

Dept. of Computer Science Rutgers University

Node and Graph Similarity: Theory and Applications

Danai Koutra (CMU) Tina Eliassi-Rad (Rutgers) Christos Faloutsos (CMU)

ICDM 2014, Monday December 15th 2014, Shenzhen, China

Copyright for the tutorial materials is held by the authors. The authors grant IEEE ICDM permission to distribute the materials through its website.

Who we are

- Danai Koutra, CMU
 - Node and graph similarity, summarization, pattern mining
 - http://www.cs.cmu.edu/~dkoutra/
- Tina Eliassi-Rad, Rutgers
 - Data mining, machine learning, big complex networks analysis
 - <u>http://eliassi.org/</u>
- Christos Faloutsos, CMU
 - Graph and stream mining, ...
 - http://www.cs.cmu.edu/~christos

What we will cover

What we will cover

ICDM'14 Tutorial

Part 1a Similarity between Nodes: Roles

Roadmap

- Node Roles
 - What are roles
 - Roles and communities

- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary
- Node Proximity (after coffee break)

What are roles?

- "Functions" of nodes in the network
 - Similar to functional roles of species in ecosystems
- Measured by structural behaviors
- Examples
 - centers of stars
 - members of cliques
 - peripheral nodes

- ...

Example of Roles

Network Science Co-authorship Graph [Newman 2006]

ICDM'14 Tutorial D. Kou

D. Koutra & T. Eliassi-Rad & C. Faloutsos

Research Questions

- Given a graph, how can we automatically discover roles (or functions) of nodes?
- How can we make sense of these roles?
- Are there good features that we can extract for nodes that indicate role-membership?
- How are roles different from communities and from positions/equivalences (from sociology)?
- What are the applications in which these discovered roles can be effectively used?

Why are Roles Important?

- Encode complex behavior
- Map nodes into a useful lower dimensional space
 - Easier to do node similarity there
- Generalize across networks
- Have many useful applications

Applications of Role Discovery

Task	Use Case		
Role query	Identify individuals with similar behavior to a known target		
Role outliers	Identify individuals with unusual behavior		
Role dynamics	Identify unusual changes in behavior		
Re-identification	Identify individuals in an anonymized network		
Role transfer	Use knowledge of one network to make predictions in another		
Network similarity	Determine network compatibility for knowledge transfer		
Information dissemination	Cut k edges to minimize dissemination on a network		

...

...

Roadmap

- Node Roles
 - What are roles
 - Roles and communities

- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary
- Node Proximity

Roles and Communities are Complementary

* Henderson, et al. 2012; † Clauset, et al. 2004

ICDM'14 Tutorial

D. Koutra & T. Eliassi-Rad & C. Faloutsos

Roles and Communities

Consider the social network of a CS dept

- Roles
 - Faculty
 - Staff
 - Students

- Communities
 - Al lab
 - Database lab
 - Architecture lab

Roadmap

- Node Roles
 - What are roles

- Roles and communities
- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary
- Node Proximity

Roles == Positions in Sociology

- Two nodes that have the same position are in an *equivalence relation*
- Equivalence, *E*, is any relation that satisfies these 3 conditions:
 - 1. Transitivity:

 $(a, b), (b, c) \in E \Rightarrow (a, c) \in E$

2. Symmetry:

 $(a, b) \in E \text{ iff } (b, a) \in E$

3. Reflexivity:

$$(a, a) \in E$$

Equivalences

ICDM'14 Tutorial

D. Koutra & T. Eliassi-Rad & C. Faloutsos

Deterministic Equivalences

Regular				
	Autor	norphic]	
		Structural		

Structural Equivalence

- [Lorrain & White, 1971]
- Two nodes u and v are structurally equivalent if they have the same relationships to all other nodes
- Hypothesis: Structurally equivalent nodes are likely to be similar in other ways - i.e., you are your friend
- Weights & timing issues are not considered
- Rarely appears in real-world networks

b

a

Deterministic Equivalences

Regular			
	Automorphic		
		Structural	

Automorphic Equivalence

- [Borgatti, et al. 1992; Sparrow 1993]
- Two nodes *u* and *v* are automorphically equivalent if all the nodes can be relabeled to form an isomorphic graph with the labels of *u* and *v* interchanged
 - Swapping u and v (possibly along with their neighbors) does not change graph distances
- Two nodes that are automorphically equivalent share exactly the same label-independent properties

