
3806 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 11, NOVEMBER 2005

A Neyman–Pearson Approach to Statistical Learning
Clayton Scott, Member, IEEE, and Robert Nowak, Senior Member, IEEE

Abstract—The Neyman–Pearson (NP) approach to hypothesis
testing is useful in situations where different types of error have
different consequences or a priori probabilities are unknown. For
any 0, the NP lemma specifies the most powerful test of size

, but assumes the distributions for each hypothesis are known or
(in some cases) the likelihood ratio is monotonic in an unknown
parameter. This paper investigates an extension of NP theory to
situations in which one has no knowledge of the underlying distri-
butions except for a collection of independent and identically dis-
tributed (i.i.d.) training examples from each hypothesis. Building
on a “fundamental lemma” of Cannon et al., we demonstrate that
several concepts from statistical learning theory have counterparts
in the NP context. Specifically, we consider constrained versions of
empirical risk minimization (NP-ERM) and structural risk mini-
mization (NP-SRM), and prove performance guarantees for both.
General conditions are given under which NP-SRM leads to strong
universal consistency. We also apply NP-SRM to (dyadic) decision
trees to derive rates of convergence. Finally, we present explicit al-
gorithms to implement NP-SRM for histograms and dyadic deci-
sion trees.

Index Terms—Generalization error bounds, Neyman–Pearson
(NP) classification, statistical learning theory.

I. INTRODUCTION

I N most approaches to binary classification, classifiers are
designed to minimize the probability of error. However, in

many applications it is more important to avoid one kind of
error than the other. Applications where this situation arises
include fraud detection, spam filtering, machine monitoring,
target recognition, and disease diagnosis, to name a few. In
this paper, we investigate one approach to classification in this
context inspired by classical Neyman–Pearson (NP) hypothesis
testing.

In the spirit of statistical learning theory, we develop the the-
oretical foundations of an NP approach to learning classifiers
from labeled training data. We show that several results and
concepts from standard learning theory have counterparts in
the NP setting. Specifically, we consider constrained versions
of empirical risk minimization (NP-ERM) and structural risk
minimization (NP-SRM), and prove performance guarantees
for both. General conditions are given under which NP-SRM
leads to strong universal consistency. Here consistency entails
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the (almost sure) convergence of both the learned miss and
false alarm probabilities to the optimal probabilities given by
the NP lemma. We also apply NP-SRM to (dyadic) decision
trees to derive rates of convergence. Finally, we present explicit
algorithms to implement NP-SRM for histograms and dyadic
decision trees.

A. Motivation

In the NP theory of binary hypothesis testing, one must de-
cide between a null hypothesis and an alternative hypothesis. A
level of significance (called the size of the test) is imposed
on the false alarm (type I error) probability, and one seeks a
test that satisfies this constraint while minimizing the miss (type
II error) probability, or equivalently, maximizing the detection
probability (power). The NP lemma specifies necessary and suf-
ficient conditions for the most powerful test of size , provided
the distributions under the two hypotheses are known, or (in spe-
cial cases) the likelihood ratio is a monotonic function of an un-
known parameter [1]–[3] (see [4] for an interesting overview of
the history and philosophy of NP testing). We are interested in
extending the NP paradigm to the situation where one has no
knowledge of the underlying distributions except for indepen-
dent and identically distributed (i.i.d.) training examples drawn
from each hypothesis. We use the language of classification,
whereby a test is a classifier and each hypothesis corresponds
to a particular class.

To motivate the NP approach to learning classifiers, consider
the problem of classifying tumors using gene expression mi-
croarrays [5], which are typically used as follows: First, identify
several patients whose status for a particular form of cancer is
known. Next, collect cell samples from the appropriate tissue in
each patient. Then, conduct a microarray experiment to assess
the relative abundance of various gene transcripts in each of the
subjects. Finally, use this “training data” to build a classifier that
can, in principle, be used to diagnose future patients based on
their gene expression profiles.

