() is the corresponding known true intensity obtained fromettigact-free time
series.

As Tlcsr is significantly different from T&y and Tlyy, misclassifications of CSF
as GM or WM will contribute strongly to the error metric in {5). Since WASS using
a single T1 uses only &l in our comparison, inclusion of CSF in the ROI may bias
this error metric toward WASS using distinct dy, Tlwm and Tksr values. Hence,
to account for the prevalence of activation in GM, we restifie ROI in (5.17) to the
manually introduced activation pattern only.

The standard deviation (SD) and max/min of the avg. % intgresiror values are
listed in Table 5.2. These results indicate a reduction t@nsity errors following WASS
correction. Reduction in errors after WASS correction gaapproximate T1 values was
comparable to that using exact T1 values. Further, for ttgefa-5° motion WASS correc-
tion using approximate T1 values significantly outperfoditfeat using a single T1 value.
In contrast this improvement in performance was noticeabhgller for the time series

with +-2° motion.

No Spin Sat WASS Correction using -
Correction | Exact T1s| Approx Tls| Single (exact) T1
+5°
Max/Min | 5.37/0.29 | 1.02/0.06| 1.39/0.08 2.51/0.13
SD 1.20 0.19 0.29 0.52
+2¢
Max/Min | 2.31/0.09 | 0.55/0.03| 0.72/0.03 1.12/0.05
SD 0.50 0.11 0.15 0.22

Table 5.2: Comparison of Avg. % intensity errors followind@®86 correction using exact T1s, approximate
T1ls and a single (exact GM) T1 for simulated time series wifit and +2° rotational head
motion. Max/Min and standard deviation (SD) of Avg. % intiéyerrors computed using (5.17)
are tabulated. The ROI was restricted to manually addedadicth regions in each time series
volume.
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5.5.2 MSV-based WASS Correction Using Approximate T1 Values

The viability of WASS correction depends on its ability totkgtand the combined
effect of errors in inter-slice motion estimation, approate T1 values and approximate
relative proton densities. Motion estimates for both obsetime series with signal noise
and +5° and +2° rotational motion were obtained using the MSV algorithmteirsity
modulation due to simulated spin saturation artifacts @dsignificantly affect the accu-
racy of MSV. RMS errors between MSV motion estimates and tiewa true motion are

listed in Table 5.3.

Rotation RMSE (deg) Translation RMSE (mm)

Rx Ry Rz Tx Ty Tz
+5° 0.3555| 0.3402| 0.0908| 0.1627| 0.1796| 0.1787
+2° 0.2187| 0.2067| 0.1278| 0.1257| 0.1449| 0.1345

Table 5.3: RMSE values between the applied ground truthanatnd the motion estimates recovered by
Ml-based MSV for both simulated time series.

These motion estimates were then used to process both times sging WASS cor-
rection. WASS correction was performed using exact (ICBM)T approximate (textbook
T1s) and a single (ICBM GM) T1. ROC curves following hypotisd@ssting for both ‘ob-
served’ time series after MSV motion correction with andhwitt WASS correction are
shown in fig 5.4.

Approximate area under the ROC curve (AUC) values are tédmlia Table 5.4. The
‘Approx T1s’ AUC column is somewhat representative of aatiion detection following
WASS correction in a realistic scenario i.e. when only MSVtimo estimates and ap-
proximate T1 values are available. To gauge the value obpeihg ‘MSV + WASS
Correction’ over ‘Only MSV Motion Correction’, the increagnh AUC due to WASS cor-

rection alone should be considered relative to that due t& Mi®tion correction alone.
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Percentage values in the ‘Approx T1s’ column in Table 5.4engven by

. . AUCysv+swass — AUCpisy
increase in AUC due to WASS alore 100.
% AUCysy — AUChe

Where AUGysv+wass IS the AUC in the ‘Approx T1s’ column, AUfgsy is the AUC fol-
lowing only MSV motion correction and AUg is the initial ‘No Correction” AUC from

Table 5.1, obtained without any time series correction.
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Figure 5.4: ROC curves following hypothesis testing for sumulated time series with induced head rota-
tions of (a)t:5° and (b)}:2°. ROC curves after MSV + WASS correctios) (show an improve-
ment in activation detection over MSV only correctiei.(Artifact-free data ROC curves)are
included for comparison. The WASS correction used MSV nmoéstimates and approximate
tissue T1 values.

Artifact-free | Only MSV Motion MSV + WASS Correction
(noisy) Correction Exact Tls| Approx Tls | Single T1
+5° 0.822 0.774 0.800 0.802 (17.4%)| 0.803
+2° 0.855 0.834 0.845 | 0.845(12.2%)| 0.844

Table 5.4: Approximate AUC values representative of atitvadetection for the noisy simulated fMRI
time-series following MSV motion and WASS correction. Gaponding ROC curves are shown
in Fig. 5.4.

ROC curves describe the effect of WASS correction on adtimadetection over the
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entire time series. Given the small volume of the manualisootuced activation pattern,
these curves (and their approximate AUC values) may not bsitse enough to cap-
ture the subtle effects of spin saturation artifacts and twrection. Hence, activation
detection over the brain volume may be better depicted hyaditin maps.

Fig. 5.5 shows activation maps (alpha = 0.001) for two regmmegtive slices from both
observed time series before and after WASS correction.Heotine series with-5° head
motion, Fig. 5.5(a) indicates that WASS correction usingragimate Tky, Tlwyw and
T1csk values improved activation detection over that using alsifgxact) Tty value
for some activation patterns. In contrast, there appeabe tittle perceptible difference
in activation detection following WASS correction with apgimate T1s or a single T1
for the time series with smaller motion (Fig. 5.5(b)). Thisconsistent with our earlier
observation concerning residual average % intensity after WASS correction in Sec.

5.5.1.

5.6 Discussion

We have developed a spin saturation artifact correctiorhatetor fMRI time series,
dubbed the WASS correction. Its performance was evaluatedIROC curves, activa-
tion maps and simulated fMRI time series data. In contrasbtomonly used volume-to-
volume fMRI registration, we employ an Ml based slice-tdewone registration algorithm
viz. MSV. MSV rigid motion estimates are used to map each H& snto a high resolu-
tion T1-weighted volume obtained from the same subject.HREto T1 mapping is used
to obtain information about the tissue composition of eashresolution EPI voxel. The
WASS correction uses this knowledge of percentage conimitsl of WM, GM and CSF
to the EPI voxel intensity, to compensate it for possible S@ituration effects.