Deterministic Equivalences

Re	gular		
	Autor	norphic	
		Structural	

Regular Equivalence

- [Everett & Borgatti, 1992]
- Two nodes *u* and *v* are regularly equivalent if they are equally related to equivalent others

Hanneman, Robert A. and Mark Riddle. 2005. Introduction to social network methods. Riverside, CA: University of California, Riverside (published in digital form at http://faculty.ucr.edu/~hanneman/)

Examples of Algorithms for Deterministic Equivalences

- Structural equivalence
 - CONCOR (CONvergence of iterated CORrelations) [Breiger et al. 1975]
 - STRUCUTRE [Burt 1976]
 - Numerical optimization with tabu search [UCINET]
 - Local optimization [Pajek]
- Automorphic equivalence
 - Use numerical signatures on degree sequences of neighborhoods [Sparrow, 1993]; scales linearly with the number of edges
- Regular equivalence
 - Maximal Regular coloration [Everett & Borgatti, 1997]; a polynomial time algorithm

Equivalences

ICDM'14 Tutorial

D. Koutra & T. Eliassi-Rad & C. Faloutsos

Stochastic Equivalence

- [Holland, et al. 1983; Wasserman & Anderson, 1987]
- Two nodes are stochastically equivalent if they are "exchangeable" w.r.t. a probability distribution
- Similar to structural equivalence but probabilistic

Examples of Algorithms for Stochastic Equivalence

- Many algorithms exist here
- Most recent approaches are generative [Airoldi, et al 2008]
- Some choice points
 - Single [Kemp, et al 2006] vs.
 mixed-membership [Koutsourelakis & Eliassi-Rad, 2008] positions
 - Parametric vs. non-parametric models

Roadmap

- Node Roles
 - What are roles

- Roles and communities
- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary
- Node Proximity

Algorithms for Role Discovery

What they do?	Publication
Recursive Feature Extraction	[Henderson et al., KDD 2011]
Role Extraction from Structural Features	[Henderson et al., KDD 2012]
Guided Learning for Role Discovery	[Gilpin <i>et al.</i> , KDD 2013]
Dynamic Behavioral Mixed-membership Model	[Rossi <i>et al.</i> , WSDM 2013]
Multi-relational Role Discovery	[Gilpin et al., in preparation]
Learning to Minimize Information Dissemination	[Le et al., in preparation]
	What they do?Recursive Feature ExtractionRole Extraction from Structural FeaturesGuided Learning for Role DiscoveryDynamic Behavioral Mixed-membership ModelMulti-relational Role DiscoveryLearning to Minimize Information Dissemination

...

RolX: Role eXtraction

- Introduced by Henderson et al. KDD 2012
- Automatically extracts the underlying roles in a network
 - No prior knowledge required
- Determines the number of roles automatically
- Assigns a mixed-membership of roles to each node
- Scales linearly on the number of edges

RolX: Flowchart

ICDM'14 Tutorial

RolX: Flowchart

ICDM'14 Tutorial

Recursive Feature Extraction

• ReFeX [Henderson, et al. 2011a] turns network connectivity into recursive structural features

- Neighborhood features: What is your connectivity pattern?
- Recursive Features: To what kinds of nodes are you connected?

EGO

ReFeX: Structural Features

- Local
 - Essentially measures of the node degree
- Egonet
 - Computed based on each node's ego network
 - Examples
 - # of within-egonet edges
 - # of edges entering & leaving the egonet
- Recursive
 - Some aggregate (mean, sum, max, min, ...) of another feature over a node's neighbors
 - Aggregation can be computed over any real-valued feature, including other recursive features

Neighborhood

Regional

ReFex Intuition: Regional Structure Matters

Node sizes indicate communication volume relative to the central node in each frame.