The dominant approach to classifier design in microarray
studies has been to minimize the probability of error (see,
for example, [6] and references therein). Yet it is clear that
failing to detect a malignant tumor has drastically different
consequences than erroneously flagging a benign tumor. In the
NP approach, the diagnostic procedure involves setting a level
of significance , an upper bound on the fraction of healthy
patients that may be unnecessarily sent for treatment or further
screening, and constructing a classifier to minimize the number
of missed true cancer cases.1

Further motivation for the NP paradigm comes from a
comparison with cost-sensitive classification (CSC). CSC (also
called cost-sensitive learning) is another approach to handling

1Obviously, the two classes may be switched if desired.
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disparate kinds of errors in classification (see [7]–[10] and ref-
erences therein). Following classical Bayesian decision theory,
CSC modifies the standard “ – ” loss function to a weighted
Bayes cost. Cost-sensitive classifiers assume the relative costs
for different classes are known. Moreover, these algorithms
assume estimates (either implicit or explicit) of the a priori
class probabilities can be obtained from the training data or
some other source.

CSC and NP classification are fundamentally different ap-
proaches that have differing pros and cons. In some situations it
may be difficult to (objectively) assign costs. For instance, how
much greater is the cost of failing to detect a malignant tumor
compared to the cost of erroneously flagging a benign tumor?
The two approaches are similar in that the user essentially has
one free parameter to set. In CSC, this free parameter is the ratio
of costs of the two class errors, while in NP classification it is
the false alarm threshold . The selection of costs does not di-
rectly provide control on , and conversely setting does not
directly translate into costs. The lack of precise knowledge of
the underlying distributions makes it impossible to precisely re-
late costs with . The choice of method will thus depend on
which parameter can be set more realistically, which in turn de-
pends on the particular application. For example, consider a net-
work intrusion detector that monitors network activity and flags
events that warrant a more careful inspection. The value of
may be set so that the number of events that are flagged for fur-
ther scrutiny matches the resources available for processing and
analyzing them.

From another perspective, however, the NP approach seems
to have a clear advantage with respect to CSC. Namely, NP clas-
sification does not assume knowledge of or about a priori class
probabilities. CSC can be misleading if a priori class probabili-
ties are not accurately reflected by their sample-based estimates.
Consider, for example, the case where one class has very few
representatives in the training set simply because it is very ex-
pensive to gather that kind of data. This situation arises, for ex-
ample, in machine fault detection, where machines must often
be induced to fail (usually at high cost) to gather the necessary
training data. Here the fraction of “faulty” training examples
is not indicative of the true probability of a fault occurring. In
fact, it could be argued that in most applications of interest, class
probabilities differ between training and test data. Returning to
the cancer diagnosis example, class frequencies of diseased and
normal patients at a cancer research institution, where training
data is likely to be gathered, in all likelihood do not reflect the
disease frequency in the population at large.

B. Previous Work on NP Classification

Although NP classification has been studied previously from
an empirical perspective [11], the theoretical underpinnings
were apparently first studied by Cannon, Howse, Hush, and
Scovel [12]. They give an analysis of a constrained form of
empirical risk minimization (ERM) that we call NP-ERM.
The present work builds on their theoretical foundations in
several respects. First, using different bounding techniques,
we derive predictive error bounds for NP-ERM that are sub-
stantially tighter. Second, while Cannon et al. consider only
learning from fixed Vapnik–Chervonenkis (VC) classes, we

introduce a constrained form of NP-SRM that automatically
balances model complexity and training error, and gives rise
to strongly universally consistent rules. Third, assuming mild
regularity conditions on the underlying distribution, we derive
rates of convergence for NP-SRM as realized by a certain
family of decision trees called dyadic decision trees. Finally,
we present exact and computationally efficient algorithms for
implementing NP-SRM for histograms and dyadic decision
trees.

In a separate paper, Cannon et al. [13] consider NP-ERM over
a data-dependent collection of classifiers and are able to bound
the estimation error in this case as well. They also provide an al-
gorithm for NP-ERM in some simple cases involving linear and
spherical classifiers, and present an experimental evaluation. To
our knowledge, the present work is the third study to consider an
NP approach to statistical learning, the second to consider prac-
tical algorithms with performance guarantees, and the first to
consider model selection, consistency and rates of convergence.

