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ABSTRACT

ESTIMATING RESPIRATORY MOTION FROM CT IMAGES VIA DEFORMABLE
MODELS AND PRIORS

by

Rongping Zeng

Chair: Jeffrey A. Fessler

Understanding the movement of tumors during breathing is very important for conformal

radiotherapy. Without the knowledge of the tumor movement, it is likely that either in-

sufficient dose is delivered to tumors, or unnecessary dose is received by the surrounding

normal tissue, or both. However, respiratory motion is very difficult to study by conven-

tional x-ray CT imaging since object motion causes inconsistent projection views, leading

to artifacts in reconstructed images. This dissertation focused on developing methods to

build four-dimensional (4D) models of patient’s anatomy during breathing, especially in

thoracic and upper abdominal region, with currently available X-ray imaging techniques.

We explored methods to estimate respiratory motion from a sequence of cone-beam

X-ray projection views acquired using a slowly rotating cone-beam CT (CBCT) scanner

that was integrated into a Linac system. The slowly rotating CBCT scanners have a large

volume coverage and a high temporal sampling rate. In the proposed deformation from

orbiting views (DOV) approach, we modeled the motion as a time varying deformation

of a static reference volume of the anatomy. We then optimized the parameters of the

motion model by maximizing the similarity between the modeled and actual projection

xii



views. The modeled projection views were calculated by deforming the reference volume

according to a parametric, four-dimensional (4D) B-spline motion model and projecting

the deformed volumes onto the detector coordinates corresponding to the actual measured

projection views. Challenges of this estimation problem include the limited gantry rotation

in one breathing cycle, Compton scatter contamination of the projection views and heavy

computation, which will be addressed in the dissertation. We conducted computer sim-

ulations and a phantom experiment to test the performance of this approach. Both cases

achieved estimation accuracies within voxel resolution. We also investigated the effects of

several factors, such as the temporal knot placement and regularization parameters, on the

estimation accuracy. Long computation time would limit the clinic usage of this method.

So we explored methods that accelerate the optimization procedure.

We researched the 4DCT imaging methods using multi-slice CT (MSCT) scanners and

proposed a method to find the temporal correspondences among the unsorted 4DCT im-

ages based on internal anatomical motion. Our method used all the CT slices at each table

position to estimate internal motion-based sorting indices, Patient studies showed that the

internal motion-based sorting greatly reduced tissue mismatch presented in the formed CT

volumes using the externally recorded surrogates of breathing motion.
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CHAPTER 1

Introduction

1.1 One big challenge in radiation therapy: respiratory motion

In 2006, more than 160, 000 people died from lung cancer in United States. That is more

than the next four leading causes of cancer death - colon, breast, pancreas and prostate -

combined, according to the American Cancer Society. Effective and efficient lung can-

cer treatment is critical. Surgical remover, chemotherapy and radiation therapy are three

main methods of lung cancer treatment. The work presented in this dissertation aims at

improving the accuracy and efficiency of the third method, radiation therapy of patients,

especially for the patients with lung cancer.

It has been reported that respiratory motion causes significant movement of tumors in

thoracic and abdominal region [3, 79]. Many tumors in those region may move as much

as 3 cm peak-to-peak during radiation treatment. Such large geometric uncertainties have

posed a big challenge to conformal radiotherapy treatment of patients with lung cancer.

Conformal radiotherapy requires that radiation dose is precisely delivered to tumors while

sparing adjacent normal tissue. Techniques such as Intensity Modulated Radiotherapy

(IMRT) (Fig. 1.1). use sophisticated software and multi-leaf collimator to shape the radi-

ation beam and change the intensity within each beam to deliver optimum doses. This de-

mands accurate tumor and critical structure delineation. Lack of knowledge of respiration

1
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induced motion possibly results in either insufficient dose to tumors, unnecessary dose to

surrounding healthy tissue, or both. Although treatment can be done under breathhold con-

dition by forcing patients to breathe shallowly or hold their breath by instruments [63,95],

such type of treatments is very uncomfortable and even impossible for some patients with

lung cancer, who may have difficulty holding their breath.

Beam 
Tumor 
(orange) 

Figure 1.1: Illustration of IMRT

Accounting for motion should improve the effectiveness and efficiency of radiother-

apy treatment. This can be achieved by the following techniques. One is to incorporate

the anatomical movement into treatment planing, rather than adding standard margin, to

reduce the total lung dose received by the patient [64,74,84]. The second type is gated ra-

diotherapy [78,86], in which the treatment plan is designed based on the tumor position in

a certain phase and during treatment the beam is turned on in that phase and turned off oth-

erwise. Another technique is the so-called four-dimensional (4D) radiotherapy, in which

the shape and the intensity of the beam is continuously adjusted to follow the movement

of tumors throughout the whole breathing cycle [32, 94]. All those techniques require the

knowledge of how the patient’s anatomy moves during breathing.
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1.2 Current 4D CT imaging methods

To obtain a complete picture of the patients’ anatomy at all times during breathing,

intensive work has been dedicated to four-dimensional (4-D) computed tomography (CT)

(three-dimensional (3D) space + one-dimensional (1D) time or breathing phase ) imaging

techniques [33, 44, 48, 55, 58, 66, 77, 87, 96]. With the availability of 4D CT, deformation

maps during breathing can be estimated by registering those CT volumes.

4D CT images can be acquired using either slice (single or multi-slice) CT scanners

or cone-beam CT (CBCT) scanners. Slice CT scanners usually rotate very fast but have

very limited axial coverage ( 2 − 4 cm) [39]. 4DCT imaging techniques using slice CT

scanners often acquire multiple two-dimensional (2D) slices at each table position, sort

these slices into several respiratory phase bins, and then stack those slices that are within

the same phase bins to form a 4D model [48,58,87]. Most current sorting methods depend

on an externally recorded breathing index associated with each CT slice. This sorting pro-

cess validates on the assumption that the internal motion is reproducible with the external

breathing index. Real respiratory motion is irregular. Correlation between the external

breathing index and the internal anatomical motion is often imperfect, leading to discon-

tinuity artifacts in the sorted CT volumes, as shown in the example in Fig. 1.2 [33]. On

the other hand, CBCT scanners have large axial coverage but rotate very slowly (1 min

per rotation). Because of the slow rotation of CBCT, 4DCT imaging methods using such

scanners also require a pre-sorting of the projection views into certain phase bins and

then reconstruct 3D CT volumes using subsets of the projection views corresponding to

the same phases [44, 66, 77]. Assumption of motion reproducibility remains a limitation.

Moreover, insufficient numbers of projections per breathing phase may also result in se-

vere artifacts in the reconstructed images, such as low contrast-to-noise ratio, blurring and
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streak artifacts. Rit et al. conducted experiments to study the effect of the number of

phase bins on the temporal and spatial resolution of the 4DCT reconstruction using CBCT

scanners [66].

Figure 1.2: Example of discontinuity artifacts seen in the 4D CTs acquiring from slice CT scanners. Pictures
are borrowed from the paper by Keall et al. [33].

Those 4DCT imaging techniques are very helpful in unveiling internal anatomical

movement caused by respiratory motion. However, limitations still exist, such as the mo-

tion reproducibility assumption with respect to the breathing index and insufficient projec-

tion views for 3D volume reconstruction. Degraded image quality due to those limitations

jeopardizes the accuracy of treatment planning. Our effort in this dissertation is toward

building 4D CT models that can better describe respiratory motion with high temporal and

spatial resolution and with less distortion.

1.3 Thesis outline and contributions

In this dissertation, we propose two methods to build 4D patient-specific respiratory

motion models: the deformation domain and the image domain.

• Iterative approach to estimate respiratory motion from a sequence of slowly rotating

cone-beam projection views.

This method models the motion as a time-varying deformation of a reference volume

and estimates the motion parameters by maximizing the similarity between the mod-



5

eled and measured projection views. In this work, we designed a parametric, con-

tinuous 4D deformable motion model. We also created a pseudo-periodicity regular-

ization for the estimator to compensate the limited gantry rotation of CBCT scanners

in one breathing cycle. We developed a method to accelerate the whole estimation

procedure by offering the optimization algorithm a fairly good initial point.

• Iterative sorting method of 4DCT images based on internal anatomical motion.

The purpose of this work is to find the correspondences among the unsorted 4D

CT images according to internal anatomical motion, rather than replying on exter-

nal breathing signals, which may not accurately reflect the actual motion state and

can lead to severe discontinuity artifact in the sorted 4D CT volumes (multiple CT

volumes at different breathing states). Using the proposed internal motion based sort-

ing, significantly better consistency appear in the resulted 4D CT volumes, hence can

facilitate more accurate image-guided radiotherapy.

This dissertation is organized as follows. Chapter 2 gives an introduction of back-

grounds that help understanding this work, essentially image registration and X-ray CT

imaging techniques. In Chapter 3 the DOV approach is explained in detail and is eval-

uated by simulation study and phantom experiment. Chapter 4 descried the acceleration

method for the DOV approach. In Chapter 5 the iterative sorting method for 4D CT images

is presented, followed by conclusion and future work at the end.



CHAPTER 2

Background and Preliminaries

2.1 Review of Registration

The purpose of image registration is to find a geometrical relationship between two

objects. Image registration has been extensively studied in recent years [7, 24, 40, 43, 54,

56,82,83]. It is widely applied in the medical image domain, such as, analyzing the tumor

changes before and after treatment, tracking the neural activity in the fMRI images, fusing

images with different modalities (CT, PET, MRI etc.) to enable more accurate diagnosis.

Other than the medical domain, image registration is also an important tool for the area of

computer vision, such as motion analysis and object tracking.

Image registration is defined as follows. Given two objects, the reference image fref(x)

and the target image ftar(x), where x ∈ R
d and d is the number of dimensions of the

objects, the task of image registration is to determine a geometric transformation T that

aligns each point in fref(x) with the corresponding point in ftar(x). From this definition,

image registration includes two essential parts, representation of geometric transforma-

tions and measure of alignment between two images (i.e., similarity measure), which we

describe next.

6
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2.1.1 Classification of geometric deformations

Geometric transformations can be partitioned into rigid transformations and nonrigid

transformations. The latter one can be further divided into affine transformations and

curved transformations. Some literatures may consider rigid transformations as a subclass

of affine transformations because both types are linear. Fig. 2.1 shows examples for each

of these three transformation types.

Rigid transformations are defined as the transformations that preserve all distances and

all angles (Fig. 2.1 a). This kinds of transformations only change the position of one

object and do not change the shape. Examples of rigid transformations can be found

in the behavior of rigid parts of the body, such as the bones or the head. This type of

transformation can be written in the following expression:

(2.1) x′ = Rx + t,

where x and x′ are the positions before and after transformation respectively, R is a d ×

d rotation matrix and t a translation vector. The elements of the rotation matrix R are

decided by the rotation angles. For example, the rotation matrix for a 2D image is

(2.2) R =






cos θ − sin θ

sin θ cos θ




 ,

where θ is the counter-clockwise rotation angle. Therefore, when using rigid transforma-

tion, the image registration problem is to determine merely the rotation angles and the

translations.

Nonrigid transformations are defined as those that do not preserve distances or angles.

Examples of this type of transformation can be found in the movement of soft tissue.

(Even for rigid body, we may need to apply nonrigid transformations in the case of inter-

patient registration.) This type of transformation includes two widely used subsets: affine
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transformations and curved transformations.

Affine transformations preserve the straightness and parallelism of lines, but allow

changes on angles between lines (Fig. 2.1 b). They can be represented by

(2.3) x′ = Ax + t,

where A is an d× d matrix. There is no restriction on the elements of the matrix A, unlike

the rotation matrix R in rigid transformations in which the elements are dependent to each

other through the rotation angles. Registration problems using affine transformations also

only need to decide a few parameters.

Curved transformations, also called elastic transformations, do not require the preser-

vation of angles or lines (Fig. 2.1 c). They are the most common transformations seen in

soft tissue, such as the liver, heart, thorax etc. In most applications, these transformations

are described using a local deformation field D,

x′ = x + D(x).

Since the deformation of the anatomy is generally smooth, it is reasonable to represent the

local deformation field as a sum of shifted basis functions:

(2.4) D(x) =
∑

i

cib(x − i)

where b(x) is a basis function and ci values are the coefficients. There are various choices

on the basis functions, such as polynomial functions, radial functions and spline functions.

Registration using curved transformation often involves a large number of parameters to

be determined.

2.1.2 Registration methods

Registration problems are usually solved by iteratively optimizing some criterion or

some similarity measure between the target object and the deformed reference object. In
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Original object

a. Rigid transformation

Deformation field

b. Affine transformation

c. Curved transformation

Deformed Object 

Figure 2.1: Examples of geometric transformations

terms of the size of data set used in the criterion, registration methods largely fall into three

categories: landmark-based registration, surface-based registration and pixel/voxel-based

registration.

Landmark-based registration methods utilize a set of homologous landmarks that are

identified manually in both the reference image and the target image [29]. Such methods

often optimize the average distance between the landmarks. A small number of points

is usually applied to rigid or affine transformations. Surface-based registration uses the

boundary surface of an anatomic object or structure [5, 26]. In these methods, the cor-

responding surfaces in the images are determined first, and then the transformation is

optimized to best align the surfaces. The previously mentioned landmark based registra-

tion is a special case of the surface based registration, since the surface can be viewed
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as a large set of points. Determination of the surface can be semi-automatic or fully au-

tomatic and these registration methods can be applied to both rigid transformations [26]

and nonrigid transformations [73]. However, a difficult problem related to the nonrigid

surfaced based registration is how to interpret the relationship between the deformation

of the internal points and the surface points. Pixel/voxel based image registration works

differently from the previous two classes in that it operates directly on the image intensity

values [40,61,82]. It has recently become the most interesting registration basis in medical

imaging applications, since these methods are fully automatic and can be applied to both

rigid and nonrigid transformations. The transformations are often found by iteratively op-

timizing some similarity measure calculated from the pixel/voxel intensity values, such

as the sum of squared differences, correlation coefficients, or mutual information. The

intensity-based method can also include the landmark, surface or shape feature as part of

its similarity measure to increase the accuracy of registration [27, 89].

2.1.3 Regularizations on image registration

Curved transformations are more general in representing human anatomy deformation.

Because the large number of parameters associated with curved transformations as well

as measurement noise, elastic registration problems tend to be ill-posed, i.e., there exist

many local minima which may be nonrealistic. Therefore regularizations are neccessary

for such registration problems. Accordingly, the cost function that a registration algorithm

intends to optimize includes some similarity terms of the two objects and regularization

terms on the deformation estimates. The similarity metrics have been discussed in the

previous section and here we briefly introduce choices on deformation regularizations.

Regularazations are usually designed based on some physical properties of the human

anatomical deformation. The following properties have been considered in the literature
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of elastic registration. Smoothness regularization, which can be measured by the deriva-

tives of the deformation field, encourages slow changes of movement between neighbor-

ing voxels. Invertibility regularization discourages folding. To penalize such undesired

deformation estimates, one may penalize negative Jacobian values of the estimated defor-

mation [35]. Consistency regularization encourages the deformations that aligns object A

to B and aligns B to A to be the same. To pose this regularization, one may register A to B

and B to A simultaneously and penalize the differences between the deformation estimates

of the two directions but then neither is accurate [7, 22, 27]. Other than those global prop-

erties of human’s anatomical deformation, local rigidity or imcompressibility according to

different types of tissue is also considered in registration [45,46,70,72,91]. The rigidity of

deformation can be measured by the deviation of Jacobian from an identity matrix. Such

penalties discourage elasticity at the rigid tissue such as bone. The imcompressibility or

volume-preservation property can be measured by the deviation of the determinant of Ja-

cobian from unity. It discourages expansion and compression of soft tissue such as liver

and breast.