ICDM'14 Tutorial

D. Koutra & T. Eliassi-Rad & C. Faloutsos

ReFeX (continued)

- Number of possible recursive features is infinite
- ReFeX pruning
 - Feature values are mapped to small integers via vertical logarithmic binning
 - Log binning places most of the discriminatory power among sets of nodes with large feature values
 - Look for pairs of features whose values never disagree by more than a threshold
 - A graph based approach
 - Threshold automatically set
 - Details in the KDD'11 paper

Role Extraction

ICDM'14 Tutorial

Role Extraction: Feature Grouping

- Soft clustering in the structural feature space
 - Each node has a mixed-membership across roles
- Generate a rank *r* approximation of V ≈ GF

- RolX uses NMF for feature grouping
 - Computationally efficient

 $\operatorname{argmin}_{G,F} \| V - GF \|_{fro}, \text{s.t.} \ G \ge 0, \ F \ge 0$

Non-negative factors simplify interpretation of roles and memberships

Role Extraction: Model Selection

- Roles summarize behavior
 - Or, they compress the feature matrix, V
- Use MDL to select the model size *r* that results in the best compression
 - L: description length
 - M: # of bits required to describe the model
 - E: cost of describing the reconstruction errors in V GF
 - Minimize L = M + E
 - To compress high-precision floating point values, RolX combines Llyod-Max quantization with Huffman codes
 - Errors in V-GF are not distributed normally, RolX uses KL divergence to compute E

$$E = \sum_{i,j} \left(V_{i,j} \log \frac{V_{i,j}}{(GF)_{i,j}} - V_{i,j} + (GF)_{i,j} \right)$$

 $M = \overline{b}r(n+f)$

Role Extraction

ICDM'14 Tutorial

D. Koutra & T. Eliassi-Rad & C. Faloutsos

Experiments on Role Discovery

- Role query
- Role transfer
- Role sense-making
- Role mixed-memberships

Details in Henderson et al. KDD 2012

Role Query

Node Similarity for M.E.J. Newman (*bridge*)

Mixed-membership roles enable us to measure similarity of nodes based on their role memberships

Node Similarity for J. Rinzel (isolated)

Node Similarity for F. Robert (*cliquey*)

Role Transfer

• Question: How can we use labels from an external source to predict labels on a network with no labels?

• Conjecture: Nodes with similar roles are likely to have similar labels

Role Transfer = RolX + SL

Data for Role Transfer

	IP-A1	IP-A2	IP-A3	IP-A4	IP-B
# Nodes	81,450	57,415	154,103	206,704	181,267
% labeled	36.7%	28. 1%	20.1%	32.9%	15.3%
# Links	968,138	432,797	1,266,341	1,756,082	1,945,215
(# unique)	206,112	137,822	358,851	465,869	397,925
Class Distribu- tion					

Web DNS P2P

Role Transfer Results

Roles generalize across disjoint networks & enable prediction without re-learning

Model Selection

RolX selects high accuracy model sizes

Model Selection (continued)

Classification accuracy is highest when RolX selection criterion is minimized

Role Space

Automatically Discovered Roles

Network Science Co-authorship Graph [Newman 2006]

ICDM'14 Tutorial

D. Koutra & T. Eliassi-Rad & C. Faloutsos

Making Sense of Roles

Making Sense of Roles

GLRD: Guided Learning for Role Discovery

- Introduced by Sean Gilpin et al.
- RolX is unsupervised
- What if we had guidance on roles?
 - Guidance as in weak supervision encoded as constraints
- Types of guidance
 - Sparse roles
 - Diverse roles
 - Alternative roles, given a set of existing roles

GLRD

ICDM'14 Tutorial

GLRD

ICDM'14 Tutorial

D. Koutra & T. Eliassi-Rad & C. Faloutsos

GLRD Framework

• Constraints on columns of G (i.e., role assignments) or rows of F (i.e. role definitions) are convex functions

$$\begin{array}{ll} \underset{\mathbf{G},\mathbf{F}}{\text{minimize}} & ||\mathbf{V} - \mathbf{GF}||_2\\ \text{subject to} & g_i(\mathbf{G}) \leq d_{Gi}, \ i = 1, \dots, t_G\\ & f_i(\mathbf{F}) \leq d_{Fi}, \ i = 1, \dots, t_F \end{array}$$
where g_i and f_i are convex functions.