C. Notation

We focus exclusively on binary classification, although ex-
tensions to multiclass settings are possible. Let be a set and
let be a random variable taking values in

. The variable corresponds to the observed signal
(pattern, feature vector) and is the class label associated with

. In classical NP testing, corresponds to the null hy-
pothesis.

A classifier is a Borel measurable function
mapping signals to class labels. In standard classification,
the performance of is measured by the probability of error

. Here denotes the probability mea-
sure for . We will focus instead on the false alarm and miss
probabilities denoted by

for and , respectively. Note that

where is the (unknown) a priori probability
of class . The false-alarm probability is also known as the size,
while one minus the miss probability is known as the power.

Let be a user-specified level of significance or false
alarm threshold. In NP testing, one seeks the classifier min-
imizing over all such that . In words, is
the most powerful test (classifier) of size . If and are the
conditional densities of (with respect to a measure ) corre-
sponding to classes and , respectively, then the NP lemma
[1] states that . Here denotes the indicator
function, is the likelihood ratio, and is
as small as possible such that . Thus, when
and are known (or in certain special cases where the likeli-
hood ratio is a monotonic function of an unknown parameter)
the NP lemma delivers the optimal classifier.2

2In certain cases, such as when X is discrete, one can introduce randomized
tests to achieve slightly higher power. Otherwise, the false alarm constraint may
not be satisfied with equality. In this paper, we do not explicitly treat randomized
tests. Thus, h and g should be understood as being optimal with respect to
classes of nonrandomized tests/classifiers.
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In this paper, we are interested in the case where our
only information about is a finite training sample. Let

be a collection of i.i.d. samples
of . A learning algorithm (or learner for short) is
a mapping , where is the set of all
classifiers. In words, the learner is a rule for selecting a
classifier based on a training sample. When a training sample

is given, we also use to denote the classifier produced
by the learner.

In classical NP theory it is possible to impose absolute bounds
on the false alarm and miss probabilities. When learning from
training data, however, one cannot make such guarantees be-
cause of the dependence on the random training sample. Un-
favorable training samples, however unlikely, can lead to arbi-
trarily poor performance. Therefore, bounds on and can
only be shown to hold with high probability or in expectation.
Formally, let denote the product measure on induced by

, and let denote expectation with respect to . Bounds on
the false alarm and miss probabilities must be stated in terms of

and (see Section I-D).
We investigate classifiers defined in terms of the following

sample-dependent quantities. For , let

be the number of samples from class . Let

denote the empirical false alarm and miss probabilities, corre-
sponding to and , respectively. Given a class of
classifiers , define

and

That is, is the most powerful test/classifier3 in of size .
Finally, set to be the miss probability of the op-
timal classifier provided by the NP lemma.

D. Problem Statement

The goal of NP learning is to design learning algorithms
producing classifiers that perform almost as well as or .
In particular, we desire learners with the following properties.
(This section is intended as a preview; precise statement are
given later.)

PAC bounds: is “probably approximately correct” (PAC) in
the sense that given , there exist
and such that for any

and

3In this paper, we assume that a classifier h achieving the minimum exists.
Although not necessary, this allows us to avoid laborious approximation argu-
ments.

Moreover, , decay exponentially fast as functions of
increasing , (see Section II for details).

False Alarm Probability Constraints: In classical hypoth-
esis testing, one is interested in tests/classifiers satis-
fying . In the learning setting, such constraints
can only hold with a certain probability. It is however
possible to obtain nonprobabilistic guarantees of the form
(see Section II-C for details)

Oracle inequalities: Given a hierarchy of sets of classifiers
, does about as well as an oracle that

knows which achieves the proper balance between the
estimation and approximation errors. In particular we will
show that with high probability, both

and

hold, where tends to zero at a certain rate de-
pending on the choice of (see Section III for details).