2.1.4 Comparison of TPS and Cubic B-spline deformation models

Because the nonrigid deformation of thorax is our focus in this dissertation, here we

compare two deformation models used widely to describe anatomical deformation caused

by breathing: thin-plate spline (TPS) deformation model and cubic B-spline deformation

model. The two models have the different choices for the basis function b(x) in Eq. (2.4)

TPS deformation model

For TPS deformation model, the basis function is

U(x) = −‖x‖2 log
(
‖x‖2), (2D cases)

U(x) = ‖x‖ , (3D cases)(2.5)
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where ‖x‖2 = x2 + y2 for 2D cases and ‖x‖2 = x2 + y2 + z2 for 3D cases, U is defined

to have value 0 at the origin, where log is not defined for 2D cases. This basis function

is the so-called fundamental solution of the biharmonic equation 42U = 0. Solutions

of the biharmonic equation represent the form that a thin-plate of metal would take when

forced through certain fixed points with lowest physical bending energy, thus the name of

thin-plate spline. The actual 3D TPS interpolation map between two sets of landmarks

decomposes into two parts, an affine part and the principle warps as follows,

x′ = ax
0 + ax

1x+ ax
2y + ax

3z +
n∑

i=1

cxi U(‖Pi − (x, y, z)‖),(2.6)

y′ = ay
0 + ay

1x+ ay
2y + ay

3z +
n∑

i=1

cyiU(‖Pi − (x, y, z)‖),(2.7)

z′ = az
0 + az

1x+ az
2y + az

3z +
n∑

i=1

cziU(‖Pi − (x, y, z)‖),(2.8)

where Pi denotes the coordinate of landmark i, (x, y, z) and (x′, y′, z′) the coordinates

before and after transformation, and ax, ay,az, cx, cy , cz are coefficients. Given two sets of

landmarks, one in the reference image and another homologous one in the target image, the

coefficients can be found by solving equation arrays formed by substituting the landmark

coordinates into (2.6), (2.7) and (2.8) [6]. For medical image registration applications, the

landmarks are usually identified based on specific anatomical structures.

B-spline motion model

B-splines are smoothly connected piecewise polynomials. Specifically, here we refer it

to the most widely used B-spline function of degree n = 3, which is called cubic B-spline.

Its close-form expression is as follows,

(2.9) β(x) =







2
3
− |x|2 + |x|3

2
, 0 ≤ |x| < 1

(2−|x|)3

6
, 1 ≤ |x| < 2

0 |x| ≥ 2
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The d-dimensional basis is defined to be the tensor product of the 1D cubic B-spline, i.e.,

(2.10) β(x) =
D∏

d=1

β(xd),

A 3D B-spline deformation model, indcluding a identity part and an warping part, is ex-

pressed as follows,

x′ = x+
K∑

k=1

J∑

j=1

I∑

i=1

cxijk β

(
x− xi

hx

)

β

(
y − yj

hy

)

β

(
z − zk

hz

)

,(2.11)

y′ = y +
K∑

k=1

J∑

j=1

I∑

i=1

cyijk β

(
x− xi

hx

)

β

(
y − yj

hy

)

β

(
z − zk

hz

)

,(2.12)

z′ = z +
K∑

k=1

J∑

j=1

I∑

i=1

czijk β

(
x− xi

hx

)

β

(
y − yj

hy

)

β

(
z − zk

hz

)

,(2.13)

where {xi}, {yj}and{zk}) are the coordinates of the B-spline control knots, and hx, hy and

hz specify the the width of the B-spline function. The control knots are usually uniformly

distributed along each dimension, but one may also use nonuniform control grids. The

density of the control grids can be different for various applications. B-spline model with

a denser control grid will be able to describe signals containing higher frequency, or signals

that change more rapidly. Theory has also been established that B-splines could be a good

interpolator for continuous signals [85]. With the advance of computer techniques, B-

spline has caught more and more interest in engineers.

Comparison of TPS and B-spline deformation models

A direct comparison of the basis function (2.5) and (2.9) gives an obvious difference

between these two models, i.e., TPS basis has an infinite support while B-spline has a

very short support. Hence, changes at each knot will exert a global effect on the whole

deformation for the TPS model, while only a local effect for the B-spline model. In this

sense, B-splines should perform better at modeling local and subtle deformations.

To compare the performance of these two models in approximating the deformations of
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thorax, We conducted the following registration experiment on 11 pairs of inhale and ex-

hale thorax CT volumes, all with voxel size 0.19× 0.19× 0.51cm3. First, thin-plate spline

registration was used to align the inhale and exhale CTs, yielding a TPS deformation field.

Then we did a least square fitting of the TPS field into a cubic B-spline deformation field

and registered the same pair of CTs using the B-spline model starting from the fitted defor-

mation field. This registration yielded a B-spine deformation field. We compared the two

registration results to see if the B-spline model could improve registration accuracy, which

was evaluated by the differences of the actual and predicted positions of six landmarks.

These landmarks were carefully identified by experts from the locations of vascular and

bronchial bifurcations [11].

TPS registration was conducted by M. Coselmon et al. [9]. For the TPS registration,

30 control points were used to align the inhale CT to exhale CT. The control points were

manually chosen in both the inhale and exhale CTs. Control points in the inhale CT

were fixed, while control points in the exhale CT were perturbed in the whole registration

procedure. At each iteration, the coordinates of the control points in exhale CT were

updated to maximize the mutual information (MI) between the inhale CT and the deformed

exhale CT. Optimization method was the Nelder-Mead simplex algorithm. Registration

stopped when the MI change in three consecutive iterations had not exceed a threshold.

B-spline registration was implemented based on the code written by J. Kim [34]. For

the B-spline registration, mean of squared differences was used as the registration crite-

rion. The estimator was regularized to limit negative Jacobian determinant, which implies

nonrealistic anatomy deformations such as folding and splitting. We chose the B-spline

knots to be evenly distributed in the region of interest spacing by 16, 16 and 4 pixels along

left-right (LR), anterior-posterior (AP) and superior-inferior (SI) direction respectively.

The coefficient value at each knot was optimized using the Gradient Descent algorithm.
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Registration stopped when the criterion had dropped down to a threshold.

Since we were interested in the right lung only, masking was done to restrict the regis-

tration on the right lung. Computation time was saved by this masking image registration.

Table 2.1 summarizes the registration accuracy results for TPS and B-spline registration,

including comparisons of the mean difference, standard deviation and correlation coeffi-

cient between the actual and predicted landmark positions. As can be seen in this table,

B-spline registration resulted in accuracy improvement in most cases, with a decrease of

mean absolute differences up to 3mm in case 6. Also the correlation between the actual

and the predicted inhale CTs were much higher for B-spline registration than for TPS reg-

istration. The improvement achieved by B-spline registration indicates that the B-spline

deformation model has better than or at least equal performance with the TPS deformation

model in approximating thorax deformations caused by breathing. Moreover, the property

of local support of B-splines could save computation time and reduce the complexity of

optimization. These two advantages support our decision to use the B-spline model for our

later respiratory motion estimation problem, in which we deform a breathhold CT volume

through time to match its projection views to the measured sequential projection views,

which we view as a kind of “tomographic image registration” problems.

2.2 X-ray computed tomographic imaging systems
2.2.1 X-ray projection operator

Computed Tomography (CT) is a non-invasive imaging technique allowing the visual-

ization of the internal structure of an object. In a CT system, the patient is placed between

an X-ray source and an array of X-ray detectors. By rotating the source and the detector

simultaneously around the patient, a large number of X-ray projections from different an-

gles can be obtained during the data acquisition period. Ideally, each projection represents
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Table 2.1: Comparison of TPS and B-spline registration results. MAE and σ are the mean and standard
deviation of the absolute errors of the the predicted coordinates of landmarks at inhale w.r.t the
actual ones for each patient. cc is the correlation coefficients between the actual inhale and the
predicted inhale based on registration.

Patient No. TPS registration B-spline registration
MAE σ cc MAE σ cc

1 0.248 0.112 0.87 0.197 0.059 0.95
2 0.400 0.193 0.84 0.484 0.189 0.85
3 0.644 0.276 0.82 0.472 0.246 0.83
4 0.483 0.374 0.86 0.380 0.196 0.92
5 0.287 0.167 0.84 0.230 0.117 0.90
6 0.575 0.194 0.85 0.265 0.125 0.95
7 0.355 0.185 0.92 0.276 0.126 0.95
8 0.433 0.321 0.86 0.308 0.119 0.91
9 0.350 0.219 0.90 0.350 0.192 0.95

10 0.187 0.117 0.96 0.193 0.136 0.95
11 0.291 0.131 0.95 0.280 0.160 0.97

the summation or integration of the attenuation coefficients of the object being scanned

along a particular ray path.

x

y

object

projection

f(x,y)

PSfrag replacements φ

φ

rn

r n

rngφ(r)

L(φ, rn)

Figure 2.2: The geometry of line integrals.

Fig. 2.2 depicts the geometry of the line integral process in a CT system. Let f(x)

denote the attenuation coefficients of an object, gφ(rn) the projection value at the nth

element of the detector from an angle φ, then

gφ(rn) =

∫

Lφ,rn

f(x)dl,

=

∫ ∫

f(x, y)δ(x cosφ+ y sinφ− rn)dxdy, n = 1, . . . , N (2D case)(2.14)

where Lφ,rn
or {x cosφ+ y sinφ− rn = 0} denotes the line traced by the X-ray from the
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source to the detector, and N is the total number of detector elements. Eq.(2.14) is called

the Radon transform of f(x), and the space of (φ, r) is consequently called Radon space.

Let Aφ denote the projection operator for angle φ, then Eq.(2.14) can be written simply

as follows,

(2.15) gφ = Aφf,

where gφ = (gφ,1, · · · , gφ,N ). Ignoring beam hardening effects, the measurements Y from

an X-ray detector are related to the projections by Beer’s law [53]:

(2.16) E[Ym,n] = Im,n e
−gφ,n + Sm,n, n = 1, . . . , N,

where E[.] stands for the expectation of a random variable, Im,n is a constant related to the

incident X-ray intensity, and Sm,n denotes the scatter contribution to gφ,n.

Eq. (2.14) defines the forward projection operator, which maps an object from the

image domain into the projection domain. Another frequently used operator in X-ray CT

imaging is backprojection, which takes a function defined on each projection line and

“smears” or projects it back over the line to produce an image. It maps an object from the

projection domain into the image domain. Fig. 2.3 illustrates this backprojection process.

The mathematical representation of the backprojection operator for a single projection is

as follows,

(2.17) bφ(x, y) = gφ(rn)δ(x cosφ+ y sinφ− rn),

where bφ(x, y) denotes the backprojected image.

The 2D Fourier-Slice theorem states that the Fourier transform of the projection of the

object onto a line is equal to the Fourier transform of the object on the line through origin

and parallel to the projection line, i.e.,

(2.18) Gφ(ρ) = F (u, v)|u=ρ cos φ,v=ρ sin φ,
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Figure 2.3: Illustration of the backprojection operator.

whereGφ(ρ) is the 1D FT of gφ(rn) and F (u, v) is the 2D FT of f(x, y). The Fourier-Slice

theorem in a higher dimension can be defined in a similar way. According to the Fourier

Slice theorem , a 2D object can be reconstructed using Filtered Back Projection(FBP)

method from a π angle collection of projection data in Radon space [53, 59, 99]. The

object can also be reconstructed using statistical iterative methods, in which one minimizes

a cost function of the measured projections and the modeled projections of the estimated

object [15, 18].

Two essential operators for modeling X-ray CT imaging process are the forward pro-

jection and backprojection, which are frequently used in CT image reconstruction as well

as other applications related to X-ray CT imaging such as artifact correction, simulation

or 3D-2D registration of CT volumes and X-ray fluoroscope images. Currently there

are several approaches available for computing projections, including pixel(/voxel)-driven
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methods, ray-driven methods and distance-driven methods, whose principles are briefly

explained next.

Pixel-driven methods

In pixel-driven backprojection, the intersection of the detector and a line connecting

the X-ray source and the center of the pixel of interest is decided first (Fig. 2.4),. Since the

location of the intersection may not be exactly at the sample points of the detector, interpo-

lation is performed to determine the value at the intersection and the value is accumulated

over all projection angles at the pixel [23]. A backprojection image is formed by looping

this process over each pixel. Pixel-driven forward projection is defined as the adjoint of the

backprojection. Pixel-driven is suitable for backprojection, but is rarely used for forward

projection since it results in high frequency artifacts in the generated projections [13]

Pixel of Interest

Detector

X−ray source

Intersecction

Figure 2.4: Pixel-driven back projection

Ray-driven methods

Ray-driven forward projection works on each ray passing from the X-ray source to the

center of the detector element of interest (Fig. 2.5). The intersections of the ray with the

image are determined first, and the value of each intersection location is accumulated to

be the projection value at that detector element. The value at each intersection location
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is interpolated and is weighted by the intersection length of the ray within the pixel cell

for accumulation. Ray-driven backprojection is defined to be the adjoint operation of

the forward projection. Typical ray-driven projection methods include Siddon’s method

[75] and Joseph’s method [28]. Ray-driven projection is popular for forward projection,

but is seldom used in backprojection because it generates high-frequency artifacts in the

backprojection images [13].

Detector

X−ray source

Detector element of interest

Intersections

Figure 2.5: Ray-driven forward projection

Distance-driven methods

Distance-driven projection is a recently proposed method [13, 14]. It works by map-

ping the boundary of all pixels in an image row and all detector cells onto a common

axis (e.g. x axis in Fig. 2.6) (Fig. 2.6). Based on these boundaries, the overlap length

between each pixel cell and each detector cells on x-axis is calculated and then normal-

ized to be the weight used in forward projection and backprojection (symmetric). So the

distance-driven forward and backprojection operators are transposed and adjoint to each

other. This methods eliminate the high-frequency artifacts present in the previous two

methods. The distance-driven methods have comparable image quality with the ray-driven

and pixel-driven methods in forward projection and backprojection respectively, but take

less computation time than the other two kinds of methods. [13].
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Detector

X−ray source

x

Figure 2.6: Distance-driven projection

2.2.2 Statistical properties of projection views

X-ray projection images are created from intensity values that are related to the number

of photons striking a detector element in a finite period of time. The random quantum

effects, which are often modeled by a Poisson distribution [1],may dominate over other

sources of measurement errors. So it is often assumed that the projections are independent

Poisson random variables, i.e.,

(2.19) Ym,n ∼ Poisson(Im,ne
−gφ,n + Sm,n),

where Im,n is a constant related to the incident X-ray energy, and Sm,n the scatter distribu-

tion to gφ,n. More complicated noise models have also been developed, such as Compound

Poisson model [92] and Poisson-Gaussian mixture model [76]. These noise models are im-

portant in designing statistical image reconstruction algorithms. We will not discuss them

further in this dissertation.

In cone-beam systems, the amount of scattered radiation detected is much higher than

that in fan-beam systems, because the use of a large cone angle and a 2D detector allows

more out-of-slice scattered photons to reach the detector elements. Experiments showed

that the scatter to primary ratio (SPR) in a cone-beam system could be up to 3 or more

[19, 81] . X-ray scatter poses a severe physical limitation to image quality in CBCT,
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resulting in contrast reduction, image artifacts (cup and streak artifacts) and inaccuracy of

CT number. An anti-scatter grid and air gap are often used to reduce x-ray scatter, and

software algorithms are often used to handle the residual scatter. A common software

correction method includes an estimation of the scatter distribution and a subtraction of

the estimated scatter from the measured projection image. There are a few popular ways

to estimate scatter effect. One is to model the scatter as the convolution of a function with

the primary counts. The function could be approximated by an exponential or Gaussian

kernel [47]. Another way is to measure the scatter effect using a beam stop array [57].

One may also estimate the scatter by using using the Monto-Carlo simulation [8].

2.2.3 Motion effects: inconsistent projection views

Most CT image reconstruction algorithms assume that the object does not move during

the scan. This stationary condition is violated when there exists organ motion during the

scanning process and the collected projections are inconsistent. This inconsistency leads

to severe artifacts in the reconstructed images, such as blurring, partial volume, and streak

artifacts, especially for organs in thorax and abdomen regions where may present up to

3cm tissue movement. There are various methods being developed to reduce motion arti-

facts in the reconstructed images.. They can be largely divided into three categories: fast

scanning, reconstruction for motion compensation and gated image acquisition. In the first

class, researchers endeavor to shorten scanner rotation times for data acquisition to reduce

motion artifacts and improve temporal resolution [25, 67, 68]. For slice CT scanners, it

can rotate as fast as 0.5 sec per rotation and projections of slightly larger than half rotation

are sufficient for one reconstruction. Even with this fast scanner, motion artifacts are still

present in the reconstructed images, as shown in Fig. 2.7. In the second class, reconstruc-

tion algorithms for motion compensation are based on assumptions of a prior deformation



23

model [10, 71, 88], or based on the estimation or detection of motion using extra hard-

ware [16, 49] or from extra data set [44]. In most of these work, only the deformation

models that preserve lines are considered. However,the movement of human anatomy are

much more complex than those line-preserved deformation models. In gated image acqui-

sition techniques, which are designed for 3D CT volume reconstruction, devices are used

to measure the breathing state either as a trigger signal to initiate the scan to acquire data

at a certain breathing state [20], or as a metric to sort the CT scans into bins of equivalent

breathing states to form a volume [48, 87]. However, this type of methods highly depend

on the reproducibility of the organ motion with respect to the external breathing index.