- Use an alternative least squares (ALS) formulation
 - Do not alternate between solving for the entire G and F
 - Solve for one column of G or one row of F at a time
 - This is okay since we have convex constraints

Guidance Overview

Guidance	Effect of increasing guidance				
Туре	on role assignment (G)	on role definition (F)			
Sparsity	Reduces the number of nodes with minority memberships in roles	Decreases likelihood that features with small explanatory benefit are included			
Diversity	Limits the amount of allowable overlap in assignments	Roles must be explained with completely different sets of features			
Alternative	Decreases the allowable similarity between the two sets of role assignments	Ensures that role definitions are very dissimilar between the two sets of role assignments			

ICDM'14 Tutorial

Sparsity

$$\begin{array}{ll} \underset{\mathbf{G},\mathbf{F}}{\operatorname{argmin}} & ||\mathbf{V} - \mathbf{GF}||_{2} \\ \text{subject to:} & \mathbf{G} \geq 0, \mathbf{F} \geq 0 \\ & \forall i \quad ||\mathbf{G}_{\bullet \mathbf{i}}||_{1} \leq \epsilon_{G} \\ & \forall i \quad ||\mathbf{F}_{\mathbf{i}\bullet}||_{1} \leq \epsilon_{F} \\ & \text{where} \quad \epsilon_{G} \text{ and } \epsilon_{F} \text{ define upperbounds for the sparsity constraints (amount of allowable density).} \end{array}$$

ICDM'14 Tutorial

Diversity

Goal: Find role assignments or definitions that are very different from each other

$$\underset{\mathbf{G},\mathbf{F}}{\operatorname{argmin}} \quad ||\mathbf{V} - \mathbf{GF}||_2$$

subject to: $\mathbf{G} \ge 0, \mathbf{F} \ge 0$

$$\forall i, j \quad \mathbf{G}_{\bullet i}^{T} \mathbf{G}_{\bullet j} \leq \epsilon_{G} \quad i \neq j \\ \forall i, j \quad \mathbf{F}_{i \bullet} \mathbf{F}_{j \bullet}^{T} \leq \epsilon_{F} \quad i \neq j$$

where ϵ_G and ϵ_F define upperbounds on how angularly similar role assignments and role definitions can be to each other.

Diverse Roles and Sparse Roles

- Question: Can diversity and sparsity constraints create better role definitions?
- Conjecture: Better role definitions will better facilitate other problems such as identity resolution across graphs
- Experiment: Compare graph mining results using various methods for role discovery

Network	$ \mathbf{V} $	$ \mathbf{E} $	k	LCC	#CC
VLDB	1,306	3,224	4.94	769	112
SIGMOD	1,545	4,191	5.43	$1,\!092$	116
CIKM	2,367	$4,\!388$	3.71	890	361
SIGKDD	1,529	$3,\!158$	4.13	743	189
ICDM	1,651	$2,\!883$	3.49	458	281
SDM	915	$1,\!501$	3.28	243	165

DBLP Co-authorship Networks from 2005-2009

Identity Resolution across Networks

ICDM'14 Tutorial

Modeling Dynamic Graphs with Roles

• Introduced by Rossi et al. [WSDM 2013]

- Given G_{t-1} and G_t find a transition model T that minimizes the functional: $f(G_t, G_{t-1}) = \frac{1}{2} ||G_t - G_{t-1}T||_F^2$
- All models predict G_{t+1} using G_t as

$$\mathbf{G}_{t+1}' = \mathbf{G}_t \mathbf{T}$$

Roles Across Relations

• Role Discovery in Multi-Relational Graphs [Sean Gilpin, et al. in preparation]

ICDM'14 Tutorial

Two New Hybrid Approaches

- Ryan Rossi and Nesreen K. Ahmed
 - Role Discovery in Networks [*TKDE* 2014]
 - A taxonomy for discovering roles that includes
 (i) graph-based roles, (ii) feature-based roles,
 and (iii) hybrid roles
- Yiye Ruan and Srinivasan Parthasarathy
 - Simultaneous Detection of Communities and Roles from Large Networks [COSN 2014]
 - *RC-Joint*: a non-parametric approach to simultaneously identify softly assigned communities and structural roles

Roadmap

- Node Roles
 - What are roles

- Roles and communities
- Roles and equivalences (from sociology)
- Roles (from data mining)

- Summary

• Node Proximity (after the coffee break)

Summary of Part 1a on Roles

- Are structural behavior ("function") of nodes
- Are complementary to communities
- Previous work mostly in sociology under equivalences
- Recent graph mining work produces mixedmembership roles, is fully automatic and scalable
- Can be used for many tasks: transfer learning, re-identification, anomaly detection, etc
- Extensions: including guidance, modeling dynamic networks, etc

