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1 Introduction

This is an initial attempt at documentation of the image reconstruction toolbox (IRT) for MATLAB, and any other
MATLAB emulator that is sufficiently complete (possibly Octave and Freemat). This documentation is, and will
always be, hopelessly incomplete. The number of options and features in this toolbox is ever growing.

2 Overview

Although there are numerous options in the IRT, most image reconstruction examples in the toolbox have the
following outline. A concrete example is example/recon_limited_anglel.m.

e Pick an image size and generate a “true” digital phantom image such as the Shepp-Logan phantom.

e Generate a system matrix (usually called A), typically a fatrix2 object (see below), that will be used for iterative
reconstruction.

e Generate simulated measurements y, possibly using the fatrix2 object or possibly using an analytical model
(e.g., the line-integrals through the phantom). (Using the fatrix2 object is cheating because in the real world
there is model mismatch that contaminates the measurements.)

e Perform a conventional non-iterative reconstruction method (e.g., £bp2) to get a baseline image for comparison.

e Generate a regularization object (usually R).

e Check the predicted resolution properties of that R using qpwls_psf, and adjust the regularization parameter
if necessary.

e Apply an iterative algorithm to the data y using the system model A and the regularizer R for some user-specified
number of iterations.

2.1 Getting started

The best way to learn is probably to run an example file like recon_limited_anglel.m, possibly inserting keyboard
commands within the m-file to examine the variables. Most of IRT routines have a built-in help message; e.g.,
typing im without any arguments will return usage information. Many IRT routines have a built-in test routine, e.g.,
ellipse_sino test runs a built-in test of the routine for generating the sinogram of ellipse objects. The test code
illustrates how to use the routine.

2.2 Image orientation

In IRT, a 3D digital image f(i, 7, k) often corresponds to samples of a 3D continuous function f(z,y,z). To easily
relate the three indexes, IRT uses ndgrid, not meshgrid. Likewise, a 2D digital image f(m,n) having M columns
and N rows often corresponds to samples of a 2D continuous function f(x,y). IRT stores f(m,n) as a 2D array with
M rows and N columns, and the im command has a built-in transpose so that 2D array with, say, M = 200 rows
and N = 100 columns is displayed as a 2D image with 200 columns and 100 rows, so that m relates to horizontal
coordinate “x” and n relates to vertical coordinate “y.” This transpose may feel unnatural to some users of 2D
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Figure 1: A 6 x 5 image lattice with approximately circular FOV. Only the n, = 8 pixels with indices shown are
estimated.

images, but has the benefit of providing more consistency between 2D and 3D index ordering and also is helpful for
passing MATLAB arrays to C-compiled mex files because in C usually the x coordinate varies fastest.

2.3 Masking

One subtle point is that we usually display images as a rectangular grid of nx x ny pixels, but usually the iterative
algorithms work on column vectors. Often only a subset of the pixels are updated, as illustrated in Fig. [T} A logical
array called the mask specifies which pixels are to be updated. The function call x_col = x_array(mask(:)) extracts
the relevant pixel elements “within the mask” into a column vector. Conversely, the call x_array = embed(x_col,
mask) puts the elements of the column vector back into the appropriate places in the array.

The following code illustrates these ideas.

mask = false(6,5); mask([9 10 14:17 21 22]) = true;
xc [10:5:45];
xa = embed(xc, mask)

Here is the resulting output.

0 0 0 0 0
0 0 20 0 0
0 10 25 40 0
0 15 30 45 0
0 0 35 0 0
0 0 0 0 0

Conversely, typing the following produces a vector that is the same as the original xc vector.
xa(mask)

When first working on image reconstruction problems, it is quite tempting to disregard using any such mask and
try to reconstruct the “full” image because it seems simpler. However, estimating more parameters than are needed
to describe the object usually requires more computation time and often degrades the conditioning of the problem
leading to slower convergence.



3 Special structures

The IRT uses some special custom-made object classes extensively: the strum class, which provides structures with
methods, and the fatrix2 class (and its obsolete predecessor, the Fatrix class), that provide a “fake matrix” object.
These objects exploit MATLAB’s object-oriented features, specifically operator overloading. The following overview
of these objects should help users understand the toolbox code.