While a full-blown validation of WASS correction using rediRIl data would have



(b)

Figure 5.5: Sample activation maps (alpha = 0.001) for twwuhted time series with (a)° and (b)}-2°
motion before and after WASS Corrections. For comparissa,dample slices are shown from
(first column) the manually applied true activation patterresponding activation maps after
(second column) Only MSV Motion Correction, (third colunMpV + WASS Correction with
approximate T1 values and (fourth column) MSV + WASS Coiogctvith a single (exact) T1
value.

been ideal, establishing ground truth for a real fMRI timeesecan be a challenging task.
This evaluation used simulated time series with mathemlitimduced head motion and
related spin saturation artifacts, for which correspogdantifact-free data was readily

obtainable. To loosely simulate a real world scenario, ieheGM, WM and CSF mis-
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classifications, approximate T1 values and approximat®prdensity values were used
in the MSV-based WASS correction. These approximationsiaaccuracies were rep-
resentative of clinical human data to some degree. Howéwesslice profile in both the
simulation and the WASS correction was assumed to be raat@mds modelled by (5.3)
and (5.6), spin saturation artifacts depend on the cositteedgéffective flip anglev. Thus,
errors in approximations of the actual slice profile mayHartaffect the performance of
WASS correction.

Lastly, apart from its dependence on MSV motion estimales\WASS correction for
EPI sliceney, is largely a function of the approximate factgis’(.) and }l‘:p”i(.) in (5.15).
These approximations improve with an increase in the résolof the anatomical volume

with respect to the EPI volumes.



CHAPTER 6

Improved fMRI Time-series Registration Using Joint Probability
Density Priors

Statistical analysis of fMRI data uses stimulus correlat&agation in voxel intensities
to identify brain activation. In the absence of head movemexels at fixed coordinate
locations along the time-series can be assumed to corrégpdhe same physical brain
region. However given the substantial time requirement$ reture of fMRI studies,
most subjects display varying rates of head motion witheesfo the scanner. Due to
the presence of the skull, and ignoring field inhomogenetijeats, head motion can be
estimated by rigid body registration. Freire et al. [21, 88pw that while fMRI time-
series registration using L2 metrics may give rise to stipigased motion estimates
due to activation related intensity fluctuations, mutuéimation (MI) based similarity
metrics are robust to such intensity variations. Thus wecentrate only on rigid time-
series registration using Ml.

In some block stimulus fMRI studies subjects can maintalatirely slow motion.
However in other studies such as verbal tasks, jaw and moaotrement may result in
fast head motion during the stimulus cycle when the subjegheiates responses. Fur-
thermore, even non-verbal fMRI studies may elicit strongetion in aged or invalid
subjects. Two types of time-series motion estimation egjias are commonly used, viz.

volume-to-volume (VV) and slice-to-volume (SV) registost. VV registration assumes

87
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that significant subject movement occurs only between velaoguisitions. Consequently
a single rigid transformation is estimated and applied kohal slices in each fMRI vol-
ume, i.e., the estimated motion is constrained to be piesmegonstant. On the other hand,
SV registration methods allow for substantial inter-shead motion [38]. A distinct and
independent rigid motion estimate is obtained for each f8IRE, i.e., SV registration can
estimate more elaborate motion trajectories.

Although SV registration can handle a wider range of headanpeach MI approxi-
mation and optimization uses voxel intensity pairs coro@siing to only one time-series
slice. Hence the method is less accurate at end-slices {nedop of the head scan),
where the Ml-based registration is noisy due to low image merity. Reliable end-
slice registration is vital to accurately identify and @t time-series voxels affected by
spin-saturation artifacts. Further, in cases where stibggad motion at successive slice-
acquisition time-points is correlated, accurate enceskgistration can be used to improve
subsequent head motion trajectory estimation.

Recently, different ways of incorporating prior inform@tifrom previously registered
datasets to improve the accuracy of Ml-based registraboméw images from similar
modalities have been proposed [63, 72, 77]. This work foguwseimproving SV reg-
istration accuracy for end-slices, by using joint probigpiflensity function (pdf) priors
derived from successfully registered center-slices (tleamiddle of the head scan) in the
same time-series. We compare the accuracy of VV and SV ratist with and without
joint pdf priors for times-series with simulated fast anovshead motion. Results show
that the proposed framework can be effective in improvirgabcuracy of SV time-series

registration.
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6.1 Existing Time-series Registration Methods

We briefly describe the imaging model and similarity metised to compare the per-
formance of different registration strategies in this wo¥k/ and SV rigid motion esti-
mates were obtained using a Gradient Descent (GD) optimltes registration schemes
were variations of the MIAMI-fuse [50] and MSV [38] algoritis respectively. Our im-
plementation used a GD optimizer, instead of the Nelderdv@mplex optimizer used
in [38, 50], to improve the speed of registration. Howeuee, inherent hill-climbing abil-
ity of the simplex optimizer may make it less susceptibleacal minima than the GD
optimizer. Both VV and SV registration used a high resolt@matomical T1 dataset as
the homologous volume. Each VV registration used an entiielfvolume as the refer-
ence image, while each SV registration used a single fMRe&sli

Let {z3}M,, 25 € R be coordinates of voxels in slice= 1,2, ... S of an fMRI vol-
ume with corresponding intensiti¢s; }/,. Similarly let the T1 volume have coordinates
{y;};11, y; € R? with intensities{v;}_,. At each GD iteration, SV registration for fMRI
slice s used the current estimate of the rigid transfdarnto find transformed coordinates
{yl* = Ty, (x2)}M, in the T1 volume. Corresponding intensitie&(y/*)}2, were then
approximated using a cubic B-spline interpolation keriél [

A plug-in estimate of the MI between the reference and hogmls images, given by

A

Ui () = H,+ o(0s) — o, v(0s)
K . L
= =) Pu(gi)log(Pulgr)) = > Po(hu:0,)log(P,(hy; 0,))
k=1 =1
L K .
(6.1) + > Pusl gk hu; 0:) 108(Pun(gk, b3 65)),

=1

e
Il

1
was used as the similarity metriﬁuv(és) is an estimate of the joint entropy between the

reference and homologous images afhﬁandﬁ[v(es) are the marginal entropy estimates.
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Pv(hl;es) is the approximate probability that a homologous intensiyel (1) <