Moreover, the 2D slices that are stacked tot form a 3D volume may still contain motion

artifact. Rather than working on motion reduction directly, in DOV, the method we will

present in the next chapter, we use those motion-included projection views to estimate the

anatomy motion, assuming available a static reference volume of the anatomy such as a

breathhold treatment planning CT. With the motion estimated by DOV and a reference

volume, 4D CT images can be generated by deforming the reference volume according to

the estimation motion.

Figure 2.7: A slice reconstructed from a GE 8-slice Lightspeed CT scanner (0.5 sec per rotation).Motion
artifacts exist at around the edge of the mass in the left lung.



CHAPTER 3

Respiratory motion estimation from sequential X-ray cone-beam
projection views (DOV)

This chapter describes one of the main work of this dissertation, a method that estimates

respiratory motion using a deformable motion model from a static reference volume and

a sequence of slowly rotating, free-breathing projection views. We name is Deformation

from Orbiting Views (DOV). It is essentially a dynamic 3D-2D registration method. 3D-

2D image registration had been widely used for patient set up estimation in radiotherapy

system. It compares the digitally rendered radiographs (DRR) of the 3D treatment plan-

ning CT volume to fluoroscope or electronic portal images to optimize a rigid patient setup

difference [37, 42, 60]. In our dynamic 3D-2D registration, we simutaneously optimize a

sequence of time dependent nonrigid deformations to register a 3D CT volume to a se-

quence of 2D proejction views, which is much more challenging than the common 3D-2D

registration problems.

Building 4D patient-specific deformable models has attracted considerable attention in

these several years. A straightforward method is to register a 3D CT volume with 4D

CT volumes which contain multiple 3D CT volumes each at a pre-defined breathing state

over the respiratory cycle. However, limitations on current 4D CT imaging techniques,

which has been briefly mentioned in Chapter 1 and will be further discussed in Chapter 4,

will certainly extend into the deformation models estimated from those 4D CT volumes.

24
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McClelland et al. [55] proposed method to build 4D motion model directly from a high

quality reference volume and the unsorted 4D CT images which contain free breathing

multi-slice CT “slabs”(2 − 3 cm thick) at each axial table position. They first registered

the reference volume to each of the free-breathing CT slab using B-spline based free-form

deformation, then constructed motion model by a temporal fitting of the registration results

over one respiratory cycle, assuming they have available the phase position at which each

slab was acquired, for example, from an externally monitored breathing index. Finally

they concatenate the motion model of each slab to form a 4D motion model of the whole

volume. It is a novel method and can provide one cycle of 4D motion model averaged

over a couple of respiratory cycles, which can facilitate automatic target propagation and

combining of dosed over one breathing cycle. The averaged motion model indicates that

this 4D motion model is not really along the natural time axis, but along a parameterized

time axis. Moreover, the registration step were operated separately on each small volumes

of 2− 3 cm thickness, hence the registration result may be less stable and robust; the con-

catenation step may also yield discontinuity artifacts at the slab boundaries. In our DOV

method, we dynamically register a sequence of projection views spanning over multiple

breathing cycles to a high quality reference CT volume, and we use a B-spline based mo-

tion model which is continuous in both time and space domain. Hence the so estimated

motion model are with the natural time axis and is also consistent in the spatial domain

because of no concatenation necessary in our method.

Most of the content in this chapter can be found in our recently published papers

[101, 102]. We explain the theory of DOV and then present our simulations and phan-

tom experiment.
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3.1 Theory

DOV is a method that estimates respiratory motion, a sequence of time-dependent de-

formations, from a sequence of slowly rotating X-ray cone beam projection views with

the availability of a static reference CT volume. Estimation is often an inverse procedure

aimed at recovering some unknown parameters from available measurements. Generally,

for an iteratively solved estimation problem, there are three main tasks: define a suitable

system model that describes the mathematical relationship among the inputs and the pa-

rameters, choose a good cost function of the parameters according to the system model,

and select appropriate optimization algorithms to find the values of parameters that mini-

mize or maximize the cost function. Accordingly, we explain the DOV frame work from

these three points.

3.1.1 The system model

The proposed motion estimation method uses two sets of data. One is a reference tho-

rax CT volume obtained from a conventional fast CT scanner under breathhold conditions,

denoted fref(x),x ∈ R
3. The other is a sequence of projection views of the same patient

acquired at treatment time using a slowly rotating cone-beam system (1 minute per rota-

tion), denoted Ym, m = 1, . . . ,M (M is the number of projection views). We establish

the relationship between the two data sets fref(x) and Y in this section.

We need to first address one concern about the slowly rotating cone-beam systems.

Although the cone-beam scanners rotate slowly, the acquisition time of each projection

view is short. For example, recently developed systems can acquire 15 frames per sec-

ond, which indicates that the imaging time for each frame is less than 0.067 second. We

therefore assume that the respiratory motion is negligible within each single projection

view.
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Let the motion during the scan be denoted as T θ(x; t), a time-dependent deformation

controlled by parameters θ. Since the projection views and the reference volume are all

from the same patient, the ideal projection views gm can be related to fref in terms of the

CT imaging principle through the motion as follows,

gm = Aφm
ftm ,(3.1)

ftm(x) = fref(T θ(x; tm)),(3.2)

where Aφm
denotes the X-ray projection [53] operator for projection angle φm, and ftm is

the deformed volume at time tm. Combining (3.1) and (3.2), we obtain

(3.3) gm = Aφm
fref(T θ(·; tm)).

However, in practice the projection views gm are estimated from the measured photon

counts Ym, which are always degraded by noise, dominated by the Poisson effect [1]. For

simplicity, we assume a monoenergetic model to describe the relationship between gm and

Ym as follows,

(3.4) Ym,n ∼ Poisson(Im,ne
−gm,n + Sm,n),

where Im,n is a constant related to the incident X-ray intensity, Sm,n denotes the scatter

contribution to Ym,n and n is the detector element index. Then the projection views used

for DOV can be estimated from Ym as follows,

(3.5) ĝm,n = log

(

Im,n

Ym,n − Ŝm,n

)

.

In (3.5), Im,n can be measured by an air scan and Ŝm,n is an estimate of the scatter contri-

bution. There are a few popular ways to estimate scatter. One is to model the scatter as the

convolution of a function with the primary counts. The function could be approximated

by an exponential or Gaussian kernel [47]. Another way is to measure the scatter effect
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using a beam stop array [57]. One may also estimate the scatter by using the Monto-Carlo

simulation method [8]. The DOV method can use any such scatter estimates.

We need to choose a deformation model to complete (3.3). Usually the movement of

tissue caused by breathing is nonrigid and smooth, except the case of sudden cough or

sneeze, which should be avoided during data acquisition. Therefore the anatomy deforma-

tion during breathing can be characterized by smooth curved transformations, which can

be approximated by a sum of weighted shifted basis functions as described in 2. Since the

temporal movement of anatomy also has the smoothness property, we adopt the following

B-spline based motion model,

(3.6) T θ(x; t) = x +
∑

j

∑

i

θj,i β

(
t− τj

∆t

)

β

(
x − xi

∆x

)

,

where β(·) is the cubic B-spline function and β(x) the tensor product of cubic B-spline

functions, i.e., β(x) =
∏D

d=1 β(xd), x = (x1, · · · , xD), τj and xi the spatial and temporal

knot locations, ∆x and ∆t control the width of the spatial and temporal basis functions re-

spectively, and θ the knot coefficients. There are two advantages of using a cubic B-spline

model. One is that the small support of the cubic B-spline function eases the computation

and optimization. The other is that the density of a B-spline control grid can be locally ad-

justed according to the characteristics of the signal to be fitted. For example, one can place

more knots at regions where the signal changes faster and less knots otherwise. Although

we use a B-spline based motion model, T θ(x; t) generalizes to any other suitable repre-

sentations. Note that in (5.2) T θ(x; t) contains motions in three orthogonal directions,

each controlled by a group of B-spline coefficients. Take the motion in the x-direction for

example,

(3.7) T x
θ (x; t) = x +

∑

j

∑

i

θx
j,i β

(
t− τj

∆t

)

β

(
x − xi

∆x

)

,

In Equation (3.3) the deformation is operated on a continuous reference image fref(x).
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But the actual reference CT volume we obtain is discrete, therefore we need to interpolate

it to a continuous signal. Again, we chose the uniform cubic B-splines to interpolate the

discrete reference volume as follows,

(3.8) fref(x) =
∑

i

ci β(x − i) .

ci are set such that we have a perfect fit at integers, i.e., the intensity value of fref(x) is

exactly the same as that of the discrete reference image at each integer pixel. They can be

solved conveniently by the digital filtering approach as described in [85].

To sum up, we established the relationship between the two measurements that are used

by DOV in this section. The following block diagram summarized this relationship. In this

block diagram we treat all the noise and artifacts caused by data acquisition as additive

noise. Based on the motion model (5.2), the estimation goal is to find the motion parame-

ters θ, containing three groups of knot coefficients for the three directions {x, y, z}, from

the projection views ĝm and the reference volume fref.
PSfrag replacements

fref ft = fref(Tθ(x; t))
ĝ

Tθ(x; t) A

Motion Model Projection

Noise ε

Figure 3.1: System model of the measurements.

3.1.2 Regularized least-square estimator

As stated above, we need to find the motion parameters from a sequence of projection

views and a static anatomy prior of the patient. There is no analytical solution to this

problem. Moreover, the problem is ill-posed. Usually for such inverse problems, the

unknown parameters are solved by minimizing or maximizing a cost function based on
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the system model. For an ill-posed inverse problem, i.e., a problem whose solution is

not unique or does not exist for arbitrary data or does not continuously depend on data,

a prior information is often necessary to “reject” those unrealistic answers [4]. Thus the

cost function usually contains regularization terms besides data fidelity terms.

DOV is essentially a registration problem. But unlike the traditional image registration

problem, DOV works with the projection domain data and is thus more challenging. For

example, a 3D image registration task is to find a 3D deformation field from two 3D

images, while DOV is tasked to find k 3D deformation fields from one 3D image and n

2D projection views, where k ≥ n. Evidently, DOV attempts to estimate more unknowns

from less information. Thus, regularization is essential.

In terms of the relationship between gm and fref described in (3.3), we construct an

regularized estimator of θ as follows,

(3.9) θ̂ = arg min
θ

(
D({ĝm}, {pm(θ)}) + βsRs(θ) + βtRt(θ)

)
,

where {pm(θ)} = {Aφm
fref(T θ(x; tm))} is the modeled projection views of the warped

reference volume, D(·, ·) is a data fidelity term,Rs(θ) is a motion roughness penalty term,

Rt(θ) is a temporal motion aperiodicity penalty term, and βs and βt are scalars that control

the trade-off between the three terms. We elaborate the three terms next.

Data fidelity term

This section elaborates on the data fidelity term in (3.9). We investigated the following

two intensity-based metrics: sum of squared differences (SSD) and a correlation-based

metric. Consequently we call the estimators using those two metrics Least-Square (LS)

estimator and correlation-based estimator respectively.

• SSD
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The expression of SSD is as follows,

(3.10) SSD({ĝm}, {pm(θ)}) =
1

2MN

M∑

m=1

‖ĝm − pm(θ)‖2

where M is the number of projection views and N the number of detector elements of

the cone-beam scanner. This metric works well for registration of images from the same

modality. This rule applies to DOV as well. To yield good estimates using this approach,

the X-ray energies should be the same for imaging the static CT and for acquiring the

cone-beam projection views. In addition to this, extra effort may be needed to correct the

imaging artifacts such as Compton scatter effects, beam hardening effects, and presence

of the radiotherapy table in the projection views (not present in the prior CT). The SSD

represents “best case” performance when such effects are corrected. However, in practice

it may be difficult to correct for all such effects, so the following correlation-base metric

may be preferable.

• Correlation-based metric

In the correlation-based estimator, we used the negative-logarithm of the correlation coef-

ficient (LCC) as the data fidelity metric. The expression is as follows,

LCC({ĝm}, {pm(θ)})

=
M∑

m=1

− ln(cor(ĝm,pm(θ)))

=
M∑

m=1

(
− ln

N∑

n=1

(gm,n − ḡm)(pm,n(θ) − p̄m(θ)) +

1

2
ln

N∑

n=1

(gm,n − ḡm)2 +
1

2
ln

N∑

n=1

(pm,n(θ) − p̄m(θ))2
)
,

(3.11)

where ḡm is the mean value of ĝm and p̄m(θ) is the mean value of pm(θ). In this data

fidelity term, we use a logarithm to separate the numerator and denominators in the expres-

sion of the correlation coefficient, which simplifies the calculation of its gradient. Because
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the logarithm function is increasing, the logarithm step does not change the monotonic-

ity of the correlation coefficient function. We negate the logarithm correlation coefficient

because we are minimizing the cost function in the estimator (3.9).

Correlation-based metrics are suitable when the intensities of the images are linearly

related. In X-ray imaging, the attenuation is larger when the X-ray energy is stronger. So

we may expect the correlation-based estimator can perform well even if the energy spectra

used for the conventional CT scanner and the cone-beam CT scanner are not identical.

Penalty design

This section elaborates on the penalty terms in (3.9).

• Spatial and temporal motion roughness penalty

The motion roughness penalty discourages rapidly changing breathing motion estimates

that would be unrealistic. The spatial motion roughness can be measured qualitatively by

the squared differences between the displacements of adjacent voxels, and the temporal

motion roughness by the squared differences between the displacements of the same voxel

at adjacent time points. To simplify this term, we replaced the displacement differences

by the motion parameter differences. With this simplification, this term can be expressed

mathematically as

(3.12) R(θ) =
1

2
‖Cθ‖2 ,

where C is a differencing matrix, with a typical row having the form (. . . , 0,−1, 1, 0, . . .)

for the first-order roughness penalty and (. . . , 0,−1, 2, 1, 0, . . .) for the second-order rough-

ness penalty. It can be shown that the second-order differencing matrix has a very similar

high-pass structure to that for penalizing displacements under a cubic B-spline deforma-

tion model. By including this penalty term, the optimization is guided toward a solution

with a smoother breathing motion.
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• Aperiodicity penalty

The aperiodicity penalty encourages similarity between deformation estimates that corre-

spond to similar respiratory phases. This helps ensure temporal regularity. If the temporal

knots are evenly spaced in each breathing period and each breathing period contains the

same number of knots, then the temporal deformation similarity can be quantified by the

closeness of the coefficient values of knots that are located at similar respiratory phases,

for the sake of simplicity. For example, in Fig. 3.12(solid line) there are four breathing

cycles, each containing 5 locally evenly spaced knots. Thus, every fifth knot corresponds

to a similar phase, such as the knot group (1, 6, 11, 16), the knot group (2, 7, 12, 17), and

so on. Based on this design, the aperiodicity penalty term also takes the form of Eq. (3.12),

with the matrix C having a typical row of (. . . , 0,−1, 0, . . . , 0, 1, 0, . . .). The number of

zeros between −1 and 1 is related to the number of knots placed in each breathing period.

To determine the correspondence between temporal deformations, we extract a respiratory

signal from the SI position change of the diaphragm in the projection views. Details of the

extraction method are given in Sect 3.2.

We add this penalty term to help overcome the limited gantry range for each breathing

cycle. Current radiotherapy systems can rotate 6◦ per second, spanning around 20−40◦ in

one breathing cycle. Therefore the measured projection views in one breathing cycle may

poorly reflect the motion along certain directions. For example, if the gantry starts from 0◦

(anterior view), then the projection views in the first breathing cycle are less informative

about the AP motion, leading to poorer motion estimation accuracy along the AP direction

in the absence of any other prior information. However, the projection views taken over

the next breathing cycle can better capture the motion along AP direction. By using an

aperiodicity penalty term, motion information contained in the adjacent breathing cycles

can be “shared” to help compensate for the angular limitation.
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3.1.3 Optimization

we use iterative methods to search for θ̂. We experimented on several numerical algo-

rithms [62] and found that the Conjugate Gradient (CG) algorithm worked better the others

we experimented, such as the Gradient Descent (GD), the Levenberg-Marquadt(LM) and

Quasi-Newton (QN) algorithms. The GD algorithm chooses the search direction accord-

ing to the gradient vector, offering slow convergence and being easily stuck at a local

minima for DOV. The LM offered fast convergence for simulated small-size dataset, but

was impractical for 3D clinical data due to the computation of a large-sized Hessian. The

QN algorithm approximates the inverse of Hessian by updating a preconditioning matrix.

Based on our experiments, the approximation was not accurate enough to guide the opti-

mization toward a correct direction for this problem.