3.1 The strum class

Most object-oriented languages allow object classes to have private methods, i.e., functions that are intended for use
only with objects or data of a specific class. MATLAB also supports the use of private methods. If you put a function
in an m-file named myfun.m within the directory where an class myclass is declared, i.e., in the directory @myclass,
then invoking myfun (ob) will call the function myfun if ob is of class myclass. This mechanism is very convenient,
particularly when overloading an existing MATLAB operation, but it has some limitations.
o If several object classes can all use the same method myfun, the you must put copies of myfun in each of the object
class directories (or use suitable links), which complicates software maintenance.
e Every single method requires such an m-file, even if the function is only a few lines long, leading to a proliferation
of little m-files littering the directories.
e There is no mechanism for changing the methods during execution.
The strum object class is essentially a special structure that contains private methods that are simply function
handles.
If st is a strum object that was declared to have a method method1, then invoking

st .method1 (args)

will cause a call to the function handle.
A concrete example is given in the sino_geom.m. A call of the form

sg = sino_geom(’par’, ’nb’, 128, ’na’, 100, ’dr’, 3, ’orbit’, 180);

creates a strum object that describes a parallel-beam sinogram. This object has a variety of data elements and
associated methods. For example, invoking sg.ar returns a list of the projection view angles in radians, and
sg.ad(2) returns the second projection view angle in degrees. These methods are very short functions defined
within the sino_geom.m m-file.

3.2 The fatrix?2 class

The pronunciation rhymes with matrix. Think “fake matrix” or “fancy matrix.”

3.2.1 Background

Most iterative algorithms for image reconstruction are described conveniently using matrix notation, but matrices
are not necessarily the most suitable data structure for actually implementing an iterative algorithm for large sized
problems. The fatrix2 class provides a convenient bridge between matrix notation and practical system models
used for iterative image reconstruction.

Consider the simple iterative algorithm for reconstructing x from data y expressed mathematically:

"t =" + aA'(y — Az"), (1)

where A is the system matriz associated with the image reconstruction problem at hand. If A is small enough to be
stored as a matrix in MATLAB (sparse or full), then this algorithm translates very nicely into MATLAB as follows.

x = x + alpha * A’ * (y - A * x); (2)

You really cannot get any closer connection between the math and the program than this! But often we work with
system models that are too big to store as matrices (even sparsely) in MATLAB. Instead, the models are implemented
by subroutines that compute the “forward projection” operation Ax and the “backprojection operation A’z for input
vectors @ and z respectively. The conventional way to use one of these system models in MATLAB (or C) would be
to rewrite the above program as follows.



Ax = forward_project(system_arguments, x)

residual = y - Ax;

correction = back_project(system_arguments, residual)
X = x + alpha * correction

Yuch! This is displeasing for two reasons. First, the code looks a lot less like the mathematics. Second, usually you
end up with a different version of the code for every different system model (forward/back-projector subroutine pair)
that you develop. Having multiple versions of a simple algorithm creates a software maintenance headache.

The elegant solution is to develop MATLAB objects that know how to perform the following operations:
oA x x (matrix vector multiplication, operation mtimes)
o A’ (transpose), and
e A’ * z (mtimes again, with a transposed object).
Once such an object is defined, one can use ezactly the same iterative algorithm that one would have used with
an ordinary matrix, e.g., . The fatrix2 class provides a convenient mechanism for implementing such linear
operators.

3.2.2 Creating a fatrix2 object

Suppose x is of length 1000 and vy is of length 2000. One can create a corresponding fatrix2 object using the
following call:

A = fatrix2(’imask’, [1000 1], ’omask’, [2000 1],
’arg’, system_arguments,
>forw’, @forward_project, ’back’, @back_project);

The resulting fatrix2 object A acts just like a matrix in most important respects. In particular, we can use exactly
the same iterative algorithm as before, because Ax = A * x is handled internally by calling

Ax = forward_project(system_arguments, x)

and similarly for A’ * z.

Basic operations like A(:,7) are also implemented, but nonlinear operations like exp(A) are not because those
cannot be computed readily using forward_project.

For many examples, see the systems subdirectory of IRT.

3.2.3 Operations on a fatrix2 object that return another fatrix2 object

eB = A’ or B = ctranspose{A}
fatrix2 object Hermitian transpose

eC=Ax*B
fatrix2 object multiplication (requires compatible sizes)
eB =7 x A

multiplying a scalar times a fatrix2 object
e A = [A1l; A2; A3]
vertical concatenation (vertcat is also supported) (requires compatible sizes)
e A = [A1, A2, A3]
horizontal concatenation (horzcat is also supported) (requires compatible sizes)
e A(:,[3 7]) or AC[3 7],:) or A(:,2:end) etc.
these return a smaller sized fatrix?2
eC =B+ A
fatrix2 object addition (requires compatible sizes)

3.2.4 Operations on a fatrix2 object that return a vector.

o A(:,7) or A(7,:)



3.2.5 Operations on a fatrix2 object that return a matrix.

These are practical only if A has sufficiently small size!
e A(:,:) or full(A)

e svd(4)

e eig(A)

3.2.6 Other operations on a fatrix2 object.

e A(7,9)
This returns a scalar value.

e sparse(A)
By default, internally this will compute each column of A using A(:,j) and then create a sparse matrix from the
nonzero elements of those columns. For most large cases, this will be very slow. However, a few fatrix2 objects
such as Gdiag have an internal sparse method (provided by the ’sparse’ option to the fatrix2 call) that is
very efficient.