[hy —n, hy +1); P, andP,, are defined similarly over intensity levels = g1, g2, . . . , 9i
andh; = hq, he, ..., hy. These sets of intensity levels were chosen to span the dgnam
intensity range of the reference and homologous image®casely. Our use of a GD
optimizer requires that we approximate these pdfs usirfgréifitiable kernel density es-
timates [16, 70]. VV registration followed the same framekydout used intensity pairs
from all fMRI slices with rigid transformation$,, = 7T, Vs to estimate the joint and

marginal pdfs in eq. (6.1).
6.1.1 Time-series Simulation

Two short fMRI time-series with ‘slow’ and ‘fast’ head motiovere simulated to com-
pare the performance of competing registration methodssd time-series were derived
from a synthetic high resolution T2-weighted volume witlx 1 x 1 mm? voxels, down-
loaded from the International Consortium of Brain Mappii@BM) [9]. The data were
assumed to be acquired using echo planar imaging (EPI). ke#dn was simulated by
rotating and translating the T2 volume in three dimensigpake prior to extracting each
EPI slice to form an fMRI volume. Low resolution EPI voxelsne®btained by averaging
voxel intensities in the correspondifige 2 x 6 neighborhood of the T2 volume. Gaussian
noise (V(0,49)) and Rayleigh noises( = 7) was added to voxels with non-zero and no
signal intensities respectively [5,55]. Further, eactesivas blurred with & x 5 Gaussian
kernel. This process was repeated to obtain sets of 40 tmessvolumes with 14 slices
in each volume. Each EPI volume acquisition was assumeditdéreaved with a TR of
3000 ms, i.e., neglecting TE, one EPI slice was acquired/éMerl4 ms. For registration
purposes, a T1-weighted volume from ICBM was used as theamneal reference. This

T1 volume was in complete registration with the initial T2wme used to simulate the
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time-series.

The applied motion was designed to be smooth without beimnigglie. Translations
along the three axes were assumed to be linear in time withedl 8red gradient. Euler
angles describing the orientation of the head/aqui-spaced time points along the entire
time-series were generated by drawing three seds whiform i.i.d. random numbers from
a[—a, a] degree range. To ensure smoothness, a piecewise cubjuoilatiang polynomial
was fit to the sequence of random angles for each coordinate Hxe orientation of the
head during each intermediate EPI slice scan was obtainsdrhpling the polynomials at
appropriate time points. The rate of change of head positasicontrolled by changinyy
and the range of rotation anglesa, a]. To simulate ‘slow’ head motioV = 4 anda = 2
were used, while for ‘fast’ motiofW anda were16 and5 respectively. The average speed
of head motion at a point on the circumference of the headunaisg an average head

radius of87.5 mm ) was0.14 mm/sec for slow motion antl35 mm/sec for fast motion.

6.1.2 VV versusSV registration

To compare VV and SV registration, rigid motion estimatesemgbtained for each
center-slice (a single slice at the middle of the head saagheach end-slice (the superior
most slice of the head scan) in both simulated time-serieg l®th registration methods.

To avoid local minima each registration was repeated 30swith a randomly perturbed
initial guess. The rigid transform estimate correspondintpe largest of the 30 similarity
metric values was treated as the best estimate and useddartigarison presented here.

Registration accuracy was gauged by computing RMS errdvedes the known ground
truth and estimated rigid motion. For rotation and tramnsteparameter8, = [¢,., ¢, ¢, t., by, t.],
let denoteTly, the rigid SV estimates for time-series slicén a given volume. The RMS

registration error for slice, containingM voxels at coordinates; € R3,i = 1,2,... M,
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is given by:

M
1 2
) RM - | — Ty (x3) — Ty (23
(6.2) S error: i ?:1 | Tys () — To, (x)||°,

whereTy- is the known ground truth rigid transform used to simulateest. As VV
registration computes a single rigid transform estimatdor each EPI volume, RMS
errors for this method were computed usifig = 7y, Vs. RMS errors for VV and SV

registration for all the center-slices and end-slices hosvs in Fig. 6.1 (slow motion) and

Fig. 6.2 (fast motion).
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Figure 6.1: Comparison of RMS errors in time-series rigidiotoestimates for simulated slow head motion.

These plots show that VV registration has lower error thanf@\slow head motion.

The piecewise constant motion approximation in VV regtstrais capable of capturing a
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Figure 6.2: Comparison of RMS errors in time-series rigidiotoestimates for simulated fast head motion.
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slow rate of change of head position. This coupled with thiab#ity of the MI approx-
imation in VV registration, which is based on a large humdantensity counts, results
in better registration accuracy. In contrast the dearthe@dmmgful intensity counts in SV
registration, especially for slices near the top of the heaakes the corresponding joint
pdf estimates susceptible to spurious matches. This saautV motion estimates that os-
cillate about their optimal value. However, when the vdlpoff head motion is high, the
piecewise constant motion approximation used in VV regigin is no longer valid. For
rapid head motion trajectories, the approximation errovNhmotion estimates is larger

than the error introduced in SV motion estimates due to noiyestimates.

6.2 Improving fMRI Time-series Registration

The comparison of registration methods in the previous@edtustrates a trade-off
between the number of intensity counts available for jodftgstimation and the space of
allowable motion trajectories. VV registration restrigistion trajectories to be piecewise
constant and uses all available voxel intensity pairs tionegé MI, while SV registration
estimates an independent rigid transform for each EP1soey Ml approximations based
on voxel intensity pairs corresponding to a single EPI sbicky.

It appears that a registration scheme that works well fan blmw and fast head motion
should handle more elaborate motion trajectories than Igipipcewise constant while
maintaining some level of continuity. To improve pdf esttioa in SV-based registration,
either more intensity pairs should be used to estimate finé palf or prior information
about the nature of the joint pdf at registration should bpleged to bolster pdf estimates
when fewer intensity counts are available.

The following strategies can be used to improve SV regisimadf fMRI time-series

data:
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1. Reduce the search space, i.e., use constrained mofjectorées [56]. Alternatively,

the use of suitable prior motion models may also be effective

2. Use a pdf estimate that retains as much information almdl\ntensities from the
higher resolution anatomical data set as possible. In [6h sun approach was used
to improve the accuracy of rigid registration between a 2D BtlReut scan and a

complete 3D MR brain volume.