The CG algorithm does not use the gradient vector directly as its search direction. It

modifies the gradient search directions so that the current search direction is conjugate

to all the previous search directions. This modification ensures a more efficient search

over the parameter space and hence converges faster than the simple Gradient Descent

algorithm. The updating scheme for each iteration n includes the following steps,

q(n) = ∇ψ(θ(n)) (gradient)

p(n) = Pq(n) (precondition)

γn =







0, n = 0

real(〈p(n), q(n)−q(n−1)〉)

real(〈p(n−1), q(n−1)〉)
, n > 0

d(n) = −p(n) + γnd
(n−1) (search direction)

αn = arg min
α∈R

ψ(θ(n) + αd(n)) (stepsize)

θ(n+1) = θ(n) + αnd
(n) (update).

(3.13)
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We set P = I , which is actually the unpreconditioned case. Ideally the step size αn

should be solved exactly. However, convergence can also be guaranteed if αn satisfies the

Wolfe conditions []. To save computation time, we used only one iteration of the Newton

update to find a sub-optimal step size α̂n as follows,

(3.14) α̂n = α0 −
ψ̇(α0)

ψ̈(α0)
,

where the initial value α0 is set to be zero to simplify the calculation. The proof is yet to

be done that such selected α̂n is within the range specified by the Wolfe conditions. The

gradient q(n), the first derivative ψ̇(α0) and the second derivative ψ̈(α0) can be found from

(3.9) using the chain rule. Refer to Appendix A for details of the calculation.

To accelerate the optimization procedure and to avoid local minima, we also applied a

multi-resolution technique [82].

3.2 Implementation issues
3.2.1 Extraction of respiratory signal from projection views

As described in the Sect 3.1.2, We need a respiratory marker to determine the cor-

respondences between the temporal knots for the aperiodicity penalty. We adopted and

simplified the respiratory signal extraction method presented by Zijp’s [105]. The basic

idea is to capture the SI transition of the diaphragm in the collected projection views. The

method uses the following four steps:

Step 1: we applied a gradient filter (e.g., h = [−1, 1]) to each 2D projection image

along the Cranial-Caudal (CC) direction. This step is to emphasize the diaphragm-like

transition feature in each projection image (Fig. 3.2).

Step 2: We took the absolute value of each gradient image then projected onto the CC

axis (Fig. 3.3). The “image” formed by combining all the 1D projections clearly shows

some breathing pattern near the diaphragm region, while in the other regions there is no
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(a) The X-ray pro-
jection image

(b) Its CC gradient
image

Figure 3.2: The X-ray projection image (a) and its CC gradient image (b).

obvious intensity contrast (Fig. 3.4).

(a) The absolute value of the
gradient image

(b) Its axial projection

Figure 3.3: The absolute value of the gradient image (a) and its axial projection (b).

Figure 3.4: The image formed by combining the 1D axial projections. Each column corresponds to a single
1D projection.

Step 3: the centroid of each 1D projection was calculated and ordered in time. The

formula for calculating the centroid of a 1D signal sn, n = 1, · · · , N , is

centroid =

∑N

n=1 nsn
∑N

n=1 sn

.
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Step 4: the centroid signal was normalized and then smoothed by using a simple moving

average filter.

As shown in Fig. 3.12, the estimated respiratory signal (dashed line) presents similar

peak and valley patterns as that of the true respiratory signal (solid line). An advantage of

this projection-view based method is that the resulting signal is related to internal anatomy

positions, unlike external monitoring methods. We use this signal to decide the phase

correspondence between temporal knots for calculating the aperiodicity penalty term. This

is its only use here. Since this signal is not extremely important for the design of our

motion model, a rough estimation of the breathing signal is sufficient for DOV.

0 5 10 15 20 25 30
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 True breathing signal
Estimated breathing signal
Ideal temporal knot distribution
Automatic temporal knot distribution

Figure 3.5: An illustration of the extracted breathing signal borrowed from our later simulation results. The
solid line represents the true breathing signal and the dashed line represents the extracted breath-
ing signal.

3.2.2 Use of Kronecker operator in B-spline related computations

Let us start from a 2D signal, f(x, y), represented by B-spline finctions as follows,

(3.15) f(x, y) =
J∑

j

I∑

i

θij β

(
x− xi

hx

)

β

(
y − yj

hy

)

.

Suppose we want to calculate F , a discrete image of f(x, y) at positions {(xnx
, yny

), nx =

1, · · · , Nx, ny = 1, · · · , Ny}. If we define Bx to be an Nx × I matrix with its element
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Bx(nx, i having the following value

(3.16) Bx(nx, i) = β

(
xnx

− xi

hx

)

,

and define By an Ny × J matrix similarly, the calculation of FNx×Ny
is equal to the fol-

lowing linear operation,

(3.17) F = Bxyθ
s,

whereBxy = By ⊗ Bx, representing the B-spline matrix, and θs is the column-wise stack

of array θij Here ⊗ denotes the kronecker product.

In our case, we actually use a 4D B-spline tensor product as the basis function (3D

spatial and 1D temporal (x, y, z, t)), such as the calculation of deformation in Eq. (3.7).

The B-spline operator for this 4D case is

(3.18) Bxyzt = (Bt ⊗Bz ⊗By ⊗Bx).

The size of Bxyzt is (NxNyNzNt) × Nθ, where Nx, Ny, Nz and Nt are the number of

positions where the values of the function are required to be calculated along the four

dimension respectively and Nθ is the total number of B-spline knots. Directly forming

the matrix Bxyzt and then multiplying with the coefficient vector θs may require huge

computation memory. To overcome possible memory problem, we utilize the following

property of the kronecker product:

When dimensions are appropriate defined for the product ABC to be well defined,

(3.19) (ABC)s = (C ′ ⊗ A)Bs.

Hence the large matrix multiplication can be decomposed into many small matrix multi-

plications and it is not neccessary to store the large B matrix.
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3.3 Simulation

This section presents our simulation results. The simulated datasets were generated

based on several real clinical planning CTs and the geometry of a slowly rotating cone

beam CT system, and thus should reflect sufficiently realistic conditions to illustrate the

performance of this method. Furthermore, in the simulations absolute truth is known,

permitting quantitative evaluation.

3.3.1 Simulation setup
Data setup

This section describes how we generated sequential cone-beam projection views of a

moving CT volume using three breathhold treatment CT volumes of the same patient at

different breathing phases (0%, 20%, 60% vital capacity above tidal exhale).

We selected the thorax CT at the end of exhale (0%) as our reference volume (Fig. 3.6),

with 192 × 160 × 60 voxels and a voxel size of 2 × 2 × 5mm3. We then generated 70

cone-beam projection views of the warped reference volumes over a 180◦ rotation. (The

warping process is described in the next paragraph.) The simulated cone-beam system had

a flat-panel detector of 180 × 200 elements of size 4 × 4mm2. The source to isocenter

distance and the isocenter to detector distance were 1000mm and 500mm respectively.

The gantry rotated 6◦ per second and spanned 180◦ over the four breathing cycles. We

used a distance-driven method [14] to calculate the projection views. To simulate realistic

projection views, scatter and Poisson noise were added according to the statistical property

of projection views as described in (3.4). We first converted the projection views from

attenuation to primary photon counts. The incident intensity Im,n in (3.4) used for this

conversion is 106 counts per ray [93]. We then applied a convolution method to generate

the scatter counts, in which a normalized 2D exponential kernel with a FWHM of 4cm [47]
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and a scatter to primary ratio (SPR) of 10% was convolved with the primary photon counts.

In practice the SPR may be higher. Finally the scatter counts and the primary counts

were added together and their sums were treated as parameters of the MATLAB function

“poissrnd” to generate Poisson distributed noisy projection views. Fig. 3.7 displays several

simulated cone-beam projection views.

(a) Axial view (b) Coronal view (c) Sagittal view

Figure 3.6: The three views of the reference thorax CT volume. (Points in the images are the projection
positions on the three planes of the voxels randomly selected for accuracy plots .

(a) 28
◦ (b) 70

◦ (c) 112
◦ (d) 154

◦

Figure 3.7: Examples of simulated motion-included cone-beam projection views. From left to right, the
projection angles are 28◦, 70◦, 112◦, 154◦.

The respiratory motion we simulated for generating the dynamic cone-beam projection

views was based on the three breathhold CT volumes (0%, 20%, 60% vital capacity).

We first registered the 20% and 60% volumes to the 0% volume using a B-spline based

deformation model. Then we selected some voxels near nonuniform regions such as the

top surface of diaphragm and the intersections of bronchi, which have smaller registration
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errors. Afterward, we found the time points t20 and t60 corresponding to the 20% and 60%

tidal volumes that best fit the SI displacement of the selected voxels into the following 1D

temporal motion model (3.20) [52],

(3.20) z(t) = z0 − a cos6(πt/τ − π/2),

where z0 is the SI position at exhale, a is the amplitude of the motion. Knowing the de-

formations at three time points and with the symmetry assumption between the motions

of exhalation and inhalation, we performed temporal interpolation (separable for each of

three directions) of the deformations at each voxel using the MATLAB function “csape”

to form one cycle of temporally continuous breathing motion. Four breathing cycles with

a total 30-seconds duration were simulated, each with different breathing periods and am-

plitudes. The solid line in Fig. 3.12 shows the simulated respiratory signal.

To illustrate the motion artifact in the direct reconstruction, we applied FBP method to

the simulated motion-included projection views and compared the reconstructed volume

with that reconstructed from motion-free projection views (generated using the same ref-

erence volume under the same cone-beam geometry but without motion) (Fig. 3.8). The

reconstructed CT volumes from motion-included and motion-free projection views are

displayed in Fig. 3.9 and Fig. 3.10 respectively. It is obvious that the images in Fig. 3.9

present many blurring artifacts at the internal lung structures and the edge of the chest wall

and diaphragm region because of the inconsistent projection views caused by respiratory

motion. Since our goal is to estimate respiratory motion rather than image reconstruction,

we are not concerned about the streak artifacts present in both reconstructed volumes due

to the small number of projection views.

Preparation for DOV

• Data preprocessing
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(a) 28
◦ (b) 70

◦ (c) 112
◦ (d) 154

◦

Figure 3.8: Example of motion-free cone-beam projection views from angle 28◦, 70◦, 112◦, 154◦.

(a) Axial view

(b) Coronal view (c) Sagittal view

Figure 3.9: FBP reconstructed CT volume from motion-included projection views.
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(a) Axial view

(b) Coronal view (c) Sagittal view

Figure 3.10: FBP reconstructed CT volume from motion-free projection views.

This step obtains the projection views {ĝm} from the measured photon counts using (3.5).

We used a simple scatter estimate that was obtained by convolving the noisy photon counts

with the same exponential kernel used for generating the scatter. For real cone-beam pro-

jection views, the scatter estimation should be more complex. In simulation we deliber-

ately used a simple scatter correction method so the scatter was incompletely corrected, as

is the case in practice.

• B-spline knot distribution

The placement of B-spline control knots can be very flexible. It can be either a uniform

distribution, or a nonuniform distribution. Theoretically, finer control grids enable more

accurate approximation of a continuous signal. But in practice, due to the presence of

noise, very fine control grids may overfit the noise. Furthermore, a finer control grid assi-

ciates with more parameters, complicating optimization. One can adjust the knot spacings

manually, starting with a relatively coarse control grid, and then decreasing the knot spac-

ings until the optimizations with the two most recent control grids reaches very similar
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results.

For our estimation, the sptial control knots were spaced evenly in the thorax region,

with spacings of hx = 16voxels, hy = 16voxels, hz = 10voxels along the LR, AP

and SI direction respectively.. They were placed differently from the knot locations used

for simulating the motion and with less density. For the temporal knot placement, we

used non-uniform distribution. We evenly placed 5 knots in each active breathing period,

yielding 20 temporal knots along the entire temporal axis. The active breathing period is

defined to be the interval from start-inhalation to end-exhalation. A short rest interval fol-

lows each active breathing interval. Because the deformation during a rest interval would

be very small with respect to the reference volume, which is assumed corresponding to

end-exhalation state. We did not place any temporal knots in this interval, reducing the

number of parameters to be estimated. This nonuniform temporal knot placement facil-

itates establishment of the phase correspondence between knots for aperiodicity penalty

design, as described in Sect 3.1.2. See Fig. 3.11 for an illustration of this knot placement.
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temporal knot distribution

Figure 3.11: Illustration of an ideal temporal knot placement assuming respiratory signal known

• Optimization setup
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For optimization, the motion parameters were all initialized to be zero. We terminated the

optimization algorithm when the absolute difference of the cost function value between the

two most current iterations was less than a threshold. We also applied a multi-resolution

technique to accelerate the optimization procedure and to avoid local minima. We started

the optimization from a downsampled-by-2 version of both the reference volume and the

projection views, then used the coarser-scale result as an initialization for the next finer-

scale optimization. It took about 65 iterations at the coarser level and 45 iterations at the

finer level to converge. The total computation time was about 10 hours using Matlab on a

3.4GHz Pentium computer.

3.3.2 Results and discussion

In this section we studied the effects of the temporal knot distribution, the aperiodic-

ity penalty and the two similarity metrics on the DOV performance. We quantify DOV

estimation accuracy using the means and standard deviations of the differences between

the estimated and the true simulated displacements of the voxels over the entire volume

through all time points.

Effects of the temporal knot placement

We present two cases of results using the penalized LS estimator. One case uses an ideal

temporal knot placement (“*” signs in Fig. 3.12), based on the true respiratory signal. The

other case was with automatic temporal knot placement (“+” signs in Fig. 3.12) according

to the estimated respiratory signal from projection views. In the former case, since the

true respiratory signal was used, the phase correspondences among the knots in adjacent

breathing cycles were exact and thus the periodicity regularity term could accurately align

the the deformations at the same phases. The ideal case offers us a guideline on how well

this proposed algorithm would perform. In the latter case, the peak intervals were detected
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automatically from the estimated breathing signal and temporal knots were spaced evenly

in each peak intervals. Because of the mismatch between the estimated and true respiratory

signals, offsets existed between the phases of the knots that were assumed to fall into the

same breathing phases by the aperiodicity penalty term. This represents a practical case,

where the ground truth of the respiratory signal is unavailable.
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 True breathing signal
Estimated breathing signal
Ideal temporal knot distribution
Automatic temporal knot distribution

Figure 3.12: Ideal temporal knot placement (“*” line) and automatic temporal knot placement (“+” line)

With the ideal temporal knot placement, the deformation estimation errors over the

entire volume through time had nearly zero-mean Gaussian distributions. As can be seen

from Table 3.1, the standard deviations were less than 1 mm along the LR and AP direction

and less than 2mm along SI. These numbers indicate that most of estimation errors were

very small. The standard deviation along the SI direction was almost twice of that along

the LR and AP direction due to coarser reference image sampling in the SI direction. As

an visual example of the estimation accuracy, we plotted the averaged motion curves of 20

randomly selected points (Fig. 3.6) in the thorax region in Fig. 3.13. This plot shows good

agreement between the estimated and the true motion. Slightly larger deviations from the

truth occur near the peaks of the 2nd and 3rd breathing cycles for the LR motion curve
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and near the peaks of the 1st and 4th breathing cycles for the AP motion curve. These

deviations were expected since the projection views from those angles poorly captured the

deformations along the LR or AP directions respectively.

Table 3.2 lists the statistics of the deformation estimation errors with automatic tempo-

ral knot placement. Generally the estimated motion errors were slightly larger than those

with the ideal temporal knot placement. Fig. 3.14 plots the true and estimated motion

curves of the same 20 points as marked in Fig. 3.6. Unsurprisingly, the estimated motion

curves also showed slightly larger deviation from the truth than those in the previous case.

This degraded performance is mainly due to the phase offsets between knots. However, the

aperiodicity penalty term did compensate for the insufficient of angular span per breathing

cycle of the slowly rotating cone-beam scanner.

Comparison of the two results suggests that better temporal knot placement would im-

prove the motion estimation accuracy. Since the temporal knots are placed according to

the respiratory signal, DOV would benefit from a better estimate of the respiratory signal.

Table 3.1: Deformation estimation accuracy under ideal temporal knot placement.
LR AP SI

Mean error (mm) 0.11 0.04 0.16
STD deviation (mm) 0.63 0.81 1.83
MAX Abs error (mm) 6.70 10.82 19.46

Table 3.2: Estimation accuracy under automatic temporal knot placement.
LR AP SI

Mean error (mm) 0.12 0.06 0.27
STD deviation (mm) 0.74 0.90 2.16
MAX Abs error (mm) 8.02 9.07 23.56

Some large deformation errors did occur, even in the case of ideal temporal knot place-

ment, e.g., a maximum absolute error of almost 10mm along the LR direction. In examin-

ing the locations of the larger errors, we found that they tended to occur in image regions

having nearly uniform intensities, Because deformations in those regions would exert only



48

0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

t (sec)

Di
sp

la
ce

m
en

t (
m

m
)

 

 

True AP
True LR
True SI
Estimated AP
Estimated LR
Estimated SI

Figure 3.13: Accuracy plot of the randomly selected 20 points under the optimization with ideal temporal
knot placement. The thick lines represent the true motion curves averaged over the 20 points.
The thin lines represent the estimated motion curves averaged over the 20 points. Error bars on
the thin lines represent the standard deviations of the deformation estimation errors.
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Figure 3.14: Accuracy plot of the randomly selected 20 points under the optimization with automatic knot
placement. The thick lines represent the true motion curves averaged over the 20 points. The
thin lines represent the estimated motion curves averaged over the 20 points. Error bars on the
thin lines represent the standard deviations of the deformation estimation errors.
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very slight changes on the projection views. So these errors are likely due to a lack of

image structures, which is common for registration problems.