3.2.7 Support for arrays instead of columns

For an image reconstruction problem with the mask illustrated in Fig. [} the size of A should be ngq x 8 where nq is
the number of rows of A.
So if we have a 6 x5 image x and we would like to compute Ax, conventionally one would need to do the following:
y = A * x(mask)
The statement x (mask) extracts the relevant n, = 8 values out of the 6 x 5 array x.
Objects in the fatrix2 class often can spare the user the need to use x(mask) if the object is defined properly.
Suppose that in a tomographic image reconstruction problem corresponding to Fig. [I} the sinogram size is 9 x 8
S0 ng = 72.
Then if A is one of the predefined tomographic system models in IRT such as Gtomo2_wtmex, then the statement
yc = A * x(mask)
will produce column vector yc with nq = 72 elements.
On the other hand, the convenient syntax

ya = A * x
will produce a 9 x 8 sinogram array output ya. The two different outputs are related by
yc = ya(:)

In other words, if the input is a column vector (of length np), then the output will also be a column vector, just
like one would expect for an ordinary matrix. But if the input is an array, of the appropriate dimensions, then the
output will also be an array.

When defining a new fatrix2 object, there are several options that one can use to specify the appropriate
dimensions.

e imask is the usual input mask. Default is true(idim)
This can also be called just mask for backwards compatibility with Fatrix objects.
e idim describes the input array dimensions. Default is sum(imask(:)), i.e., an ordinary column vector.
e omask is a rarely used option. Default is true(odim)
e odim describes the output array dimensions. Default is sum(omask(:)), i.e., an ordinary column vector.
For a typical fatrix2 object, one will use only the imask and odim options.
For the tomography example above, we would add the name-value pairs >odim’, [9 8] to the fatrix2 call.

3.2.8 Defining fatrix2 methods

The key methods for a fatrix2 object are the forw and back operations. For the obsolete Fatrix objects, these
methods had to support columns and arrays and multiples thereof which made them fairly complicated. For the new
fatrix2 objects, this complexity is handled by the object itself, and the user-defined methods are much simpler.

e The forw routine accepts a single input array of size idim and returns a single output array of size odim.

e Caution: nonzero values in the input array outside of imask may cause unpredictable results.



e Conversely, the back routine accepts a single input array of size odim and returns a single output array of size
idim.

e Caution: the output array of the back routine must be zero for any pixels outsize of the omask. Sometimes this
will happen automatically because a computationally efficient back routine will only evaluate the output within
the omask, and will set the other values to zero. But for some objects, like Gdft, the back routine first evaluates
the entire output (using ifftn) and then performs a .* with omask to comply with the requirement.

3.2.9 The 1D dilemma

Unfortunately, MATLAB does not really support 1D arrays. (MATLAB’s size command always returns at least a
two-element vectors.) So for any application where odim is 1D, such as MRI with irregular non-Cartesian k-space
samples, A’ * y will produce a 1D array not a 2D array even if imask is 2D, because y will be “1D” in such cases.



3.3 The Fatrix class

The Fatrix class is the (now obsolete) predecessor to the fatrix2 class.
If  is of length 1000 and y is of length 2000, use the following call to create a Fatrix object:

A = Fatrix([2000 1000], system_arguments,
>forw’, @forward_project, ’back’, @back_project);

The resulting Fatrix object A acts just like a 2000 x 1000 matrix in most important respects.

Basic operations like A(:,7) are also implemented, but nonlinear operations like A .~ 1/3 are not because those
cannot be computed readily using forward_project.

For examples, see the systems subdirectory of IRT.

On 2007-1-30, inspired by bbtools, I added the following functionality:
e Fatrix object multiplication (using Gcascade): C = A * B
e Scalar multiplication of Fatrix object (using Gecascade): B = 7 * A
e Vertical concatenation (using block_fatrix): A = [A1l; A2; A3]
e Horizontal concatenation (using block_fatrix): A = [A1l, A2, A3]
One could use Gcascade or block_fatrix directly for these operations, but it looks nicer and is more “MATLAB
like” to use the new syntax.

For a Fatrix, the default behavior of the forward_project and back_project subroutines is that they expect
a column vector input and return a column vector output. Many of the Fatrix objects also support an array input,
much like fatrix2 objects, but for a Fatrix the user must provide both the vector and array capability in the
forward_project and back_project routines, which makes them more difficult to write. In contrast, for fatrix2
objects, the use provides subroutines that only work with arrays, and the fatrix2 object infrastructure itself takes
care of the vector case.

3.4 Related tools

e On 2007-1-28, I noticed that there is another package called bbtools that has a similar functionality called a
“black box.” It is nicely documented. |http://nru.dk/bbtools

e On 2010-02-22 I learned of the “SPOT” package http://www.cs.ubc.ca/labs/scl/spot| that has some similar func-
tionality.

e On 2013-09-06 I found the 2004 paper by Nagy et al. [1] that has related functionality specifically for image
restoration.
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