3. Incorporate an informative prior on the nature of the tqdf or joint histogram
obtained from EPI time-series data (previously) registengo a T1 anatomical vol-

ume.

Here we focus on using informative pdf priors to improve Syis&ration of time-series

end slices.

6.2.1 UsingPriorson Joint Intensity Histograms

As medical image registration becomes an integral partrgical planning and diagno-
sis, large populations of registered multi-modality madimages have become available.
Numerous ways of using these pre-registered datasets tovmthe accuracy of registra-
tion of new images from similar modalities have recentlyropmposed [62,72,77].

In particular for joint pdf estimates based on discretetjbistograms, the vector of
histogram bin count$dkz}f;€7l:1, can be modelled as a Multinomial random vector with

parameter§ P = P, (gr, hi; 0) by, and M trials:

S

(6.3) P({dkl}ffl,z:l) = M! [
dkl.

k=1,l=1

where, the bin counts are computed usingithe/oxel pairs from EPI slice. The corre-
sponding joint pdf estimates given by

dy  dy

N Ekz dii M

P (gr, hu; 05)
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are the Maximum Likelihood (ML) solution of the parametefdle Multinomial distri-
bution. Toews et al. [72] note that such ML pdf estimatiorhtgques (including kernel
density estimation) are unreliable in the absence of seffidntensity counts. They use
uninformative uniform priors to replace ML pdf estimateghgre robust Maximum a Pos-
teriori (MAP) estimates. These uniform priors in effectatigrage spurious noise matches
in sparse histograms. In contrast Zollei et al. [77] propbgeuse of informative pdf pri-
ors. To facilitate MAP pdf estimation, they use priors basadhe Dirichlet distribution

with parameter§ay, },t ,_;, aw > 0k, 1 given by

K,L -
6.4 P({pEL . K,L _r (szl)) k=1
(6.4) ({ wv S k=1,1=1 {akl}k:17l:1) = Zakzl H N

el h=11=1 I'(ak)

This distribution is a conjugate prior on the Multinomiasttibution. That is

if P({dkl}kK:’il:ﬂ{ z]ff; sz’ﬁ,lzl) ~ Multinom({Pﬁ ii{;LLz:pM)
and P({kal f:’Ll,lzl;{akl}f:’Ll,lzl) ~ DiriChlet({akl}kKi,l:l)v

u

then P({P} iiLl,l:l‘{dkl}f:’Ll,lzl;{O‘kl}f:’Ll,lzl) X DiriChlet({akl"‘dkl}f:’Ll,z:l)?

where the Multinomial and Dirichlet distributions are giMey (6.3) and (6.4). This formu-
lation presents a natural way to include prior informatieiidparse) histogram estimates,
yielding a MAP estimate of the pdfP*'};} | given by

. dkl +ak—1
> ra(di + o — 1)

PYP gy, b3 05)

where the parameters of the Dirichlet distributi{:m,d}»,f:’ﬁl:1 represent prior histogram
bin counts. In practice one useg;, > 1, Vk,[ to ensure that the estimated probabil-
ities are non-negative. This approach essentially cooredp to obtaining joint pdf es-
timates by combinindixed intensity counts from pre-registered datasets emanging
transformation-dependant intensity counts from the nemegistered datasets. In the fol-

lowing section we briefly outline a framework to improve S\gistration of sparse end-
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slices by using joint pdf priors derived from informatioickr center-slices in the same

time-series.

6.2.2 Slice-to-Volume Registration with Joint Probability Density Priors

The approaches discussed in the previous section rely eregigtered datasets from
a given population to derive histogram priors for use withvrdatasets from the same
or similar populations. However, since SV registration loag accuracy for time-series
end-slices, it may not be possible to derive appropriaterpfrom end-slices previously
aligned using SV registration. Results in Sec. 6.1.2 irtditiaat SV registration is reason-
ably accurate for high complexity center-slices from bathwdated time-series. Hence
we investigate an approach to improve SV registration fakFgites by using a joint pdf
prior based on intensity counts from registered centeesli

Fig. 6.3 compares an estimate of the joint pdf based on iityepairs from an EPI
center-slice and corresponding locations in the T1 anaaimblume at registration with
that based on intensity pairs from an end-slice. Both jodis@re similar in form, indi-
cating that suitable joint pdf priors can be derived fromistaged EPI center-slices. For

brevity we denote slice-to-volume registration with jgialf priors by SV-JP.

(a) Center-slice (b) End-slice

Figure 6.3: Comparison of the estimated joint pdf usingrieiy counts from a center-slice and an end-slice
at registration.
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For SV-JP, we propose to replace the joint ptf(gx., hu; 0,) in (6.1) by:

(65) Puv(gk, hl; 8375) = (1 - ﬁ)puv(glm hl; 83) + ﬁpvjv<gk7 hl);

wheregr € {gn}5_,, u € {h,}Lk_, and3 € [0,1) is a user defined constant. The
pdf estimatef’uv(gk, hi; 0s) depends on transformation parametérsand changes with
each parameter update, whik (gx, 2;) is based only on prior intensity counts from pre-
registered center-slices and remains fixed. H?J(shl; 0, 3) and Pu(gk; () are given by
marginalizingﬁuv(gk, hi; 05, ) over the appropriate index. The strength of the pdf prior is
controlled bys. For 3 = 0 this approach reverts to SV registration, however,dor 1

the sensitivity ofpuv(.; 0s, 3) to changes inf)uv(.; 0,) would be greatly reduced. Thus
should be kept smaller than 1.

In contrast to registration algorithms that jointly estimaonstrained motion parame-
ters for all (or a sub-set of) time-series slices, such as\J88], SV-JP allows for com-
plete decoupling of slice-wise motion estimates. HencelBVhay be more computation-
ally efficient and can be straight-forwardly parallelizeceomultiple CPUs. Further, as
the similarity metric in JMSV is a sum of slice-wise Ml estites, the registration may be
driven by the large number of intensity counts from timeesecenter-slices. This coupled
with the regularization term encouraging smooth motion maake JMSV less sensitive
to intensity counts from sparse end-slices. On the othed IBAAJP can be expected to
show increased sensitivity to data from end-slices, asihe‘changing’ intensity counts

used to estimate pd?,,(.; 05, 3) are drawn from slices.