Consistency: If grows (as a function of ) in a suitable
way, then is strongly universally consistent [14, Ch. 6]
in the sense that

with probability

and

with probability

for all distributions of (see Section IV for details).
Rates of Convergence: Under mild regularity conditions,

there exist functions and tending to zero at
a polynomial rate such that

and

We write when and if both
and (see Section V for details).

Implementable Rules: Finally, we would like to find rules
satisfying the above properties that can be implemented
efficiently.

II. NEYMAN–PEARSON AND EMPIRICAL RISK MINIMIZATION

In this section, we review the work of Cannon et al. [12] who
study NP learning in the context of fixed VC classes. We also
apply a different bounding technique that leads to substantially
tighter upper bounds. For a review of VC theory see Devroye,
Györfi, and Lugosi [14].

For the moment let be an arbitrary, fixed collection of clas-
sifiers and let . Cannon et al. propose the learning rule

s.t. (1)
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We call this procedure NP-ERM. Cannon et al. demonstrate that
NP-ERM enjoys properties similar to standard ERM [14], [15]
translated to the NP context. We now recall their analysis.

To state the theoretical properties of NP-ERM, introduce the
following notation.4 Let . Recall

Define

A main result of Cannon et al. [12] is the following lemma.

Lemma 1 ([12]): With and defined as above and
as defined in (1) we have

and in particular

This result is termed a “fundamental lemma” for its pivotal
role in relating the performance of to bounds on the error
deviance. Vapnik and Chervonenkis introduced an analogous
result to bound the performance of ERM (for standard classi-
fication) in terms of the error deviance [16] (see also [14, Ch.
8]). An immediate corollary is the following.

Proposition 1 ([12]): Let and take as in (1).
Then for any

Later, this result is used to derive PAC bounds by applying
results for convergence of empirical processes such as VC in-
equalities.

We make an important observation that is not mentioned by
Cannon et al. [12]. In both of the above results, the tolerance
parameters and need not be constants, in the sense that
they may depend on the sample or certain other parameters. This
will be a key to our improved bound and extension to SRM.
In particular, we will choose to depend on , a specified
confidence parameter , and a measure of the capacity of
such as the cardinality (if is finite) or VC dimension (if is
infinite).

4We interchange the meanings of the subscripts 0 and 1 used in [12], prefer-
ring to associate class 0 with the null hypothesis.

While we focus our discussion on VC and finite classes
for concreteness and comparison with [12], other classes and
bounding techniques are applicable. Proposition 1 allows for
the use of many of the error deviance bounds that have ap-
peared in the empirical process and machine learning literature
in recent years. The tolerances may even depend on the full
sample or on the individual classifier. Thus, for example,
Rademacher averages [17], [18] could be used to define the
tolerances in NP-ERM. However, the fact that the tolerances
for VC and finite classes (defined below in (2) and (3)) are
independent of the classifier, and depend on the sample only
through and , does simplify our extension to SRM in
Section III.

A. NP-ERM With VC Classes

Suppose has VC dimension . Cannon et al. con-
sider two viewpoints for NP classification. First they consider
retrospective sampling where and are known before the
sample is observed. Applying the VC inequality as stated by
Devroye et al. [14], together with Proposition 1, they obtain the
following.

Theorem 1 ([12]): Let and take as in (1). Then
for any

or

An alternative viewpoint for NP classification is i.i.d. sam-
pling in which and are unknown until the training sample
is observed. Unfortunately, application of the VC inequality is
not so straightforward in this setting because and are now
random variables. To circumvent this problem, Cannon et al.
arrive at the following result using the fact that with high prob-
ability and are concentrated near their expected values.
Recall that is the a priori probability of class .

Theorem 2 ([12]): Let and take as in (1). If
, , then

or

Owing to the larger constants out front and in the exponents,
their bound for i.i.d. sampling is substantially larger than for
retrospective sampling. In addition, the bound does not hold for
small , and since the a priori class probabilities are unknown
in the NP setting, it is not known for which the bound does
hold.