A second possible source of error is motion model mismatch, i.e., the respiratory mo-

tion could not be recovered fully by the B-spline motion model with the designed control

grid. We did B-spline least square fitting of the synthetic motion using the same control

grid to examine how much error would result from the model mismatch alone. Table 3.3

gives the statistics of the B-spline approximation errors. Overall the approximation er-

rors were very small, but there were also some relatively large errors. We examined the

location where the largest AP motion fitting error occurred to see how well the DOV esti-

mation performed at that voxel. Fig. 3.15 compares the estimated and the fitted AP motion

curves of that voxel. These two curves are close to each other, indicating that the estimated

motion was close to the optimum under the selected motion model at this voxel, which did

happen to be in a nonuniform region.

Table 3.3: B-spline least squares fitting error under ideal temporal knot placement.
LR AP SI

Mean error (mm) 0.00 -0.01 0.00
STD deviation (mm) 0.15 0.25 0.57
MAX Abs error (mm) 3.81 4.02 9.48

Effects of the aperiodicity penalty

The aperiodicity penalty is necessary for DOV because of the limited gantry angles in

one breathing cycle. A too small βt may not sufficiently bring the motion information

from the adjacent breathing cycles to compensate this limitation, while a too large βt may

subdue the role of the local motion information. This is a tradeoff. To study the impact

of this term, we ran DOV using the penalized LS estimator with different βt values and

plotted the estimation accuracy in Fig. 3.16. As βt increases from 10−6, the mean errors

and the standard deviations in each direction tend to drop and then rise again after βt is
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Figure 3.15: AP motion curves of the voxel where the maximum B-spline fitting error along AP direction
occurs: the true (solid line), the B-spline fitted (dashed line) and the estimated by DOV (dashed
dot line).

larger than 10−4. In realistic we may adjust this value by examining the regularity of the

breathing signal.

−8 −6 −4 −2

−2

0

2

4
LR

log10(βt)

M
ea

n 
er

ro
r (

m
m

)

−8 −6 −4 −2

−2

0

2

4
AP

log10(βt)

M
ea

n 
er

ro
r (

m
m

)

−8 −6 −4 −2

−2

0

2

4
SI

log10(βt)

M
ea

n 
er

ro
r (

m
m

)

Figure 3.16: The mean errors and standard deviations v.s. the aperiodicity penalty parameter βt

The penalized LS and the correlation-based estimator

Table 3.4 compares the estimation accuracies of the penalized LS and the correlation-

based estimator. As can be seen from the table, the two estimators perform comparably

when the intensity of the modelled projection views matches those of the measured views.

Fig. 3.17 draws the accuracy plot of the 20 points using the correlation-based estimator.

This plot also resembles the accuracy plot of the penalized LS estimator in Fig. 3.14.
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Table 3.4: The estimation accuracy of the LS estimator and the correlation-based estimator. The mean errors
and the standard deviations were calculated over the whole volume through time

LR AP SI
LS Mean error (mm) 0.12 0.06 0.27

STD deviation (mm) 0.74 0.90 2.16
cor Mean error (mm) 0.11 0.06 0.20

STD deviation (mm) 0.60 0.76 1.91
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Figure 3.17: Accuracy plot of the randomly selected 20 points using the correlation-based estimator with
ideal temporal knot placement. The Thick lines represents the true motion curves averaged
over the 20 points. The thin lines represents the estimated motion curves averaged over the
20 points. Error bars on the thin lines represent the standard deviations of the deformation
estimation errors.
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3.4 Phantom experiment

We realize that the realistic condition would be more complex than what can be simu-

lated purely by computer, for example, the noise in the acquired data contains both Poisson

and Gaussian, the residual scatter effect after correction may still be prominent. Therefore

we conducted a phantom experiment that is more realistic to further test the DOV perfor-

mance.

3.4.1 Phantom and data collection

We used a partially deformable thorax phantom to test the performance of DOV, shown

in Fig. 3.18. It is composed of a rigid frame and a compressible foam compartment inside,

with some balls inserted. A rigid, flat plastic board is placed at the bottom of the phantom

to simulate a diaphragm. This “diaphragm” is connected to a linear actuator through a

piece of wood. Driven by the actuator, the “diaphragm” can move back and forth to com-

press and deform the material inside. The motion pattern of the “diaphragm” is controlled

by the actuator. For this experiment, we used a motion profile with alternating amplitudes

of 20 mm and 15 mm and alternating periods of 9 s and 6 s (Fig. 3.19).

We first scanned the phantom using a conventional CT. The voltage of the X-ray tube

for this CT was set to 120kv. We scanned the phantom in three motion states, with the

“diaphragm” positioned at 0cm, 1cm and 2cm toward the neck. We named the three static

volumes to be CT0, CT1 and CT2 respectively. The reconstructed volumes have a size of

512×512×89 with the voxel size of 0.98×0.98×3 mm3. CT2 was used as the reference

volume for DOV. The other two were used as a measure of truth to evaluate the estimation

accuracy of DOV.

Then we moved the phantom to a slowly rotating cone-beam system and started the

actuator and took a 360◦ scan of the moving phantom. Manual laser alignment was per-
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Figure 3.18: A picture of the movable phantom: 1. the phantom; 2. the diaphragm; 3. the wood connector;
4. the actuator.
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Figure 3.19: The motion profile created for the actuator.
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formed to set up the phantom right before starting the cone-beam scan. But instead of

placing the phantom at the correct setup position, we deliberately moved the phantom off

about 1 cm along the axial direction to test DOV with setup errors. After completing the

cone-beam scan of the phantom, we removed the phantom and collected a full cone-beam

scan of the table. The table scan was used to normalize the measured photon counts of the

phantom scan. For the cone-beam scanner, the voltage of the X-ray tube was set to 125kv.

The distance from the X-ray source to the detector was 1500.0mm and to the isocenter was

1000.0mm. The size of the 2D flat-panel detector was 397 × 298mm2. The gantry rotated

at 6◦ per second with a frame rate of about 11fps. Totally 668 views were collected for a

full rotation.

3.4.2 Preprocessing

We cropped the reference CT and downsampled it by 2 in the axial plane. After crop-

ping and downsampling, the size of the reference CT was 192 × 180 × 89 and the voxel

size was 2.0 × 2.0 × 3mm3. Fig. 3.20 shows three views of the CT volume. The intensity

of the measured projections from the CBCT scanner are linear to the photon counts. We

needed to convert the counts to attenuation. The conversion was done by taking logarithm

of the table scan divided by the phantom scan, i.e.,

(3.21) attenuation = ln
the table scan

the phantom scan

An advantage of using the table scan rather than an air scan as a normalization factor

is that the table artifact may be greatly removed from the phantom scan. However, the

table artifact can not be totally removed, (as can be seen in Fig. 3.21), because the scatter

and beam-hardening effects were different in the table scan and phantom scan. For the

purpose of DOV, we only used the views in the first 180◦ interval and downsampled them

by 4 in the temporal axis, so there were about 80 views spanned over 180◦ used by DOV.
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The projection views were truncated views since the 2D detector was not large enough

to cover the whole width of phantom. We also downsampled each projection views by 4.

After this spatial downsampling, the size of each projection view was 252 × 188 and the

pixel resolution was 1.6mm × 1.6mm.

Before running DOV, we estimated the setup difference between the conventional CT

and the cone-beam CT system. Without setup correction, the estimated motion by DOV

would compensate for the setup errors which do not belong to the real organ motion caused

by breathing. Usually a rigid setup difference is assumed. It can be described by six pa-

rameters {φx, φy, φz, tx, ty, tz}: three rotation angles and three translations along each

axis respectively. These parameters can be estimated by aligning the computed projection

views of the reference volume to a few measured projection views. This method belong to

the field of 2D-3D registration which is commonly used for setup correction in radiother-

apy [37, 60, 90]. Usually the projection views used in those registrations do not include

organ motion. However, this is not the case for the collected projection views in DOV.

To meet the consistency requirement, the setup difference estimation used several projec-

tion views approximately corresponding to the motion phase of the reference volume. The

correspondence can be established based on the extracted breathing signal from the di-

aphragm transition. Correlation-based metric was used in the registration. The estimated

setup difference was {0.0001rad, 0.0038rad, 0.0061rad, 0.89mm, −0.02mm, 7.74mm}.

(a) Axial slice (b) Coronal slice (c) Sagittal slice

Figure 3.20: The phantom CT.
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181.7o 95.7o 29.0o

Figure 3.21: Cone-beam projection views at angles 181.7◦, 95.7◦, 29.0◦

3.4.3 Results

Since the energies of the X-ray tubes were different for acquiring the static reference CT

and the cone-beam projection views, the intensities of the modelled projection views of the

reference CT did not exactly match those of the measured projection views. Furthermore,

other artifacts exist in the measured views such as the scatter and beam hardening effects.

Using the penalized LS estimator would involve a mapping of the 120kv reference CT to

a 125kv CT. To avoid this complexity, we chose the correlation-based estimator.

The precise motion of the interior of the phantom was unknown. To evaluate the es-

timated motion accuracy, we established a “ground truth” using the following landmark

method. We located five landmarks in the reference volume CT2 and found their displace-

ments at two motion phases (0cm and 1cm of the “diaphragm” movement) by registering

CT2 to CT0 and CT1. The landmarks we selected were the centers of five balls inserted in

the phantom. (some balls can be seen in Fig. 3.20(b)). We assumed the registration results

to be true and compared the estimated motion of the landmarks at the three phases to the

truth. The motion phase associated to each cone-beam projection view can be decided by

the motion profile (Fig. 3.19). From the motion profile, we identified that t = 3.2, 17.5s

corresponded to 0cm position (CT0), t = 4.7, 9.3, 11.1, 15.7s corresponded to 1cm po-

sition (CT1) and t = 6.8, 7.2, 7.5, 12.9, 13.2, 13.6, 21.1, 21.5, 21.8s corresponded to

2cm position (CT2).
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We calculated the mean errors and the standard deviations of the estimated deforma-

tions of the five landmarks at those 15 time points. The results were listed in Table 3.5.

In general, the errors were around the resolution of one voxel. Only the systematic error

in the AP direction was slightly larger than expected. Explanation of this slightly larger

systematic AP error requires further investigation. We realize that the established “ground

truth” may be slightly rough. In the near future, we expect to design a finer ground truth

to test the DOV performance, for example, by acquiring more static CTs to find a more

precise phantom motion.

Table 3.5: DOV estimation accuracy of the phantom experiment.
LR AP SI

Mean error (mm) 0.4 1.1 0.2
STD deviation (mm) 2.5 2.2 1.7

3.4.4 Discussion

Although the estimation accuracy is expected to be improved further, the phantom ex-

periment did illustrate the feasibility of the DOV principle, because this experiment re-

flected the realistic situations in the following three points of view. First, the movable

phantom imitated a real human thorax. Second, a slowly rotating cone-beam CT scanner

integrated in a radiotherapy simulator was used to collect the projection views, in which

real imaging artifacts existed such as the truncated views, the presence of radiotherapy

table, Compton scatter and beam-hardening effects. Third, setup differences between the

conventional CT scanner and the cone-beam CT scanner were also considered.

However, the motion pattern of the phantom we created may be simplified compared

to the true breathing motion, which would be much more irregular in both amplitude and

period. This irregularity may bring uncertainty in selecting the aperiodicity penalty pa-

rameter βt. In our phantom experiment, βt was set to be 10−4, the value that yielded the

best estimation in the simulation, because the motion patterns of the phantom and the sim-
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ulation were similar. In a real patient study, a monitor may be used to instruct patients to

breathe in a more regular way to reduce the difficulty in selecting βt.

Although the phantom motion pattern was simple, the spatial deformations of the phan-

tom included intensive “sliding” between the edge of the “diaphragm” and the interior side

of the body frame. This kind of deformation is challenging to fit by the pure B-spline

model. In real patients, this “sliding” phenomenon would be somewhat reduced. There-

fore we may expect better estimation accuracy in a real patient case.

Due to a large angle of the X-ray cone and the use of a 2D detector, substantial scatter

effects were present in the collected cone-beam projection views. In our current phantom

experiment, a posterio scatter correction was skipped. This step will be implemented in the

near future. We can build a beam stop array to obtain a scatter estimate. A beam stop array

consists of small lead disks pressed into holes in an acrylic sheet. It can be placed right

after the X-ray source collimator so the projection image reflects the scatter distribution at

the positions where the lead disks are projected at, providing an estimate of the scatter [57].

These scatter images are acquired separately from the respiration correlated cone-beam

projection views. We believe including a scatter correction can further improve the DOV

accuracy.

The estimated deformation errors for the phantom experiment were largely around the

resolution of one voxel. Smaller errors can be expected using a reference volume with a

higher resolution. In this experiment, we started the estimation with the downsampled-

by-4 reference volume and projection views, and stopped it at the level of downsampled-

by-2 resolution. Increase to the resolution of the oringinally acquired data will require

intensively great computation time. We realize that the long computation time will limit

the usage of the DOV method in clinic. The bottleneck of the computation is evaluating

(3.3) and (3.2), the 3D deformed reference volumes and their projection views at each
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time points. Since most of the computation can be implemented separately view by view,

the computation time can be reduced by parallel computing with a multi-processor CPU.

Another possible way to reduce computation time is to accelerate the convergence of the

optimization algorithm. We will discuss this possibility in the next section.



CHAPTER 4

Acceleration of DOV

We have shown in the previous chapter that the internal motion of patients during

breathing can be estimated from a sequence of slowly rotating 2D cone-beam X-ray pro-

jection views and a static prior of of the patient’s anatomy. The so-called DOV method

yielded encouraging results, with the RMS errors around the voxel size both in the simu-

lation and the phantom experiment. However, we have realized that the computation time

was very long. It involves heavy-loaded operations on data sets with very large size, such

as the warping and forward projection of 3D volumes, plus a huge number of parameters

associated with motion model to be optimized. For example, for the data presented in the

phantom experiment, it took about 10min for each iteration and the optimization process

converged at about the 50th iteration. The long computation may limit the usage of DOV

in clinic.

There are several ways to accelerate this whole estimation procedure. One way is

to use multi-processor CPU and do parallel computing. Since the deformations of the

reference volume and the projections of the deformed reference volume can be computed

separately view by view, using a N-processor CPU may reduce the whole computation time

by a factor of close to N. One may also utilize a graphics accelerator card to reduce the

time for projection operators. Other than those acceleration methods through hardwares,

61
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computation time can also be shortened by starting the optimization algorithm from a point

that is closer to the global minimum, because fewer iterations would be required to reach

the convergence point. Another benefit of a good initialization is a lessened chance of the

optimization being trapped by local minima.

This chapter mainly discusses how we initialize the DOV estimation problem by pro-

viding a simplified motion estimates. We propose a simplified motion model and find

its parameters by optimizing the similarity between the actual projection views and the

calculated projection views of the reference volumes deformed by the estimated simpli-

fied motion. We then run DOV from the simplified motion estimate. Most content in the

following sections can be found in one of our recent publication [104].

4.1 A simplified motion estimation

The main difference of the simplified motion estimation to the previous presented B-

spline model based motion estimation is that a proportionality motion model is used. We

first introduce the motion model and then describe the estimator we used to find the sim-

plified motion parameters.

4.1.1 Proportionality motion model

We designed a simplified motion model based on the following assumption: the dis-

placement of each voxel at a single time is proportional to the full movement Dfull(x) of

that voxel from end exhale to end inhale. In other words, the relative displacements of

the voxels with respect to their full displacements are the same at any single times. We

will describe later how we obtain the full movement Dfull(x). We call this model the

proportionality motion model. Mathematically it is expressed as follows,

(4.1) Tα(x; t) = x + α(t)Dfull(x),
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where α(t) represents a 1D proportionality motion signal.

The simplified motion model (4.1) is also built upon a prior of the full deformation

of the patient during inhale, Dfull(x). We estimate it by registering two reference CT

volumes of the patient, one at end exhale and one at end inhale, denoted fex(x) and fin(x)

(x ∈ R
3) respectively. Usually these two reference volumes are clinically available for

treatment plan. Again we used a B-spline based deformation model for registration, It

finds the deformation parameters for Dfull(x) by minimizing a cost function containing a

SSD similarity term and a Jacobian penalty term [36], as described in Sect 2.1.4. SSD can

be used as the similarity measure for this registration problem because the two reference

volumes are with the same imaging modality.