6.3 Reaults

To compare the performance of VV, SV and SV-JP, rigid motistingates were ob-
tained for all end-slices in both time-series using SV-J§isteation in addition to the

estimates obtained using VV and SV registration in sec.26.To avoid local minima
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each registration was repeated 30 times with a randomlyierd initial guess, as be-
fore. Parameters corresponding to the largest of the 30dinalarity metric values for
each registration were treated as the best rigid motiomastis and used in the results
discussed here.

A single rigid transform was estimated for each of4h¢ime-series volumes using VV
registration, while SV registration was performed only &center-slice and an end-slice
from each volume. The pdf prior was obtained by averaging(gibint pdf estimates, ob-
tained from each center-slice after SV registration, omeet This averaged prior pdf was
then used to register all time-series end-slices usingFS¥Ador probabilities?, (gx, h);
gr € {gm}E_1, hi € {h,}E_, with values below a user defined threshold were attributed

to image noise and set to zero. SV-JP registration for eid-Slin each volume of both

N*
N+N*'

time-series used = whereN was the number of valid intensity voxels in slise
and N* was the average number of valid intensity voxels in a tinteeseenter-slice.

The quality of registration for end-slices was quantifieddoynputing RMS errors
of the rigid motion estimates obtained from all three metho8V and SV-JP registra-
tion RMS errors were computed by comparing the estimatatsfoamed coordinates
{Tys ()}, with ground truth coordinatefTy: («)}X,. As VV registration estimates

a single rigid transforniy for each EPI volume, its RMS errors were obtained using

Ty, = Typ. Table 6.1 lists average RMS errors over both time-series.

Avg Speed Avg. RMS Error (Std. Error)
(mm/sec) (mm)
No Correction \A% SV SV-JP
Slow motion 0.14 2.34(0.49) | 0.35(0.13)| 1.28(0.27)| 0.90 (0.26)
Fast motion 1.35 5.96 (1.56) | 1.64 (0.98)| 1.45(0.37)| 0.87 (0.26)

Table 6.1: Comparison of average RMS error values of motsimates for times-series end-slices using
VV, SV and SV-JP registration. Errors were computed for $atad slow (first row) and fast
(second row) head motion.

SV-JP registration was significantly more accurate than &)stration for both slow
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and fast head motion trajectories. This indicates that #eeai joint pdf priors derived
from time-series center-slices following SV registrataan improve the accuracy of mo-
tion estimation for sparse end-slices. For very slow heatdianavith almost negligible

inter-slice motion, VV registration was more accurate thath SV and SV-JP registration.
6.3.1 Effect of Pdf Priorsonthe M| Similarity Metric
To gain some insight into how the similarity metric in SV-JRats from that in SV we

re-write the registration optimization along the lines 6]. The estimate of rigid motion

parameters obtained using SV-JP registration for fMREslid, is given by:

és = argm@axlifw(@s,ﬁ)
(6-6) = arglneax (9875) (876)
L K ~
Puv(gkahl;esaﬁ)>
= arg max ,hy; Oy, = ;
B ;; {9k, b B, f) Lo ( Py (3 0, )

where, H, was dropped as it is independent of the registration paemfiet Using (6.5)
to spIith,(gk, hi; 5, 3) the entropy terms above can be written as

6.7)
(62, 8) = (1-5) (DKL( S(02)]| a6 s,ﬁ>)+ﬁw<93>)+5(DKL (P:v||15w<es,5>)+ﬂzv),

where, the Kullback-Leibler (KL) divergende, is given by

L K b
Puv(gkuhl;es)
D (Pus(B1Pul@s: 5)) = D D, Puo(gis s ) log = =0 s
=1 k=1 uv ) » VS

Using (6.7) and dropping all terms that do not depend githe rigid motion parameters

estimate, obtained using SV-JP registration is given by

L

0, = argmeéjx{(l — 3w (05) = 8> Py (h) Dw (P (1)l P (s 65, 8))

=1

(68) Z v hl7 DKL u|v(|hl798)||puv(|hla9576))}a

=1
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where, &y (60,) £ H,(0,) — H,,(0,). The parametep controls the trade-off between
an Ml-like term that is independent of the prior and two pii@pendent KL-divergence
terms. Since the onlg§,—dependent component in the KL-divergence ternﬁjg, these
terms encouragé, values for which the form of the ‘observed’ conditional péf,, is
similar to that of the ‘expected’ conditional pdf;,.

WhenS = 0 we revert to SV registration based only on MI. SV registnafiods thed,
that yields the largest Ml value, i.el?’mv(es) should be ‘well-clustered’. In contrast SV-
JP requires that the resulting conditional ;quv(es) be both ‘well-clustered’ and similar
to the expected de;‘v. Since SV-JP implicitly places constraints on the form @ th
observed pdf, it should discouragevalues that maximize Ml but result iﬁu‘v(es) esti-
mates that differ significantly frorﬁ’;jlv. That is, we expect SV-JP registration to penalize
local minima solutions that result in large Ml values butigian undesired conditional pdf
estimate.

Results from the 30 repeated registration runs for each-sienes end-slice were also
used to empirically study the occurrence of local minimahe 8V and SV-JP similar-
ity metrics. Figure 6.4 shows statistics of the RMS errooamted with rigid motion
estimates corresponding to the ten largest similarity imgalues for both methods. For
ease of comparison, time-series volumes are indexed im ofdecreasing median RMS
errors obtained using SV-JP. The box-plots show that fort miatgsets SV-JP registration
results in better rigid motion estimates more often than &yistration; indicating that, as

hypothesized, SV-JP is less likely to get caught in localimaithan SV.

6.4 Conclusion

This work focused on improving MI-based SV registrationdiI time-series for low

complexity end-slices. We leveraged the reliability of S¢gistration of information rich
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Figure 6.4: Comparison of the RMS errors of the 10 best rigidiom estimates for time-series end-slices

obtained using SV-JP (red/notched) and SV (blue/plainistegion. The line at the center of
each boxplot shows the median RMS error value and top andrhattiges are the 75 and 25
percent quantile RMS errors. The smallest and the larges$ Rivbrs are shown by (o) for SV-

JP and by (+) for SV. In general SV-JP results in lower RMSrsrmore often than SV. RMS

errors for both time-series with (a) slow motion and (b) fastiion are shown.
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center-slices to derive suitable joint pdf priors from thetices at registration. These
priors were then used to improve the registration of spanskeséces without the intro-
duction of explicit motion constraints. Results on simethtlata demonstrate a significant
improvement in SV registration accuracy using this appnoac

A similar approach may be used to improve SV registratiorcémter-slices, if reliable
joint pdf priors can be estimated from previously ‘welld4stigred’ time-series data. Alter-
natively a synthetic model of the expected joint distribatof EPI and T1 voxel pairs at
registration could be used as the pdf prior.