We propose an alternate VC-based bound for NP classifica-
tion under i.i.d. sampling that improves upon the preceding re-
sult. In particular, our bound is as tight as the bound in The-
orem 1 for retrospective sampling and it holds for all values of

. Thus, it is no longer necessary to be concerned with the philo-
sophical differences between retrospective and i.i.d. sampling,
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Fig. 1. Assuming � = � = � and " = " = " , this table reports, for various values of �, ", and � , the ratio of the sample sizes needed to satisfy the two
bounds of Theorems 2 and 3, respectively. Clearly, the bound of Theorem 3 is tighter, especially for asymmetric a priori probabilities. Furthermore, the bound
of Theorem 2 requires knowledge of � , which is typically not available in the NP setting, while the bound of Theorem 3 does not. See Example 1 for further
discussion.

since the same bound is available for both. As mentioned previ-
ously, the key idea is to let the tolerances and be variable
as follows. Let and define

(2)

for . Let be defined by (1) as before, but with the
new definition of (which now depends on , , and ).

The main difference between the rule of Cannon et al. and the
rule proposed here is that in their formulation the term
constraining the empirical false alarm probability is indepen-
dent of the sample. In contrast, our constraint is smaller for
larger values of . When more training data is available for
class , a higher level of accuracy is required. We argue that this
is a desirable property. Intuitively, when is larger, should
more accurately estimate , and therefore a suitable classifier
should be available from among those rules approximating to
within the smaller tolerance. Theoretically, our approach leads
to a substantially tighter bound as the following theorem shows.

Theorem 3: For NP-ERM over a VC class with tolerances
given by (2), and for any

or

Proof: By Proposition 1, it suffices to show for

Without loss of generality take . Let be the proba-
bility that there are examples of class in the training sample.
Then

where the inequality follows from the VC inequality [14,
Ch. 12]. This completes the proof.

The new bound is substantially tighter than that of Theorem 2,
as illustrated with the following example.

Example 1: For the purpose of comparison, assume ,
, and . How large should be

so that we are guaranteed that with at least probability (say
, both bounds hold with For the

new bound of Theorem 3 to hold we need

which implies . In contrast, Theorem 2 requires

which implies . To verify that this phenomenon is
not a consequence of the particular choice of , , or , Fig. 1
reports the ratios of the necessary sample sizes for a range of
these parameters.5 Indeed, as tends to , the disparity grows
significantly. Finally, we note that the bound of Cannon et al. for
retrospective sampling requires as many samples as our bound
for i.i.d. sampling.

B. NP-ERM With Finite Classes

The VC inequality is so general that in most practical settings
it is too loose owing to large constants. Much tighter bounds are
possible when is finite. For example, could be obtained by
quantizing the elements of some VC class to machine precision.

Let be finite and define the NP-ERM estimator as be-
fore. Redefine the tolerances and by

(3)

We have the following analog of Theorem 3.

Theorem 4: For NP-ERM over a finite class with toler-
ances given by (3)

or

The proof is identical to the proof of Theorem 3 except that
the VC inequality is replaced by a bound derived from Ho-
effding’s inequality and the union bound (see [14, Ch. 8]).

Example 2: To illustrate the significance of the new bound,
consider the scenario described in Example 1, but assume the

5When calculating (2) for this example we assume n = n � � .
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VC class is quantized so that . For the bound of
Theorem 4 to hold, we need

which implies , a significant improvement.

Another example of the improved bounds available for finite
is given in Section VI-B where we apply NP-SRM to dyadic

decision trees.

C. Learner False Alarm Probabilities

In the classical setting, one is interested in classifiers sat-
isfying . When learning from training data, such
bounds on the false alarm probability of are not possible
due to its dependence on the training sample. However, a prac-
titioner may still wish to have an absolute upper bound of some
sort. One possibility is to bound the quantity

which we call the learner false alarm probability.
The learner false alarm probability can be constrained for a

certain range of depending on the class and the number
of class training samples. Recall

Arguing as in the proof of Theorem 3 and using Lemma 1
, we have

The confidence is essentially a free parameter, so let be the
minimum possible value of as ranges over

. Then the learner false alarm probability can be bounded by
any desired , , by choosing appropriately. In
particular, if is obtained by NP-ERM with , then

Example 3: Suppose is finite, , and .
A simple numerical experiment, using the formula of (3) for

, shows that the minimum value of is
. Thus, if a bound of on the learner false

alarm probability is desired, it suffices to perform NP-ERM
with .