4.1.2 The simplified motion estimator

For simplicity, in the results shown below, we parameterize the continuous proportion-

ality function α(t) using its discrete samples α = {αtm},m = 1, · · · ,M through a Rect

basis function as follows,

(4.2) α(t) =
M∑

m=1

αtmRect(
t− tm
Tp

),

where Tp is the time interval between adjacent projection view acquisitions. Alternatively,

smooth basis may work finer. With the above representation of α(t), the goal for the sim-

plified motion estimation is to find {αtm},m = 1, · · · ,M , the sampling points of α(t)

at the projection acquisition times. We estimate these parameters by optimizing the sim-

ilarity between the measured projection views and the calculated projection views of the

deformed reference volumes by the proportionality motion model as follows, The formula

of this estimator is as follows,

(4.3) α̂ = arg min
α

(

LCC
(
{gm}, {Aφm

fref (Tα(x; tm))}
)

+ λR(α)

)

,
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Similarly to (3.9), LCC(·, ·) is the data fidelity term measuring the correlation coefficient,

as expressed in (3.11). R(·) is a roughness penalty term, taking the form of 1/2||Cα||2,

where C is a differencing matrix.

The simplified motion estimator does not contain an aperiodicity penalty term. This

term can be omitted because the problem posed by the limited angular range over one

breathing cycle is compensated by some property of the proportionality motion model.

This property is that this model restricts the relative displacements along the three direc-

tions of each voxel with respect to its full displacements are the same. This restriction

interconnects the motion along each direction, dislike the B-spline motion model, which

treats the motion along each direction independently.

We again use the CG algorithm to solve (4.3). Because of the smaller number of pa-

rameters associated with the proportionality motion model, a downsampled reference vol-

ume and projection views may already be sufficient for this estimation problem. As will

be shown later in Table 4.1, the estimation accuracies are very similar when using the

datasets with and without downsampling-by-2. Hence we can solve this problem using

datasets with smaller sizes, reducing the computation time.

The simplified motion estimate can be used twofold. First, it can be treated as an

initialization for DOV with B-spline motion model, which is the main purpose for this

part of work. Second, the 1D sequence α̂ represents the averaged relative deformation

over time with respect to the full deformation. It can be used as a breathing signal to

guide the temporal knot placement. As will be shown in the simulation, the estimated

1D sequence α̂ would be more closer to the true breathing pattern than the one extracted

from measured projection views. Therefore, α̂ can guide us to place the temporal knots

so that the phase correspondences between knots in the apriodicity penalty term are more

accurate.
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4.2 LS fitting of the simplified motion estimate into B-spline motion
model

The simplified motion estimate α̂Dfull(x) offers an initial guess of the motion. We

then implement a least-square fitting of α̂Dfull(x) into the B-spline motion model (5.2),

to obtain an initial set of B-spline knot coefficients θ0. The optimization for DOV with a

B-spline model will then start from θ0.

Least-square fitting can be done analytically. Because the B-spline deformation model

is used in our registration to obtain Dfull(x), we only need to fit α̂ into a B-spline function,

i.e., find ρ such that,

(4.4) α(t) =
J∑

j=1

ρj β

(
t− τj

∆t

)

holds at every time sample index tm. As described in Sect 3.2, Eq. (4.4) holds at discrete

time indices can be expressed as,

(4.5) α = Btρ,

where Bt is an M × J matrix with entry Bt[m, j] = β
(

tm−τj

∆t

)

. Then the solution of (4.5)

can be found by takeing the adjoint operator as follows,

(4.6) ρ = (B′
tBt)

−1B′
tα,

Assume

(4.7) Dfull(x) =
I∑

i

γi β

(
x − xi

∆x

)

,

where {γi} are the B-spline knot coefficients of the full deformation map which we have

already estimated from registration, then we obtain the initial values of the B-spline motion

by taking the following Kronecker operation,

(4.8) θ0 = ρ ⊗ γ.

θ0 is then is input to the DOV optimization algorithm to enable faster convergence.



66

4.3 Computation complexity

The implementation of both motion estimators (3.9) and (4.3) includes the following

operators on 3D volumes: B-spline based image interpolation, B-spline based image de-

formation, and cone-beam forward projection. The computation complexity for the opti-

mization algorithm is approximately in the order of O(CMV U), where C is the number

of motion parameters, M is the number of projection views, V is the size of the static

reference volume and U is the size of each projection views.

For the B-spline motion model, the number of knots we used in simulation and phantom

experiment are in the order of 105; while for the proportionality motion model, the number

of parameters was equal the number of projection views, which was less than 100 in both

simulations and the phantom experiment. Furthermore, because of the small number of

parameters, we can estimate the the proportionality motion parameters using downsam-

pled reference volume and projection views. so the computation of the simplified motion

estimator is significantly shorter than DOV with B-spline motion model.

4.4 Performance evaluation

We tested this acceleration method on the simulated and phantom data sets. We com-

pared the performance of the following three DOV estimators:

• DOV with “zero” initialization: DOV starting from a coarser resolution with all pa-

rameters initialized to be zeros.

• DOV with initialization: DOV from the simplified motion estimates.

• Simplified motion estimator

We need one more reference volume for the simplified motion estimator. For the simu-

lation case, we added the 60% breath-hold CT volume. For the phantom case, we added
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CT0, which corresponding to a 0cm movement of the diaphragm.

4.4.1 Simulation

We first registered the 0% and the 60% CTs to obtain the full deformation. We then

downsampled the exhale reference volume in the transaxial plane and each projection view

by 2 and executed the simplified motion estimator. The optimization converged at about

the 20th iteration, with each iteration taking about 30sec. Since the simple proportionality

motion model contained a small number of degrees of freedom, using the downsampled

images would not degrade the accuracy of the simple motion estimates but would greatly

reduce the computation time. This conjecture agrees with the results presented in Table

4.1. Fig. 4.1 shows the estimated motion proportionality parameters (dash line). It resem-

bles the “true” breathing pattern very closely. So, for DOV with B-spline motion model,

we can place the temporal knots according to the estimated signal α̂. Such placement is

closer to the ideal temporal knot placement than that according to the extracted breathing

signal, helping increase the estimation accuracy as discussed in Sect 3.3. Starting from

the simplified motion estimate, DOV converged with considerably fewer iterations almost

half of iteration number of DOV with “zero” initialization, as seen in the convergence plot

Fig. 4.2. Table 4.2 list the estimation accuracy of the three estimators. DOV with initial-

ization achieved similar accuracy to that of DOV with “zero” initialization, but with only

half of the latter’s computation time.

Mean error/ STD (mm) LR AP SI
Downsampled by 2 -0.05/0.19 0.03/0.37 -0.09/0.88
W/O downsampling -0.05/0.18 0.03/0.35 -0.09/0.84

Table 4.1: Estimation accuracy for the simple motion estimation on the simulation data. The table shows the
mean and the standard deviation (STD) of the errors over the entire volume through time. The
estimation accuracy with data downsampled by 2 and without data downsampling attained very
similar performance.
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Mean error/ STD (mm) LR AP SI
DOV with “zero” initialization 0.12/0.74 0.06/0.90 0.27/2.16
DOV with initialization -0.02/0.22 0.04/0.43 -0.03/0.90
Simplified motion estimator -0.05/0.19 0.03/0.37 -0.09/0.88

Table 4.2: Estimation accuracy of DOV with “zero” initialization and DOV starting from simplified motion
estimates
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Figure 4.1: The estimated motion proportionality parameters α̂.

4.4.2 Phantom experiment

We also tested the simple motion estimation on the phantom data set. Readers may

refer to Sect 3.4 for the detail on the experiment setup and data collection.

Fig. 4.3 plots the estimated proportionality parameters α̂ and the motion profile of

the actuator that drove the movement of the phantom. As can be seen, the estimated α̂

resembles the actual motion profile very closely. Again, by initializing with the simpli-

fied motion estimates, DOV achieved faster convergence. The estimation accuracy of the

simplified motion estimates and the motion estimates of the two DOV cases are listed in

Table 4.3. As can be seen in the this table, DOV starting from simplified motion estimates

improved the estimation accuracy in the LR and AP directions, comparing to those with

“zero” initialization. Table 4.3 also indicates that DOV with initialization resulted in larger

estimation errors than the simplified motion estimator itself. This phenomenon may be
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Figure 4.2: Convergence curves of the DOV with “zero” initialization and DOV starting from simplified
motion estimates

explained as follows. The collected projection views contained severe scatter effects and

table artifact, as seen in Fig. 3.21. The estimator treated the useful data information and

those artifacts equally. Although the more complex B-spline motion model could charac-

terize local deformations better, it might overfit the noise artifacts on the other hand. In ad-

dition,the actual phantom motion may agree with the motion proportionality assumption.

Thus the estimator with the simplified motion model could find closer-to-truth solutions,

while the one with B-spline motion model performed worse. This phenomenon suggests

that a posterior scatter correction may improve the DOV motion estimation accuracy.

Mean error/ STD(mm) LR AP SI
Simplified motion estimator -0.02/0.06 0.01/0.07 0.47/0.38
DOV with “zero” initialization 0.42/2.49 1.08/2.24 0.24/1.72
DOV starting from simplified motion estimates 0.41/0.68 1.03/0.91 -0.04/2.19

Table 4.3: Estimation accuracy of the simplified motion estimator, DOV with “zero” initialization and DOV
starting from simplified motion estimates. The table shows the mean and the STD of the errors
over the landmarks.
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Figure 4.3: The motion profile and our estimated scalar motion proportionality parameters α̂. The estimates
resemble the pattern of the motion profile.

4.5 Summary on DOV

In chapter 3 and 4 we described DOV, a method to estimate respiratory motion from a

sequence of slowly rotating X-ray cone-beam projection views. In this method, we adopt

a B-spline motion model, deform a breathhold thorax CT volume according to the motion

model, and find the parameters of the motion model by optimizing the similarity between

the measured projection views and the modeled projection views of the deformed refer-

ence volume. There are a few advantages of this method over the other 4D CT imaging

techniques. First, we do not assume any reproducibility between the internal motion and

an external monitoring index, hence tissue discontinuity artifacts can be removed in the

4D CT images generated by DOV. Although we use periodicity regularization in our cost

function to compensate for the limited angular range over one breathing cycle, the regular-

ization is different from and much weaker than the reproducibility requirement. Second,

the B-spline motion model gives a continuous representation of the estimated motion once

the motion parameters are solved. Because we used a sequence of dynamic projection

views with high temporal sampling rate, the estimated respiratory motion would inherited

the property of high temporal resolution. Third, motion is estimated from the on-board



71

cone-beam projection data and can provide the latest update of the patient’s motion pat-

tern. We realize that the patients’ anatomy may change after the latest reference volume

is acquired. Since the deformable motion model may be able to describe modest changes

in tumor position and shape given an appropriate knot distribution, even if there are slight

changes on patients anatomy, we conjecture that the latest reference volume could still

be used by DOV without degrading the performance dramatically. However, large de-

formations may either invalidate the reference model or increase degeneracy of motion

estimation. The likely scenario is that a large average deformation near the reference state

would lead to a repeat clinical simulation, thus updating the patient model for treatment as

well as future motion estimation.

By providing DOV a simplified motion estimate to start with, the optimization pro-

cess converged with much fewer iterations, greatly reducing the computation time. Our

simulation and phantom experiment yielded encouraging results, with estimation accuracy

subvoxel in the simulation study and close to voxel resolution in the phantom experiment.

Performance may be further improved by including scatter correction in the measured

projection views, either by implementing a scatter correction before estimation, or by in-

corporating scatter effect into the forward model for the estimator. We can also put more

regularization onto the estimated deformations, such as tissue rigidity, invertibility etc.



CHAPTER 5

Iterative sorting for 4DCT images based on internal anatomy
movement

5.1 Overview of 4DCT imaging methods

Previous Chapter described a novel method we developed to estimate a 4D motion

model from a sequence of projection views acquired using CBCT scanners that rotate

slowly. This chapter discuss our another effort toward helping unveil patients organ motion

during breathing through 4DCT imaging techniques.

4DCT imaging methods have aroused increasing interest in recent several years since

it can provide temporal information of anatomy during breathing. Both multi-slice CT

scanners and CBCT scanners can be used to the 4DCT reconstruction. In this chapter we

focus on 4DCT using multi-slice CT scanners.

Conventional CT image reconstruction algorithms assume the object is still during data

acquisition. However, this assumption is violated when imaging the thorax because of

breathing. Ignoring this violation and using inconsistent X-ray projection views results in

motion artifacts in the reconstructed images. Breathhold scans reduce the motion effects

[95]. However, current multi-slice scanners have an aperture of only a few centimeters in

the axial direction per rotation [39]; covering the length of a whole thorax requires multiple

rotations of the gantry with each rotation around different axial positions. Thus the data

acquisition time for the thorax can exceed the duration for which patients can comfortably

72
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hold their breath, especially for patients with lung cancer and paediatric patients. For

example, for an 8-slice CT scanner with a 2 cm axial coverage rotating at 0.5 second per

360◦ (GE Ultra), to image a 24cm-length body in cine mode, the acquisition time would

be around 20 seconds including the table translation time [58]. Moveover, one state of

the thorax CT volume is insufficient to characterize the internal motion during a whole

breathing cycle, which is important for the design and verification of treatment plans.

To reconstruct time-resolved CT volumes of patients that breathe freely during a scan,

different scanning protocols using multi-slice CT scanners are being investigated [17, 48,

58, 65]. Although subtle differences exist among those scanning protocols, their general

ideas are the same, and can be described by an oversampling-sorting process. Oversam-

pling here means that at each table position the X-ray gantry rotates for one to two breath-

ing cycles. Multiple CT slices are reconstructed from the acquired projection data at each

position. Temporally coherent CT slices are sorted and stacked to form 4D CT volumes,

as illustrated in Fig. 5.1. The sorting process usually depends on external breathing signals

that are recorded synchronously with the scan by some motion monitoring system. The

recorded breathing signals may reflect the skin motion [65,87], the skin tension [38] or the

tidal volume measured orally [48]. Such external breathing indices may not always accu-

rately represent the internal motion status [80, 97]. Using an the external breathing signal

that poorly correlates with the actual thoracic motion, may cause severe tissue mismatch

in the retrospectively sorted CT volumes.

The sorting required a good respiratory-motion-correlated signal. Sometimes external

breathing signals are not available or poorly correlate with the actual internal anatomy

motion. Existing methods for extracting breathing indices directly from the image itself,

include tracking the center of mass (COM) [30, 41], correlating of a region of interest

(ROI) between adjacent slices in consecutive table positions [58], calculating the internal
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Figure 5.1: Illustration of 4DCT method using slice CT scanners.

air content [51] or estimating the diaphragm’s superior-inferior (SI) position in the cone-

beam projection views [77, 105]. In 4D multi-slice CT images, tracking the diaphragm

transition is inapplicable because the structure is present only in slices near the bottom of

the thorax. The COM or correlation metrics may help identify the phase in one breathing

cycle of the acquired images. However, respiratory motion usually varies in amplitude,

duration and shape from cycle to cycle, so the reproducibility of the motion with respect

to phase may be poor, relative to cardiac motion. It has been reported that phase sorting

often results in more artifacts in the stacked CT volumes than amplitude sorting [50,86,96]

due to weak reproducibility of breathing motion. Therefore, amplitude sorting is more

practical for respiratory motion. However, the amplitudes of COM or correlation signals

are incomparable between different scan periods. Therefore, they may be insufficient to

facilitate amplitude sorting for 4D multi-slice CT imaging.

We believe a need exists to have a system to improve on external or simple internal

sorting for cases in which these methods yield unacceptable artifacts. In this chapter we

develop an iterative method to sort the CT slices based on internal anatomy motion. In
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this method, we used all slices to estimate internal motion based breathing indices; the

estimated breathing indices were then used to sort the CT slices to form 4D CT volumes.

Using the newly sorted CT volumes, we continued another iteration of motion estimation

and sorting, until two successive iterations yield exactly the same inhale and exhale refer-

ence volumes. Details of our method are described next. Four patient studies illustrates

that our estimated internal motion indices yield comparable image quality as those of ex-

ternal signal-based 4D CT volumes when the recorded signals work fine, and achieves

significant improvement when the external signals are very inaccurate, abeit with longer

computation time. So our method may serve as a backup solution when external surro-

gates of breathing motion work poorly. The following content is a more detailed version

of our recently publication [103].