Role Discovery vs. Regular Equivalence

	Role Discovery	Regular Equivalence
Mixed-membership over roles	\checkmark	
Automatically selects the best model	\checkmark	
Can incorporate arbitrary features	✓	
Uses structural features	\checkmark	
Uses structure	✓	✓
Generalizes across disjoint networks (longitudinal & cross-sectional)	✓	?
Scalable (linear on # of edges)	✓	
Guidance	\checkmark	

Acknowledgement

- LLNL: Brian Gallagher, Keith Henderson
- ASU: Hanghang Tong
- Google: Sugato Basu
- SUNY Stony Brook: Leman Akoglu
- CMU: Christos Faloutsos, Danai Koutra
- UC Berkeley: Lei Li
- UC Davis: Ian Davidson, Sean Gilpin
- Rutgers: Long Le

Thanks to: LLNL, NSF, IARPA, DARPA, DTRA.

Papers at http://eliassi.org/pubs.html

- Long T. Le, Tina Eliassi-Rad, Hanghang Tong: <u>Learning to minimize dissemination on</u> <u>large graphs</u>. under review, 2014.
- Sean Gilpin, Tom Kuo, Tina Eliassi-Rad, Ian Davidson: <u>Roles across relations: Role</u> <u>discovery in multi-relational graphs</u>. **under review**, 2014.
- Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, Christos Faloutsos: <u>Network</u> <u>similarity via multiple social theories</u>. **ASONAM** 2013: 1439-1440.
- Sean Gilpin, Tina Eliassi-Rad, Ian Davidson: <u>Guided learning for role discovery (GLRD):</u> <u>Framework, algorithms, and applications</u>. **KDD** 2013: 113-121.
- Ryan A. Rossi, Brian Gallagher, Jennifer Neville, Keith Henderson: <u>Modeling dynamic</u> <u>behavior in large evolving graphs</u>. **WSDM** 2013: 667-676. <u>http://www.ryanrossi.com/papers/wsdm13-dbmm.pdf</u>
- Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, Christos Faloutsos: <u>Gelling, and melting, large graphs by edge manipulation</u>. CIKM 2012: 245-254.
- Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, Lei Li: <u>RolX: Structural role extraction</u> <u>& mining in large graphs</u>. KDD 2012: 1231-1239.
- Ryan A. Rossi, Brian Gallagher, Jennifer Neville, Keith Henderson: <u>Role-dynamics: fast</u> <u>mining of large dynamic networks</u>. WWW (Companion Volume) 2012: 997-1006.
- Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hanghang Tong, Christos Faloutsos: <u>It's who you know: Graph mining using recursive structural</u> <u>features</u>. KDD 2011: 663-671.

References

Deterministic Equivalences

- S. Boorman, H.C. White: Social Structure from Multiple Networks: II. Role Structures. American Journal of Sociology, 81:1384-1446, 1976.
- S.P. Borgatti, M.G. Everett: Notions of Positions in Social Network Analysis. In P. V. Marsden (Ed.): Sociological Methodology, 1992:1-35.
- S.P. Borgatti, M.G. Everett, L. Freeman: UCINET IV, 1992.
- S.P. Borgatti, M.G. Everett, Regular Blockmodels of Multiway, Multimode Matrices. Social Networks, 14:91-120, 1992.
- R. Breiger, S. Boorman, P. Arabie: An Algorithm for Clustering Relational Data with Applications to Social Network Analysis and Comparison with Multidimensional Scaling. Journal of Mathematical Psychology, 12:328-383, 1975.
- R.S. Burt: Positions in Networks. Social Forces, 55:93-122, 1976.

References

- P. DiMaggio: Structural Analysis of Organizational Fields: A Blockmodel Approach. Research in Organizational Behavior, 8:335-70, 1986.
- P. Doreian, V. Batagelj, A. Ferligoj: Generalized Blockmodeling. Cambridge University Press, 2005.
- M.G. Everett, S. P. Borgatti: Regular Equivalence: General Theory. Journal of Mathematical Sociology, 19(1):29-52, 1994.
- K. Faust, A.K. Romney: Does Structure Find Structure? A critique of Burt's Use of Distance as a Measure of Structural Equivalence. Social Networks, 7:77-103, 1985.
- K. Faust, S. Wasserman: Blockmodels: Interpretation and Evaluation. Social Networks, 14:5-61. 1992.
- R.A. Hanneman, M. Riddle: Introduction to Social Network Methods. University of California, Riverside, 2005.