III. NEYMAN–PEARSON AND STRUCTURAL

RISK MINIMIZATION

One limitation of NP-ERM over fixed is that most possibil-
ities for the optimal rule cannot be approximated arbitrarily
well. Such rules will never be universally consistent. A solution
to this problem is known as structural risk minimization (SRM)
[19], whereby a classifier is selected from a family ,

, of increasingly rich classes of classifiers. In this sec-
tion we present NP-SRM, a version of SRM adapted to the NP
setting, in the two cases where all are either VC classes or
finite.

A. NP-SRM Over VC Classes

Let , be given, with having VC dimen-
sion . Assume . Define the tolerances and

by

(4)

Remark 1: The new value for is equal to the value of
in the previous section with replaced by . The choice
of the scaling factor stems from the fact ,
which is used to show (by the union bound) that the VC inequal-
ities hold for all simultaneously with probability at least
(see the proof of Theorem 5).

NP-SRM produces a classifier according to the following
two-step process. Let be a nondecreasing integer valued
function of with .

1) For each , set

s.t. (5)

2) Set

The term may be viewed as a penalty that
measures the complexity of class . In words, NP-SRM
uses NP-ERM to select a candidate from each VC class, and
then selects the best candidate by balancing empirical miss
probability with classifier complexity.

Remark 2: If , then NP-SRM may
equivalently be viewed as the solution to a single-step optimiza-
tion problem

s.t.

where is the smallest such that .

We have the following oracle bound for NP-SRM. The proof
is given in Appendix I. For a similar result in the context of
standard classification see Lugosi and Zeger [20].

Theorem 5: For any , with probability at least
over the training sample , both

(6)

and

(7)

hold.
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The inequality in (6) implies that the “excess false alarm prob-
ability” decays as . Moreover, this rate can
be designed through the choice of and requires no as-
sumption about the underlying distribution.

To interpret the second inequality, observe that for any

The two terms on the right are referred to as estimation error and
approximation error,6 respectively. If is such that ,
then Theorem 3 implies that the estimation error is bounded
above by . Thus, (7) says that performs as well
as an oracle that clairvoyantly selects to minimize this upper
bound. As we will soon see, this result leads to strong universal
consistency of .

Oracle inequalities are important because they indicate the
ability of learning rules to adapt to unknown properties of the
data generating distribution. Unfortunately, we have no oracle
inequality for the false alarm error. Perhaps this is because,
while the miss probability involves both an estimation and
approximation error, the false alarm probability has only a
stochastic component (no approximation is required). In other
words, oracle inequalities typically reflect the learner’s ability
to strike a balance between estimation and approximation
errors, but in the case of the false alarm probability, there is
nothing to balance. For further discussion of oracle inequalities
for standard classification see [18], [21].

B. NP-SRM Over Finite Classes

The developments of the preceding subsection have coun-
terparts in the context of SRM over a family of finite classes.
The rule for NP-SRM is defined in the same way, but now with
penalties

(8)

Theorem 5 holds in this setting as well. The proof is an easy
modification of the proof of that theorem, substituting Theorem
4 for Theorem 3, and is omitted.

IV. CONSISTENCY

The inequalities above for NP-SRM over VC and finite
classes may be used to prove strong universal consistency of
NP-SRM provided the sets are sufficiently rich as
and provided and are calibrated appropriately.

Theorem 6: Let be the classifier given by (5), with
defined by (4) for NP-SRM over VC classes, or

(8) for NP-SRM over finite classes. Specify and
such that

1) satisfies ;

6Note that, in contrast to the approximation error for standard classification,
here the optimal classifier g must be approximated by classifiers satisfying the
constraint on the false alarm probability.