As seen in Table 6.1, VV registration is well-suited to estienslow head motion while
SV and SV-JP registration are more accurate when there stex fzhanges in head posi-
tion. Thus, an adaptive strategy that uses some supplemémfiarmation about the rate
of change of head position to employ a combination of VV andJ8\fegistration may

further improve time-series motion correction.



CHAPTER 7

Summary and Future Work

7.1 Summary

This dissertation dealt with various ways of enhancingisity-based registration meth-
ods. Intensity-based similarity metrics (such as, mutafarmation (Ml) [10, 74], (neg-
ative of) sum of squared differences (SSD)) and gradientropaition methods are com-
monly used in nonrigid registration algorithms [49, 70].n@auting the gradient of these
similarity metrics with respect to the large number of wagpgmeters is often the bottle-
neck of the algorithm. One approach to reduce this compmualkicost is to use a small
random subset of image voxels to approximate the gradiéntp]. In Chapter 3 we de-
veloped a novel framework based on importance sampling¢l&3celerate such nonrigid
intensity-based registration schemes, by efficiently maprg the accuracy and reducing
the variance of these gradient approximations. This wargrieged the influence of image
edges on intensity-based similarity metrics, to desigmapéiag strategy that encouraged
sampling from these regions. We also investigated the ussmfypes of stochastic ap-
proximation (SA) methods, viz. sample-size controlled 84 atep-size controlled SA, in
conjunction with the importance sampling strategy. Resuding B-spline warps to reg-
ister simulated brain data and real CT lung data show thafraarework can accelerate

nonrigid registration while preserving accuracy. However real brain data, both IS-
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SA and US-SA registration strategies showed comparabledsped accuracy. This may
have been due to the larger number of edges in the brain velombecause the initial
deformations in the brain datasets were smaller than tmoeiCT lung data.

In Chapter 6 we turned to a special class of MI-based regjstralgorithms that regis-
ter a 2D slice to a 3D volume, namely slice-to-volume (SV)stgtion. These algorithms
are used to estimate motion in fMRI time-series when sigamfignter-slice subject head
motion is expected [38]. However the MI approximation in S3gistration is based on
intensity counts from a single time-series slice. Hence régistration is less accurate at
time-series end-slices (i.e., slices near the top of the lsean), where the MI approxi-
mation is noisy due to low image complexity. We developednaproved SV registration
algorithm, dubbed SV-JP, by using joint pdf priors deriveahi successfully registered
time-series center-slices (i.e., slices near the middtee@head scan) to bolster the noisy
MI approximation. We compared SV, SV-JP and volume-to-na@VV) registration head
motion estimates for end-slices from two simulated timeesewith ‘fast’ (avg. speed =
1.35 mm/sec) and ‘slow’ (avg. speed’=14 mm/sec) head motion. SV-JP was more accu-
rate then SV for both time-series. For slow head motion V\istegtion performed better
than both SV and SV-JP registration while for fast head nmo8%-JP registration was the
most accurate.

Given the popularity of Ml-based registration, in Appendixve developed an effi-
cient linear approximation of the covariance of registnatmotion estimates obtained by
completely maximizing a differentiable plug-in estimafeMi. This approximation was
based on results for M-estimates in [19, 65]. The perforraasfcMI-based registration
algorithms may be strongly affected by the choice of tuniagameters (e.g., width of
the kernel in kernel density pdf estimates) used to implerienplug-in Ml estimate. The

covariance approximation, if satisfactory, could be usduHtp find suitable tuning param-
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eter values to improve registration performance. Howewerapproximation performed
well only for a simple 2D mono-modality registration usedfittd a single translation
parameter. For more realistic multi-modality registratibe M| estimate is strongly non-
linear, greatly degrading the accuracy of the linear cewanre approximation.

Lastly, in Chapter 5 we digressed from motion estimatioroafgms to address ex-
traneous motion-dependant intensity-modulation, i.en spturation artifacts, in fMRI
time-series data. These artifacts reduce fSNR and can haongi@-activation detec-
tion using fMRI time-series. We described spin saturatidifagts using mathematical
expressions and developed a weighted-average spin satufAtASS) correction tech-
nique. An algorithm to identify and correct fMRI voxels affed by spin saturation was
outlined. In contrast to existing spin saturation cor@ttnethods [28,52], WASS correc-
tion takes into account the approximate tissue compos(pencentage contributions of
white-matter, gray-matter and CSF) of each low resolutimeiseries voxel. Results on
simulated data showed that WASS correction can improvefaeiivation detection using

fMRI time-series.

7.2 Future Work

e The data used to evaluate the performance of IS-SA redstrat Chapter 3 has
few or sparse edges. For data with more edges, it may be hiah&dicIS-SA to
use a more stringent criterion to include a smaller percgntd image edges in the
sampling distribution in (3.9). For a population of imagésnay be possible to
empirically determine the percentage of edges that neeeé tetained to obtain a

particular level of registration accuracy.

e Highly uniform point-sets (HUPS) were used in [69] to impeathe performance

of uniform sampling based registration. It would be useduinvestigate whether a
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similar strategy, i.e., transforming HUPS to obtain samfddowing the distribution

designed in (3.9), can improve the performance of IS-SA.

Another possibility is to use domain specific knowledge toagse ‘important re-
gions’ - for example, in subject-to-atlas registrationsy&ures with larger shape
variability may be harder to align. Hence, in such casesyitigaa larger percentage

of samples from these regions may benefit IS-SA.

In Chapter 3 importance sampling (IS) was used to improvetadient of differen-
tiable intensity-based similarity metrics, such as Ml, SSilce mutual information
(MI) is an expectation, IS could also be used to improve thienese of Ml itself.

Such an approach would also facilitate the use of IS with gi@thient optimization

approaches, e.g., Nelder-Mead optimization.

In our MI metric implementation (Sec. 3.3.1), the numbermifarmly spaced inten-
sity levelsK and L at which the joint and marginal kernel density pdf estimatese
evaluated was proportional to the number of intensity pasesd to approximate the
(gradient of) MI. That is, KX and L were larger for the deterministic GD registration
scheme (based on all available intensity pairs) and snfalléhe US-SA and IS-SA
registration schemes (based on a small random subset oEitytgairs). However,
this empirical approach may not yield the best value&’cdnd L. Investigating an
approach to choose the optimal number of possibly non-tmifospaced levelg<

andL to estimate the pdfs will be valuable.