5.2 Iterative sorting based on internal anatomy motion
5.2.1 Data acquisition

A General Electric (GE) 8-slice Lightspeed CT scanner was used to acquire CT data.

The scanner was operated in an axial cine mode. In this mode, the scanner continuously

scans the patient at one position for a certain time interval, then the x-ray beam is automat-

ically turned off and the table moves to the next position, where the CT scanner resumes

another continuous scan. This process repeats to cover the whole predetermined length of

scan. Usually the scan duration for each position is set to the maximum observed breath-

ing period of the patient plus the overhead time of a full gantry rotation. During the scan,

a respiratory signal is synchronously recorded by a Varian real-time position management

(RPM) system, which tracks the motion of a marker placed on the abdominal surface.

Note that RPM signals are not necessary for our iterative sorting method. However, RPM

signals were recorded so we can compare the external breathing indices and our estimated
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internal motion indices.

5.2.2 Iterative sorting method

During the data acquisition, multiple 8-slice CT volumes at each table position are

reconstructed that temporally sample the moving anatomy in at least one breathing cycle.

We call the 8-slice CT volumes in each table scan period a group of free-breathing sub-

volumes. Assume N table positions are scanned, then the whole data set contains N sets

of free-breathing sub-volumes, denoted fn(x; k),x ∈ R
3, n = 1, · · · , N, k = 1, · · · , K,

where K is the number of temporal samples in each table scan period. The nth group of

sub-volumes cover the axial range of zn − d/2 ≤ z ≤ zn + d/2, where d is the axial

coverage of the multi-slice CT scanner for one rotation and zn is the axial coordinate of

the nth table position. To obtain 4D thorax CT volumes, the sub-volumes need to be

sorted and stacked in the axial order. Unlike most of the current methods, we do not use

external breathing signals to identify the temporal correspondences among the acquired

sub-volumes. Instead, we use breathing signals estimated based on internal anatomical

motion.

An overview of the method is as follows,

Step 1. Sort two reference volumes at relatively deep exhale and inhale states, denoted

fex(x) and fin(x), x ∈ R
3, using the simple breathing indices.

Step 2. Find the full deformation during inhalation, Dfull(x), by registering the two

reference volumes of the patient, fex(x) and fin(x).

Step 3. For each table position, estimate internal motion indices by iteratively updating

a motion model to best match the deformed reference volume fex(x) to each moving sub-

volumes.

Step 4. Sort two CT volumes at near end-of-exhale and end-of-inhale states based on
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the normalized internal motion indices.

If they differ from the previous reference volumes fex(x) and fin(x), replace them and

go back to Step 2; otherwise, go to the final step 5.

Step 5. Do a final amplitude-based sorting to form 4D CT volumes in one breathing

cycle.

To sum up, this method starts from two imperfect reference volumes, refines the internal

motion-based indices to sort out two reference volumes that contain less artifacts, and

perform another round of motion estimation to obtain the final breathing indices. Typically

two to three rounds are sufficient for this process to converge. We now describe each step

in detail.

Step 0 and 1: extract a simple breathing indices and sort two initial reference volumes

As described above, we need two reference volumes of the patient for estimating in-

ternal motion indices. However, they are not directly available from the acquired CT

images. In Step 0 we extract a simple breathing index for each sub-volume and in Step

1 we sort out two reference volumes using this simple breathing index. We treat y-axis

(anterior-posterior (AP) direction) centroid of the 8th slice of each sub-volume as the ini-

tial breathing index for that sub-volume. The y-axis centroid is calculated as follows,

(5.1) cn,k =

∑

j

∑

i yifn(xi, yj, 8; k))
∑

j

∑

i fn(xi, yj, 8; k)
,

where cn,k denotes the initial breathing index of fn(.; k). We then stack the sub-volumes

having largest or smallest centroid values at all positions to form two CT volumes. How-

ever, We need to determine whether the peak index corresponds to end-inhale of end-

exhale states. The relationship is automatically decided by computer software based on

the following property. Chest always expands during inhale. Assuming n = 1 denotes the

most superior sub-volume and the AP coordinates are labeled from anterior to posterior,
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then the peak of cn occurs at near end-of-exhale state and the valley occurs at near end-of-

inhale state. However, the abdomen may expand or contract during inhale. To determine

which state the peak centroid corresponds to for the inferior sub-volumes. we examine the

correlation coefficient (CC) of the y-axis centroids of the 1st and 8th slice of the moving

sub-volumes. If the CC of those two sequences are smaller than 0.6, we treat the peak of

cn at the same state of the valley of cn−1, assuming the 1st slice of the nth sub-volume is

adjacent to the 8 slice of the (n − 1)th sub-volume. So starting from the 1st sub-volume,

The breathing states of the peak and valley of the initial breathing indices of the inferior

sub-volumes can be decided in turn.

Step 2. Registration

In step 2 we register the two reference CT volumes to obtain the extreme deformation

from exhale to inhale, which will be used in the next step. Various image registration

methods have been developed in recent years [24, 40, 54, 83]. We use a B-spline based

image registration method [85], but any other methods that has been successfully applied

to medical image registration can be used here.

The B-spline based deformation model is represented as follows,

(5.2) Dfull(x)(x; θ) =
∑

i

θi β

(
x − xi

∆x

)

,

where β(x) is the tensor product of cubic B-spline functions, xi is the spatial knot lo-

cations, and ∆x controls the width of the B-spline functions. Wide B-spline functions

tend to capture more global deformations, but poorly represent local deformations. Nar-

row B-spline functions better describe local deformations, but they have more unknown

parameters, complicating the optimization. We recommend placing two B-spline knots

along the axial axis in each sub-volume region to capture more local deformations. For

example, for an 8-slice CT with a slice thickness of 2.5 mm, we set the knot spacing in
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the axial direction to be 4 pixels, corresponding to 1 cm. We used 1.6 knot spacings in the

left-right (LR) and AP directions

During registration, we deform the exhale reference volume fex(x) to match the inhale

reference volume fin(x). The deformation parameters of θ are estimated by minimizing

the following cost function that contains a sum of squared differences (SSD) similarity

term and a Jacobian penalty term [34, 36],

(5.3) θ̂ = arg min
θ

(
∑

x

(fin(x) − fex(x + Dfull(x)(x; θ)))2 + γR (J(x; θ))

)

,

whereR(J) penalizes negative Jacobian determinant J of the deformation (x+Dfull(x)(x; θ))

to discourage irreversible deformation estimates such as folding, and γ controls the trade-

off between the two terms. The penalty function is calculated as follows,

(5.4) R(J(x; θ)) =
∑

x

g(J(x; θ)),

(5.5) g(J) =







1
2
(J − 0.05)2, J < 0.05

0, J ≥ 0.05.

We use the gradient descend algorithm to search for the parameter values that mini-

mize the cost function. The multi-resolution techniques is also applied in the optimization

to avoid local minimum problems [82]. We start the registration from the downsampled

images and then use the results to initialize the registration of the images with finer reso-

lutions.

Step 3. Estimate the internal motion indices

Step 3 is the key task of this iterative sorting process, in which we find the internal

motion-based breathing indices for all sub-volumes, denoted {αn,k, n = 1, · · · , N, k =

1, · · · , K}. Each αn, a K-element vector, is estimated from the exhale reference volume
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fex(x) and the free-breathing sub-volumes fn(x; k). so we implement N estimations to

obtain the whole set of α. Specifically, each estimator iteratively updates the parameters of

a motion model to best match the reference volume to a sequence of moving sub-volumes.

The motion parameters essentially represent the internal motion indices.

We use the proportionality motion model same as the one used for DOV initialization

in Chapter 4. The displacement of each voxel at any time is assumed to be proportional

to its full movement from end-exhalation to end-inhalation. we express the motion model

for the nth sub-volume as follows:

(5.6) Tn(x; t) = x + αn(t)Dfull(x),

where αn(t) denotes the scalar proportionality parameter at time t. We allow the value

of αn(t) to be negative or greater than 1 because the estimated deformation Dfull(x) from

registration may not be the extreme displacement of each voxel during inhale. This pro-

portionality motion model may is imperfect. However, the ultimate goal for this work is

not to find the precise motion of every voxel. We need only that proportionality sequence

α(t) serve as a breathing index for the internal motion.

Similarly as in Chapter 4, we parameterize the continuous proportionality function

αn(t) through a Rect basis function as follows,

(5.7) αn(t) =
K∑

k=1

αn,kRect(t− k),

where τ is the time interval between each pair of adjacent samples and τk denotes the time

corresponding to the kth sample. This parameterization transfers the dependence of the

motion model on from a continuous time function to a sequence of scalars {αn,k}.

Now the goal is to estimate the proportionality parameters. We minimize the differ-

ences between the free-breathing sub-volumes fn(x; k) and the dynamically deformed ex-

hale reference volumes fex(x). The cost function contains two terms: a data fidelity term
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and a penalty term. Specifically, for estimating each sequence αn = {αn,1, · · · , αn,K},

the cost function is expressed as follows:

(5.8) α̂n = arg min
αn

(Ln(fn(·; k), f ′
n(·; k)) + λR(αn)) , (n = 1, · · · , N),

where λ is a scalar controlling the tradeoff between the two terms, and f ′
n(x, k) represents

the deformed reference volume at time tk,

(5.9) f ′
n(x, k) = fex(x + αn,kDfull(x)).

The data fidelity term Ln(·) is measured by the SSD over the field of view (FOV) of the

nth sub-volume, i.e.,

(5.10) Ln(fn(x; k), f ′(x, k)) =
K∑

k=1

∑

x∈FOVn

(fn(x; k) − f ′
n(x; k))2.

The roughness penalty term R(·) discourages rapidly changing motion estimates, because

the tissue usually moves smoothly during natural breathing. This penalty is calculated by

(5.11) R(αn) = ||Cαn||
2,

where C is a differencing matrix having a typical row of (· · · , 0,−1, 1, 0, · · · ...).

Since the dissimilarity is calculated only within the FOV of the sub-volume, it is not

necessary to deform the whole reference volume when evaluating the cost function in

(5.8). We warp only the volume in the region that is slightly larger than the FOV of the

sub-volumes to save computation time. For example, if the extreme deformation of the

nth sub-volume along the axial direction is r, we can deform only the reference volume

within the axial range of zn − d/2 − r ≤ z ≤ zn + d/2 + r, because the the changes

outside that range have no effect on calculating Ln. We use the conjugate gradient method

to minimize the cost function in (5.8).
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Step 4: Update the two reference volumes

In this step, we use the estimated {αn, n = 1, · · · , N} to form two CT volumes at near

end-of-exhale and end-of-inhale states. We first normalize each sequence αn separately

as follows,

(5.12) sn =
αn − αmin

n

αmax
n − αmin

n

× 100%, n = 1, · · · , N,

where αn
max and αn

min are the minimum and maximum values of αn over k. We then

simply stack those sub-volumes associating with breathing indices that are closest to 80%

as an inhale reference volume, and closest to 0% as an exhale volume. We use the CT

volume at 80% inhale state because it appeared more consistent than the “full” inhalation

state for different breathing cycles.

We normalize each breathing index sequence αn before sorting out the exhale and

inhale CT volumes to compensate for the mismatch in the imperfect reference volumes.

This helps make the whole process more stable. By this normalization, the whole process

will arrive at similar final motion indices even if it starts from different initial reference

volumes, as illustrated in Fig. 5.2. In this figure, we consider a sequence of moving object

with mere expansion along one direction. Case 1 and case 2 select time t3 and t2 as

the inhale state respectively. Although those two cases find different values of motion

indices, the normalization equalizes them. So the estimated final breathing indices can be

robust to imperfect initial reference volumes. Meanwhile, due to these normalizations, two

rounds of motion estimations are sufficient to arrive at the final motion indices. The first

round obtains two refined reference volumes, and the second round updates the motion

indices through internal motion estimation using the refined reference volumes and the

unsorted CT data. In the five patient studies we conducted, four of them converged at

the third iteration and one converged at the second iteration, which agrees with the above
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conclusion.

Although we claim that the whole process is robust to different imperfect reference

volumes, it should be noted that extremely “bad” initial reference volumes will still fail

this algorithm. The bottom line is that the inhale reference volume should be at a deeper

inhale state relative to that of the exhale reference volume.

Figure 5.2: This figure illustrates that normalization (5.12) of each estimated breathing index sequence im-
proves robustness to imperfect reference volumes.

Step 5: Final Sorting

Using the final internal motion indices associated with all the free-breathing sub-volumes

at all table positions, we divide the sub-volumes into several breathing state bins to form

4D CT volumes. Various binning methods have been proposed [33, 48, 50, 65, 77], but

they mainly fall into two categories: amplitude-based sorting and phase-based sorting.

Amplitude-based sorting methods bin the data using the values and directions (inhale or

exhale) of the breathing indices. Phase-based sorting methods usually bin the data accord-

ing to phase-angles determined by some transformations on the breathing signal from the

time domain to a phase domain. Phase-based sorting results in larger mismatch because
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of the insufficient motion reproducibility with respect to phase [50]. We chose amplitude

sorting. We first normalize the breathing signals using the following formula,

(5.13) sn,k =
αn,k − αmin

αmax − αmin
× 100%,

where αmin and αmax are the minimum and maximum values of α over both n and k. Note

this normalization is done on the overall breathing signals α, so the amplitude variations

in different breathing cycles are still preserved, unlike the individual normalization on

each piece of breathing signal in (5.12) in step 4. We then predetermine the breathing

state bins by assigning each bin with an amplitude value in [0%, 100%] and a direction

of ascending or descending. The amplitude value represents how deep the breathing is,

while the direction indicates whether it is in inhalation or exhalation. The sub-volume

whose corresponding breathing index is the closest to the bin value in the bin direction is

associated to that state bin. The direction of each single index can be simply determined

by comparing its value with its neighboring points since the entire estimated breathing

indices compose a time sequence. Those sub-volumes associated to a same state bin are

stacked to form a 3D CT volume. In this way we obtain several 3D volumes representing

the patient’s anatomy motion in one breathing cycle. For the experiment results presented

later, we specifically assigned 11 breathing states with bin values to be

bin.value = [1, 0.8, 0.6, 0.4, 0.2, 0, 0.2, 0.4, 0.6, 0.8, 1] × ratio(5.14)

ratio = median(αmax
1 ), · · · , αmax

N ),(5.15)

and directions to be

bin.direction = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],

where 1 and 0 represent “descending” and “ascending” respectively. Under this assign-

ment, bin[1], bin[6] and bin[11] correspond to start of exhale, end of exhale and end of
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inhale respectively. Later we will compare the sorted CT volumes using the estimated

internal motion indices and the external breathing indices. Because the bin values are ad-

justed by the ratio defined in (5.15, offset between the actual states using different kinds of

breathing indices is minimized, hence the comparisons we report later between the internal

motion indices and the external indices on sorting the images can be fair.

5.3 Experiment results

We applied the iterative sorting method to four sets of 4D CT patient data. The CT

images have a resolution of 0.98 cm × 0.98 cm and a slice thickness of 2.5 mm. Around 20

sub-volumes were consecutively reconstructed in each table scan period using Feldkamp

algorithm from the projection views within the most current π plus the fan angle.

Fig. 5.3 shows examples of the extracted centroid-based simple breathing indices for

several positions of one patient. It is not surprising that the ranges of the curves of those

superior positions are smaller since the motion of the upper thorax during breathing is

barely noticeable. However, clear ascending and descending trends exist. The smallest

and largest values in these breathing signals occur at either near end-inhalation or end-

exhalation state. We stacked those sub-volumes associated with peak or base indices to

form two CT volumes.
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Figure 5.3: The extracted simple breathing signals of patient 1 based on centroid tracking. Positions 3 is
closer to neck and position 15 is closer to abdomen .

Using these two reference volumes, the rest of the procedure described in Sect ?? was
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implemented. For Step 2, we set the regularization parameter γ in (5.3) to be 8 × 105.

This parameter was set based on the previous registration experiments conducted by our

group [34,36]. For Step 3, we set the regularization parameter λ to be 10. It was manually

tuned using the first data set. We started from 1 and up-scaled it by 5 until there were no

abrupt bumps in the estimated proportionality sequence. For both registration and motion

estimation, the reference volumes were downsampled by 2 in the transaxial plane to save

computation time. The downsampled images provide enough information for estimat-

ing the motion because of the small number of parameters in the proportionality motion

model (5.6). Using a finer resolution would require significantly longer computation time

but with very minor improvements. Experiments also showed that this transaxial down-

sampling did not sacrifice estimation accuracy.

We experimented with four patient data sets. In two of them the RPM signals corre-

lated with the patients’ breathing motion fine, and our method attained comparable image

quality. The other two data sets (labeled patient 1 and 2) are further described in this

section.