2) is summable, i.e., for each

3) as
4) if are VC classes, then ; if

are finite, then .
Assume that for any distribution of there exists a sequence

such that

Then is strongly universally consistent, i.e.,

with probability

and

with probability

for all distributions.

The proof is given in Appendix II. Note that the conditions
on in the theorem hold if for some .

Example 4: To illustrate the theorem, suppose
and is the family of regular histogram classifiers based on
cells of bin-width . Then and NP-SRM is con-
sistent provided and , in analogy
to the requirement for strong universal consistency of the reg-
ular histogram rule for standard classification (see [14, Ch. 9]).
Moreover, NP-SRM with histograms can be implemented effi-
ciently in operations as described in Appendix IV.

V. RATES OF CONVERGENCE

In this section, we examine rates of convergence to zero for
the expected 7 excess false alarm probability

and expected excess miss probability

Moreover, we are interested in rates that hold independent of .

A. Rates for False Alarm Error

The rate for false alarm error can be specified by the choice
. In the case of NP-SRM over VC classes we have the

following result. A similar result holds for NP-SRM over finite
classes (but without the logarithmic terms).

Proposition 2: Select such that
for some , . Under assumptions 3) of Theorem 7,

satisfies

The proof follows exactly the same lines as the proof of The-
orem 7 below, and is omitted.

7It is also possible to prove rates involving probability inequalities. While
more general, this approach is slightly more cumbersome so we prefer to work
with expected values.
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B. Rates for Both Errors

A more challenging problem is establishing rates for both
errors simultaneously. Several recent studies have derived rates
of convergence for the expected excess probability of error

, where is the (optimal) Bayes classifier
[22]–[26]. Observe that

Hence, rates of convergence for NP classification with
imply rates of convergence for standard classification.

We summarize this observation as follows.

Proposition 3: Fix a distribution of the data . Let be
a classifier, and let , , be nonnegative functions
tending toward zero. If for each

and

then

Devroye [27] has shown that for any classifier there exists
a distribution of such that decays at an arbi-
trarily slow rate. In other words, to prove rates of convergence
one must impose some kind of assumption on the distribution.
In light of Proposition 3, the same must be true of NP learning.
Thus, let be some class of distributions. Proposition 3 also
informs us about lower bounds for learning from distributions
in .

Proposition 4: Assume that a learner for standard classifica-
tion satisfies the minimax lower bound

If , are upper bounds on the rate of convergence for
NP learning (that hold independent of ), then either

or .

In other words, minimax lower bounds for standard classifi-
cation translate to minimax lower bounds for NP classification.

VI. RATES FOR DYADIC DECISION TREES

In this section, we provide an example of how to derive rates
of convergence using NP-SRM combined with an appropriate
analysis of the approximation error. We consider a special
family of decision trees known as dyadic decision trees (DDTs)
[28]. Before introducing DDTs, however, we first introduce the
class of distributions with which our study is concerned.

A. The Box-Counting Class

From this point on assume . Before introducing
we need some additional notation. Let denote a positive

integer, and define to be the collection of cells formed

by the regular partition of into hypercubes of sidelength
. Let be positive real numbers. Let

be the optimal decision set, and let be the topological
boundary of . Finally, let denote the number of
cells in that intersect .

We define the box-counting class to be the set of all distri-
butions satisfying the following assumptions.

The marginal density of given is es-
sentially bounded by .

for all .

The first assumption8 is equivalent to requiring

for all measurable sets , where denotes the Lebesgue mea-
sure on . The second assumption essentially requires the
optimal decision boundary to have Lipschitz smoothness.
See [28] for further discussion. A theorem of Tsybakov [22]
implies that the minimax rate for standard classification for this
class is when [28]. By Proposition 4, both errors
cannot simultaneously decay faster than this rate. In the fol-
lowing, we prove that this lower bound is almost attained using
dyadic decision trees and NP-SRM.