References

- F. Lorrain, H.C. White: Structural Equivalence of Individuals in Social Networks. Journal of Mathematical Sociology, 1:49-80, 1971.
- L.D. Sailer: Structural Equivalence: Meaning and Definition, Computation, and Applications. Social Networks, 1:73-90, 1978.
- M.K. Sparrow: A Linear Algorithm for Computing Automorphic Equivalence Classes: The Numerical Signatures Approach. Social Networks, 15:151-170, 1993.
- S. Wasserman, K. Faust: Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.
- H.C. White, S. A. Boorman, R. L. Breiger: Social Structure from Multiple Networks I. Blockmodels of Roles and Positions. American Journal of Sociology, 81:730-780, 1976.
- D.R. White, K. Reitz: Graph and Semi-Group Homomorphism on Networks and Relations. Social Networks, 5:143-234, 1983.

References

Stochastic Blockmodels

- E.M. Airoldi, D.M. Blei, S.E. Fienberg, E.P. Xing: Mixed Membership Stochastic Blockmodels. Journal of Machine Learning Research, 9:1981-2014, 2008.
- P.W. Holland, K.B. Laskey, S. Leinhardt: Stochastic Blockmodels: Some First Steps. Social Networks, 5:109-137, 1983.
- C. Kemp, J.B. Tenenbaum, T.L. Griffiths, T. Yamada, N. Ueda: Learning Systems of Concepts with an Infinite Relational Model. AAAI 2006.
- P.S. Koutsourelakis, T. Eliassi-Rad: Finding Mixed-Memberships in Social Networks. AAAI Spring Symposium on Social Information Processing, Stanford, CA, 2008.
- K. Nowicki , T. Snijders: Estimation and Prediction for Stochastic Blockstructures, Journal of the American Statistical Association, 96:1077-1087, 2001.
- Z. Xu, V. Tresp, K. Yu, H.-P. Kriegel: Infinite Hidden Relational Models. UAI 2006.
- S. Wasserman, C. Anderson: Stochastic a Posteriori Blockmodels: Construction and Assessment, Social Networks, 9:1-36, 1987.

References

Role Discovery

- K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong, C. Faloutsos: It's Who Your Know: Graph Mining Using Recursive Structural Features. KDD 2011: 663-671.
- R. Jin, V. E. Lee, H. Hong: Axiomatic ranking of network role similarity. KDD 2011: 922-930.
- K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra, C. Faloutsos, L. Li: RolX: Structural role extraction & mining in large graphs. KDD 2012: 1231-1239.
- R. A. Rossi, B. Gallagher, J. Neville, K. Henderson: Modeling dynamic behavior in large evolving graphs. WSDM 2013: 667-676.
- S. Gilpin, T. Eliassi-Rad, I. Davidson: Guided Learning for Role Discovery (GLRD): Framework, algorithms, and applications. KDD 2013.
- R.A. Rossi, N. K. Ahmed: Role Discovery in Networks. TKDE 2014.
- Y. Ruan, S. Parthasarathy: Simultaneous Detection of Communities and Roles from Large Networks. COSN 2014.

References

Community Discovery (only the ones mentioned in this tutorial)

- A. Clauset, M.E.J. Newman, C. Moore: Finding Community Structure in Very Large Networks. Phys. Rev. E., 70:066111, 2004.
- M.E.J. Newman: Finding Community Structure in Networks Using the Eigenvectors of Matrices. Phys. Rev. E., 74:036104, 2006.

Propositionalisation

- A.J. Knobbe, M. de Haas, A. Siebes: Propositionalisation and Aggregates. PKDD 2001: 277-288.
- M.-A. Krogel, S. Rawles, F. Zelezny, P.A. Flach, N. Lavrac, S. Wrobel: Comparative Evaluation of Approaches to Propositionalization. ILP 2003: 197-214.
- J. Neville, D. Jensen, B. Gallagher: Simple Estimators for Relational Bayesian Classifiers. ICDM 2003: 609-612.

Next

ICDM'14 Tutorial