Fig. 5.4 and Fig. 5.5 plot the estimated breathing signals and the recorded RPM signals

for patient 1 and patient 2 respectively. Both cases show similar transitions of inhalation

and exhalation between the estimated and the recorded breathing signals, but significant

discrepancies presented in those two sets of breathing signals.

We sorted the CT slices according to the recorded RPM indices and the estimated inter-

nal motion indices respectively using the sorting method described in Step 5 (Sect 5.2.2).

Fig. 5.6 and Fig. 5.7 show the sorted CT volumes of patient 1 and patient 2. Tissue mis-

matches (“flatness” or “discontinuity”) presented in the CT volumes formed by using the

RPM breathing indices. Most of these artifacts were corrected by using the estimated in-

ternal motion-based breathing indices, demonstrating significant improvements resulting
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Figure 5.4: The estimated internal motion breathing signals (’+’) and the recorded external RPM signals (’.’).
Both signals were normalized according to (5.13). Each piece of curve represents the breathing
signal for one scan position. From upper left to lower right, the position advanced from close to
neck to close to abdomen. There were 16 positions for patient 1.

from our proposed iterative 4DCT sorting method. The blurs in those images are partial

volume effects due to reconstruction from incomplete projection views because of motion,

which is another factor affecting the image quality but is beyond the focus of this paper.

5.4 Discussion

In this paper we developed an algorithm that reconstructs 4D CT volumes by finding

the motion consistency among the unsorted data through internal motion estimates. This

4D CT method does not require external breathing signals that may be less accurate in

measuring the actual overall tissue movement. As shown in the two “bad” examples pre-

sented above, the inaccuracy of the external RPM signals led to significant mismatches in

the sorted CT volumes. By conducting the proposed internal motion based sorting method,
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Figure 5.5: The estimated internal motion breathing signals (’+’) and the recorded external RPM signals (’.’)
for patient 2. Both signals were normalized according to (5.13). Each piece of curve represents
the breathing signal for one scan position. From upper left to lower right, the position advanced
from close to neck to close to abdomen. There are 15 positions for patient 2

better consistency were established in the formed 4D CT volumes for both examples.

Our current implementation of this algorithm spent about 40 min on Step 2 (registra-

tion) and 20 min on Step 3 (motion estimation) on a Pentium 3 GHz processor respectively

for the first iteration. For the later iterations, registration and motion estimation can start

from the results of the previous iteration hence require less computation time. If we strictly

follow the termination condition, i.e., when two succesive iterations find the same refer-

ence volumes, all the four experiments need three iterations. That also indicated that the

second iteration already arrived at the final motion indices. It agreed with the conclusion

we made in Step 4 that two iterations are sufficient for this iterative sorting process. We

understand that the computation time is still long for routine clinical usage. However, in

cases when the recored breathing signals fail in reconstructing 4D CT volumes that are
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(a). Sorted CT volumes using recorded RPM indices

(b). Sorted CT volumes using internal motion indices

Figure 5.6: Sorted CT volumes of patient 1 using recorded RPM indices (a) and internal motion indices (b).
From upper left to lower right, the patient exhale and then inhale. Severe tissue mismatches are
marked by arrows.
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(a). Sorted CT volumes using recorded RPM indices

(b). Sorted CT volumes using internal motion indices

Figure 5.7: Sorted CT volumes of patient 2 using recorded RPM indices (a) and internal motion indices (b).
From upper left to lower right, the patient exhale and then inhale.Severe tissue mismatches are
marked by arrows.
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usable for designing treatment plans, it may be worthwhile to utilize this method to sort

the CT slices rather than rescan the patient, which would involve more X-ray exposure

and still would not guarantee good correlations between the external breathing signals and

the patients’ internal anatomical movement. From this point of view, longer computation

associated with the proposed method may be clinically acceptable. Certainly more effort

will be put in reducing the computation time such as using a faster image registration

algorithm.

Our internal motion estimation is based on a proportionality motion model (5.6). This

one dimensional, spatially-linear motion model can not best describe the actual trajectory

of any point during breathing. However, the proportionality parameter can summarize the

”average” deformation of all points hence can be a useful index. A higher-dimensionality

motion model may describe the actual 3D thorax motion better. However, for the purpose

of sorting, one may need to lower the dimensionality to make it easier to establish the mo-

tion correspondences. From this point of view, we may also think that the proportionality

motion represents the projection of the actual higher-dimensional motion onto a lower one-

dimensional linear space to facilitate easy sorting. Similarly, after Xu et al. [96], obtained

the deformation of each voxel by registering each slice to a high-resolution breath-hold

reference volume, they still needed extra signal processing to generate a 1D breathing sig-

nal from the high-dimensional deformation field to enable an convenient motion phase

synchronization among the CT images. The processing included an averaging of the de-

formations of all voxels and a principle component analysis on the 3D vector obtained

from averaging. Because their 1D breathing motion signal cannot facilitate an amplitude

sorting, their final 4D CT volumes are generated by deforming the reference volume ac-

cording to the deformation fields that were smoothed at the sub-volume boundaries. So

for sorting-based 4D CT imaging techniques, a simple but reasonable describable motion
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model like (5.6) would be sufficient.



CHAPTER 6

Conclusion and future work

6.1 Conclusion

This dissertation focused on building 4D models of respiratory motion to help radio-

therapists better understand tumor and organ movement caused by breathing. We devel-

oped two methods. The first one DOV, which estimates 4D respiratory motion using pro-

jection views acquired from CBCT scanner; The second one is iterative sorting of 4D CT

images, which builds motion-resolved 4D CT volumes using the unsorted free-breathing

CT slices acquired from multi-slice CT scanners. These two pieces of work both involve

with a motion estimation kernal. The estimated dynamic deformation maps by DOV can

provide the most current update on patients’ respiratory motion and can be used to verify

the radiation dose treatment plan prior to the actual treatment. The motion-resolved 4D

CT volumes can help more efficient and effective treatment design.

DOV is a novel method to estimate respiratory motion from a slowly rotating CBCT

projection views. This method optimized a B-spline deformable motion model to best

match the modeled the measured projection views. The modeled projection views were

calculated from a reference volume deformed according to the estimated motion. We used

a correlation-coefficient based estimator. Two penalty terms was added to the estimator,

one is a commonly used motion roughness penalty, the other is a motion aperiodicity

93
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penalty, which is specially designed for DOV to compensate the slowly rotating gantry

limitation. We conducted simulation and phantom experiment and achieved estimation

accuracy close to voxel resolution in both cases.

To reduce the computation time, we started DOV from a simplified motion estimate,

in which we used a proportionality motion model. This motion model assumes that the

deformation at any time point is spatially linear to the extreme deformation from end-

exhale to end-inhale. Hence the simplified motion estimation finds a 1D time sequence of

proportionality parameters, which can be solved in a few minutes. This estimated 1D time

sequence represents an averaged deformation relative to the full deformation, hence can be

used a breathing signal to guide the nonuniform temporal knot placement. The simplified

motion estimator alone already yielded acceptable accuracy in both the simulation and

phantom experiment. Initialized by the simplfied motion estimates, DOV with B-spline

motion model converged with much fewer iterations.

Because the proportionality parameter summarize the “average” deformation of all

points, it can be used as a sorting index for 4D CT images. We applied this motion model

to 4D multi-slice CT data to estimate internal motion indices and use them to sort the

slices. This sorting totally eliminates the reliance on external surrogates of breathing mo-

tion. Patient studies showed that the internal motion-based sorting corrected most of the

mismatch artifacts in the sorted CT volumes using inaccurate external breathing signals.

6.2 Future work

We developed a 3D respiratory motion estimation algorithm and sucessfully tested it on

both simulated and experimental data sets. However, more studies are needed to improve

this work and make it more applicable in clinics. Possible future work includes:

• Scatter correction
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Compton scatter contamination is severe in cone-beam projection views due the use

of a large cone angle and a 2D flat detector. Our current implementation did not in-

cluded any scatter correction yet. Scatter correction can be done either before running

DOV, which we call preceding scatter correction, or by incorporating a scatter model

into the cone-beam system forward model, which we call in-line scatter correction.

Current techniques that can be used for preceding scatter correction include beam

stop array method [57] and Monte-Carlo method [8, 100]. In-line scatter correction

requires a modeling of scatter effect. Examples on scatter modeling can be found in

papers [2, 21, 31].

• Deformation regularizations

Different types of tissue have different capabilities of elastic deformation. B-spline

deformation model itself assumes uniform elasticity over the image field of view. As

a result, warping can be presented in the estimated deformation at those rigid body

parts such as bone, which is unrealistic. To limit the amount of nonrigid warping

occurring at the rigid tissue, we may include a local rigidity regularization on the

estimated deformation [45,46,72]. The Jacobian of B-spline deformation can be less

than 1. We may also penalize negative Jacobians to pose an invertibility regulariza-

tion [36].

• Computation time reduction by Volume of interest (VOI) study

Currently DOV processes on the whole thorax region, requiring relatively long com-

putation time. Because the movement of the tumor and its surrounding area are

most critical for treatment planning, we may consider DOV using only the partial

reference volume that are in the 2-3 cm wider axial range of tumor span and the

projection views in the area that corresponding to that partial volume. Reduced data

size certainly will reduce the computation time, but it also indicates less regularized



96

deformation estimates. However, we can also start the VOI-based DOV estimation

from the simplified motion estimate as described in Chapter 4, to guide the searching

algorithm into the right valley.

• Modification of the proportionality motion model

As shown in Table 4.2 and 4.3 in Chapter 4, the motion estimation errors of DOV

with the proportionality motion model were much smaller than the voxel resolutions.

Meanwhile, because of the simplicity of the proportionality motion model, the com-

putation requirement is less demanding comparing to DOV with B-spline motion

model. Good estimation accuracy with less computation time suggests that the pro-

portionality motion model may be used alone. However, the proportionality motion

model (4.1) is a rank one, spatially linear motion model. The resulted trajectory of

each voxel is strictly along the line of its extreme displacement. Obviously it excludes

the hysteresis phenomenon. Hysteresis in respiratory motion states that the moving

trajectory of tissue during inhalation is different from that during exhalation. We

suggest two modifications to increase the degrees of freedom of this motion model

to make it more realistic. One way is to use three sets of proportionality sequences,

each along one direction, i.e.,

T x
α (x; t) = x+ αx(t)Dx

full(x),(6.1)

T y
α (x; t) = y + αy(t)Dy

full(x),(6.2)

T z
α (x; t) = z + αz(t)Dz

full(x),(6.3)

where the subscript x, y, and z denote the three directions respectively. Such modified

model allows different ratio for each direction and is able to describe the hysteresis

motion to a certain degree. Another suggestion to refine the model is to build a gen-
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eral linear model with additional prior deformation field components, for example,

(6.4) Tα(x; t) = x +
K∑

k=1

αk(t)Dk(x),

where {Dk(x), k = 1, · · · , K} denote a priori deformation maps at some breathing

states, such as those deformation maps estimated by registering the 4D treatment

planning thorax CTs. Perhaps those deformations could be “learned” from training

data using principle component analysis [12]. Both of the changes suggested above

will be able to improve on deformation path of the simplified motion model. Patient

evaluations are required to validate those models.

• Performance limits analysis

The performance of DOV was mainly evaluated through simulations and experiments

in this thesis. It would be helpful to further analyze its achievable limit on accuracy

(bias and variance) with respect to the measurement noise and the image spectrum.

The limit would inform us, to what extend we could trust this algorithm and how

large margins should be added on tumor trajectories in treatment plans when using

the estimated dynamic deformation maps. The DOV method essentially belongs to

the field of registration. In the literature of registration, performance evaluations

are generally done empirically or visually. Only a few papers have discussed the

performance limits on image registration statistically according to the Cramér-Rao

bounds [69, 98]. The framework presented in those papers may be borrowed here to

analyze the DOV performance bounds.

It is also important to study the fundamental limits of DOV due to the following

factors. First, projection angles. Our current implementation used projection views

in a 180◦ span. Can we use a smaller angle of views, such as 135◦ or 90◦? What’s

the minimum span can be used to achieve an accepted estimation accuracy? Second,
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temporal resolution of projection views. How dense should we collect the projection

views in one breathing cycle to enable an acceptable motion reconstruction? Third,

deviation of the breathing pattern from periodicity and constant amplitude. How

can we adjust the regularization parameters according to the breathing irregularity to

obtain best estimation accuracy? Such analysis would offer guidances toward more

efficient data collections in terms of the expected estimation accuracy thus minimize

radiation dose exposed to patients for imaging and treatment purposes.

• Real-time motion update to facilitate 4D radiotherapy

A potential scenario of radiation therapy under free breathing condition is 4D radio-

therapy, in which the the shape and intensity of the radiation source are adjusted in

real time according to the tumor motion. This technique demands highly efficient

hardware as well as accurate real-time update of the movement of tumors and adja-

cent tissue. Our developed DOV algorithm estimates thorax motion using the cone-

beam projection views in an offline style. We should further explore the possibility

to obtain a real-time estimate of tumor motion during 4D radiotherapy. It may start

from some prior dynamic deformation maps of the patient, such as those estimated

by registering 4D treatment planning thorax CTs, and then update estimate based on

several recent projection views.
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APPENDIX A

Calculations of the derivatives of the cost function ψ for B-spline
based DOV

We need to calculate the gradient of the cost function ψ(θ) to implement the optimiza-

tion algorithm described in Sect 3.1. Explicit derivatives can be found using the chain rule.

Here we give the expressions for the SSD-bases cost function. Those of the correlation-

based cost function can be found similarly.

A.1 Calculation of the gradient of ψ(θ)

There are two terms, L(θ) and R(θ), in the cost function ψ(θ). The following calcula-

tion is for the SSD similarity term. We first compute the partial derivatives of L(θ).

Let us introduce f̂m = W(θ, tm)fref to denote the estimated deformed object at time

tm. Let θp
k (p = 1, · · · , d) be the coefficient of the kth knot in the pth dimension, where

p = x, y, z. Starting from (3.10), we obtain the first partial derivatives as follows,

∂L

∂θp
k

= −

M∑

m=1

〈

(ĝm −Aφm
f̂m), Aφm

∂f̂m

∂θp
k

〉

= −

M∑

m=1

〈

A′
φm

(ĝm −Aφm
f̂m),

∂f̂m

∂θp
k

〉

,(A.1)

where 〈a, b〉 denotes the inner product of array a and b.
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We need to determine ∂f̂m

∂θ
p

k

to complete the calculation of (A.1). We use the chain rule

again. Using Eqs. (5.2),the expression for f̂m(x) is,

f̂m(x) = W(θ, tm)fref(x)

= fref









x +
∑

j

∑

i

θj,i β

(
tm − τj
ht

)

β

(
x − xi

hx

)

︸ ︷︷ ︸

x′









.(A.2)

Let θk correspond to the coefficient of the control knot located at (τj,xi), where τj is the

temporal position and xi the spatial position, then from (A.2)

∂f̂m

∂θp
k

(x) =
∂f̂m

∂θτj ,xi

(x)

=

[

∇fref

∣
∣
∣
∣
x=x′

]

p

b

(
tm − τj
ht

)

β

(
x − xi

hx

)

,(A.3)

where
[

∇fref

∣
∣
∣
∣
x=x′

]

p

, the pth element of the spatial gradient of the reference image evalu-

ated at x′, can be calculated from the interpolation model (3.8) as follows,

[

∇fref

∣
∣
∣
∣
x=x′

]

p

=
∑

r

cr
[
∇β(x′ − r)

]

p
(A.4)

[
∇β(x′ − r)

]

p
= β̇(xp)

D∏

d=1,d6=p

β(xd).(A.5)

The remaining calculation is that of the derivative of R(θ). This can be found easily

from (3.12) as follows,

(A.6) ∇R(θ) = C ′Cθ,

A.2 Calculation of ψ̇(α) and ψ̈(α) for line search

(A.7) ψ(θ + αd) = αL(θ + αd) + λR(θ + αd),
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where d is the search direction. Then

ψ̇(α) = L̇(α) + λṘ(α),

ψ̈(α) = L̈(α) + λR̈(α).(A.8)

Using the chain rule,

L̇(α) = d′∇θL

=
M∑

m

〈

(ĝm −Aφm
f̂m), Aφm

〈

d, ∇θf̂m

〉〉

(A.9)

L̈(α) = d′∇2
θLd

=
M∑

m

〈〈

d, ∇θf̂m

〉

,
〈

d, ∇θf̂m

〉〉

(A.10)

where ∇θf̂m, the derivative of the deformed images w.r.t θ has been explained in Appendix

A.

Similarly,

Ṙ(α) = d′C ′Cθ,(A.11)

R̈(α) = d′C ′Cd.(A.12)
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