At IS-SA iterationk, our gradient approximation uses i.i.d. random samplesmra
from an adaptive sampling distributia®’:, given by (3.9). That isP’ changes
slowly over the iterations with variations . In our implementation, the random
samples drawn at iteratidr+ 1 are completely different from those used at iteration

k. By treating the registration process as a slowly varyingashyic system, it may
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be possible to adapt the procedures in [46] to ‘reuse’ randamples obtained at
iterationk to construct random samples at iterationl, making the IS-SA algorithm

more efficient.

The performance of the weighted-average spin saturatigkS8Y correction algo-
rithm in Chapter 5 was evaluated on simulated data. Thougkiowlations tried to
incorporate inaccuracies representative of clinical ds@h as white-matter, gray-
matter and CSF mis-classifications, approximate T1 valuesjll be desirable to

test the algorithm using controlled phantom studies aniddiaga.

As the WASS correction is a function of the approximate fesitf2(.) and A,Vlveii(.)

in (5.15), its accuracy should increase with an increasharratio of the resolution
of the anatomical volume to that of the EPI volumes. Hencelltbe useful to the
study the effect of changes in this ratio on the performari¢bedoWASS correction.
Specifically, establishing a lower limit on this ratio (belavhich WASS correction is

ineffective) may facilitate the development of acquisitpyotocols required to enable

successful post-processing of EPI time-series data.

In Chapter 5 we use motion estimates obtained from EPI tienesto T1 anatomical
volume registration to estimate the percentage contohubf white-matter, gray-
matter and CSF in each EPI voxel. This makes the method slilsledp registration
errors. Source separation methods (such as Independergddemnt Analysis) may
be anotheregistration-independerdpproach to estimate the tissue composition of

low resolution EPI voxels.

For SV-JP registration in Chapter 8,was chosen such that the pdf estimétge
was obtained by pooling in all the (averaged) intensity ¢ewsed to build the pdf
prior and the intensity counts from the to-be-registeratetseries slice. However,

in the formulation in (6.5)3 is a tuning parameter of the SV-JP method. Hence it
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may be instructive to study the effect of varyiggn SV-JP registration accuracy for

different head motion speeds.

e Our evaluation of SV-JP used simulated time-series datallAdlidation using real
EPI time-series from a variety of fMRI stimulus studies (emotor tasks, verbal

tasks) will be valuable.

e Results on simulated data in Sec. 6.3 indicated that VV tegien is more accurate
than SV or SV-JP registration for slow motion, while SV-Jgiseration is well-suited
to estimate faster head motion. In block stimulus fMRI stgdt may be reason-
able to expect slow head motion during the OFF or no stimuirsods and faster
head motion during the ON periods. Hence, a scheme thatgacates such prior
knowledge to estimate head motion using some combinatidvaind SV or SV-JP

registration may show improved accuracy.

e SV and SV-JP registration both estimate a completely indeget rigid transform
for each EPI time-series slice. However, in reality, headiomoat adjacent slice-
acquisition time-points may show some level of correlatidence, for a given type
of fMRI study, it may be useful to characterize and study feséible) correlation in
true head motion for a population of subjects. Such a motiodehcan then be used

to incorporate motion priors in the registration process.

e As discussed in Appendix A, our linear approximation of the)yariance of MI-
based registration estimates was unsatisfactory forsteatnulti-modality registra-
tion, where, the MI metric becomes strongly nonlinear. Dgvieg or extending
such covariance approximations to handle nonlinear siityilaetrics can aid in the

analysis and improvement of popular registration methods.
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APPENDIX A

Approximate Covariance of M|-based | mage Registration

Many registration methods that obtain estimates by coralyi@taximizing a differen-
tiable similarity metric are in effect finding an M-estimat€his appendix draws on the
theory of M-estimates [34,65] and on results in [19] to présemore theoretical method
of approximating the (co)variance of image registratidimestes obtained by maximizing
a differentiable plug-in estimate of mutual information.

Consider registration between a reference and homologuagss with noisy intensities
;= u(z;) +nii=1,2... N ando; = v(y;) +n;,5 = 1,2... M, respectively. The es-
timate of parameter € R?, defining a mappind}; between the two images, is implicitly

given by
(A.1) 0 = arg max W(9,7), whereZ = {u;}V U{f}] M.

Implicitly defined estimates, such ésare called M-estimates in statistics. In some cases
the implementation o¥(.) employs user defined tuning parameters which affect the bias
and variance properties of these M-estimates.

Information theoretic similarity metrics such as mutudbimmation (MI) are widely
used in intensity-based image registration. These métdas” as observations of pseudo-

random variable§’ andV and estimate their probability density functions (pdfs)p@p-
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ular differentiable approximation of Ml between the two gea is given by,

Pu(9130, Z2)og(Py(g1;60, Z))

Mh

K
U, 7) = —Z Pu(fu; Z)log(Pu(fi; Z

k=1 =1
LK
(A.2) +ZZPM (frr 9130, Z)10g(Puy(fi. 9130, Z)).

=1 k=1

P,, P, andP,, are pdfs estimated using a differentiable density kesgl[16,57], i.e.

o o
(A3) P fo.a0.7) = 1 Z K/(“z hfk)K(Uz . 91)_

2
|Q9‘h S
Where, (.) integrates to unity and has finite suppbrt. > 0, ¢ ~ v(Ty(z;)) is some
differentiable function of 9, }{/, as in (3.5) and is the region of overlap between the two
images at parameter guessThe sets{ .}~ and{g;}~, are fixed grayscale intensity

levels chosen to sample the joint pdf finely enough. The matgidfs are given by

uv fk:vgl;ea Z)

Mh

(Ad)  Py(g:0.2) = ZPM (frr 9110, Z) and P,(fy; Z
k=1 =1

The constant in (A.3), is the user defined width of the kernel and strongfuences
the pdf estimates. A largk will result in very smooth pdfs and will possibly reduce the
sensitivity of W(#, Z) to changes if. On the other hand a very smallmay make the
metric unnecessarily sharp, introducing many local maxifilae ‘optimal’ choice ofh
will depend on the level of noise in the observatidhs.e. k should be large enough to
suppress noise in the pdf estimates but small enough tortair significant features.
Thus the quality of the estimate depends on the value of tuning parameter

For a given pair of imaging modalities, an obvious choice/fas to use values which
result in the most accurate registration at a given noisa.lé¥owever obtaining a direct
measure of registration accuracy is not trivial. Usuallyisgration accuracy is cited only
with respect to a large number of controlled phantom stuaiesother registration meth-
ods. Such empirical evaluations of image registration myucan be very time consum-

ing. However a reasonable choicefotan be efficiently estimated, if we can approximate
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the variance (and bias) of the M-estiméte

We draw on the theory of M-estimates [19, 34, 65] to obtain mpuatationally efficient
approximation for Co@). For completeness we reproduce some of the results from [19]
here. Let M-estimaté = w(Z) € R?, wherew(.) is some non-linear function. Expanding

w(Z) about the meal of the noisy observations using the first order Taylor sejielsls,

(A.5) w(Z) = w(Z)+YVw(Z) x (Z — Z).

WhereZ is a column vector ofV + M noisy observations and = [a%, ce BZL] is
1 N+M

a row gradient operator. Taking the covariance of the abrpeession with respect to the

noisy observationg gives

Cov(w(Z)) ~ [Vw(Z)Cov(Z)[Vw(Z)] .

Howeverw(.) is unknown, hence we need to estimafe/(Z). Considering only M-
estimates obtained by completely maximizing differergaimilarity metrics,§ € R?

must satisfy
oV(0, 2) -
00; 10=0 "

Usingf = w(Z) and differentiating the above expression wZtgives

0, j=12...p

S P w02y Lz w2 -0
—~00;00, oz, o0z

PuttingZ = Z and expressing the above equation in matrix form,
V2 (w(Z), Z)Vw(Z) + V' (w(Z), Z) = 0.

WhereV?’ is thep x p Hessian of operator w.r&, whose(j, k)th component isaef—gek
andV' is ap x (N + M) operator whoséj, i)th component iS55 57 - Assuming that

VXU (w(Z), Z) is invertible, Vw(Z7) is given by,

Vuw(Z) = [-V*¥(w(Z), 2)] [V (w(Z), 2)].
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Lettingd = w(Z), the approximate covariance of our M- estiméis

(A.6) Cov(d) ~ [-V*U (4, Z)| " [V W (6, Z)|Cov(Z) [V (0, Z)] [-VPu(0, Z)] .

To apply the covariance approximation to Ml-based redisitna (A.2) should be twice
differentiable. However the region of overl&p used in (A.3) changes abruptly with vari-
ations ind, either including or excluding an integer number of voxélence we introduce

an smooth approximation 6/,

N M
Q] = Bo(i) and By(i) =Y B(Ty(w:)/a — y;/o);
i=1 Jj=1

where« is chosen such that; /o € I. The functionB(.) is twice differentiable and
satisfies the partition of unity property, i.e,, ., B(n — k) = 1,¥n € R; we chooses3(.)

to be the cubic B-spline. Using this approximation (A.3) isdified as,

-0
A7 Pl frr 1260, 7 Y9
(A.7) (fk g ) Z] 156 ;59 ) ( A )

The approximate Ml is computed by using these modified pdinesges in (A.2).

Preliminary experiments used (A.6) to approximate theavaneé of 2D mono-modality
registration. Registration was performed using 286 x 256 T1 weighted MR images
with 1 x 1 mm voxels. Both images were initially in registration. Thenologous image
was created by applying local cubic B-spline translatidosag (a) only the x-axis (max.
4.2 mm) and (b) only the y-axis (max. 3.2 mm). The local defation was spread over
an approximatelyt0 x 40 mm image region. Gaussian noisg€((), %)) with increasing

o from 0.5 to 3 in steps of 0.5 was added to both images. Traoslastimates were ob-

tained by maximizing the differentiable Ml approximatiosing the Conjugate Gradient



115

(CG) optimizer. At each noise varianeélevel, sample variances of the estimated transla-
tions were computed using estimates from 75 registratios.riach run registered a pair
of noisy images, simulated using independent noise reimmdrawn fromV (0, o2).

To compute the approximate variance in (A.6)= argmaxy ¥(6, Z) was estimated
usingZ = E(Z). As noisy images were simulated using additive zero mears$aii
noise,Z was simply the column vector of noiseless image intensifiésisd was the M-
estimate computed by MI-based registration between thregbaioiseless images using
CG. Finally the matrice$— V> (4, Z)]~' and V''¥(d, Z) were constructed by differ-
entiating eqgs. A.2, A.7 and A.4 and using the chain rule. &pigroximate (co)variance

of registration M-estimates varies linearly with the coaace of noisy image intensities,

Cov(Z2).

0.0 0.05
0.045 0.045]
0.04 0.04

E E

£0.035 £0.035

> =

3 3

= 003 < 0.03

2 =

5 0029 20029

g Z

g 0.02) £ 0.02
0.019 0.015]
0.01 0.01
0.00. 0.00

0 0.5 1 1.5 2 2.5 3 35 0 0.5 1 1.5 2 2.5 3
Gaussian noise std dev Gaussian noise std dev

(a) B-spline based local translation along the x-axigp) B-spline based local translation along the y-axis,
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Figure A.1: Comparison of theoretical approximate staddaviation (SD) and empirical sample SD val-
ues. For each image noise lewelthe estimator sample SB)(was calculated from 75 inde-
pendent registration runs. The approximate SD (solid Inegired a single registration run
using noiseless data. Each mono-modality registratiorstirate was obtained by maximizing
approximate Ml using CG.

Fig. A.1 shows how the variance approximation compares &tpirically calculated
sample variance values. For the simple case of mono-mypdegjtstration with local de-

formations and Gaussian noise, the variance approximptimvides a good line fit to the
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sample variance values. The approximate variance metlyuires a single registration
to estimated. This is very efficient when compared to the completely eropimethod
which requires a large number of registration runs to obtasatisfactory estimate of
cov() at each noise variance level.

However for larger noise variances and more realistic rmtidal image registration,
the MI similarity metric becomes strongly non-linear. Irchiwcases the performance of
the proposed linear variance approximation degradesfiignily. It may be possible to
remedy this by extending the Taylor series in A.5 to includeond order terms, making

the covariance approximation quadratic. However thisireglestimation of higher order

derivatives of the similarity metric which may not be verliable.
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