B. Dyadic Decision Trees

Scott and Nowak [23], [28] demonstrate that a certain family
of decision trees, DDTs, offer a computationally feasible classi-
fier that also achieves optimal rates of convergence (for standard
classification) under a wide range of conditions [23], [29], [30].
DDT’s are especially well suited for rate of convergence studies.
Indeed, bounding the approximation error is handled by the re-
striction to dyadic splits, which allows us to take advantage of
recent insights from multiresolution analysis and nonlinear ap-
proximations [31]–[33]. We now show that an analysis similar
to that of Scott and Nowak [29] applies to NP-SRM for DDTs,
leading to similar results: rates of convergence for a computa-
tionally efficient learning algorithm.

A dyadic decision tree is a decision tree that divides the
input space by means of axis-orthogonal dyadic splits. More
precisely, a dyadic decision tree is a binary tree (with a
distinguished root node) specified by assigning 1) an integer

to each internal node of (corresponding
to the coordinate that gets split at that node); 2) a binary label

or to each leaf node of . The nodes of DDTs correspond
to hyperrectangles (cells) in . Given a hyperrectangle

, let and denote the hyperrectan-
gles formed by splitting at its midpoint along coordinate .
Specifically, define
and . Each node of is associated with a cell
according to the following rules: 1) The root node is associated
with ; 2) If is an internal node associated with the

8When proving rates for standard classification, it is often necessary to place
a similar restriction on the unconditional density f(x) of X . Here it is only
necessary to bound f (x) because only the excess miss probability requires an
analysis of approximation error.
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Fig. 2. A dyadic decision tree (right) with the associated recursive dyadic
partition (left) in d = 2 dimensions. Each internal node of the tree is labeled
with an integer from 1 to d indicating the coordinate being split at that node.
The leaf nodes are decorated with class labels.

cell , then the children of are associated with and
. See Fig. 2.

Let be a nonnegative integer and define to
be the collection of all DDT’s such that no leaf cell has a side
length smaller than . In other words, when traversing a path
from the root to a leaf, no coordinate is split more than times.
Finally, define to be the collection of all trees in having

leaf nodes.

C. NP-SRM With DDTs

We study NP-SRM over the family . Since
is both finite and a VC class, we may define penalties via (4)
or (8). The VC dimension of is simply , while may
be bounded as follows: The number of binary trees with
leaves is given by the Catalan number9 .
The leaves of such trees may be labeled in ways, while the
internal splits may be assigned in ways. Asymptotically,
it is known that . Thus, for sufficiently
large, . If is defined
by (8) for finite classes, it behaves like ,
while the penalty defined by (4) for VC classes behaves like

. Therefore, we adopt the penalties for finite
classes because they lead to bounds having smaller constants
and lacking an additional term.

By applying NP-SRM to DDTs10 with parameters ,
, and chosen appropriately, we obtain the following

result. Note that the condition on in the following the-
orem holds whenever , . The proof is
found in Appendix III.

Theorem 7: Let be the classifier given by (5), with
defined by (8). Specify , , and

such that

1) ;
2) ;
3) and .

If then

9See http://mathworld.wolfram.com/CatalanNumber.html.
10Since L(n) changes with n, the classes H are not independent of n as

they are in the development of Section III. However, a quick inspection of the
proofs of Theorems 5 and 6 reveals that those theorems also hold in this slightly
more general setting.

and

where the is over all distributions belonging to the box-
counting class.

We note in particular that the constants and in the defi-
nition of the box-counting class need not be known.

D. Optimal Rates for the Box-Counting Class

The rates given in the previous theorem do not match the
lower bound of mentioned in Section VI-A. At this point,
one may as two questions: 1) Is the lower bound or the upper
bound loose? and 2) If it is the upper bound, is suboptimality
due to the use of DDTs or is it inherent in the NP-SRM learning
procedure? It turns out that the lower bound is tight, and sub-
optimality stems from the NP-SRM learning procedure. It is
possible to obtain optimal rates (to within a logarithmic factor)
using DDTs and an alternate penalization scheme.11

A similar phenomenon appears in the context of standard
classification. In [29], we show that DDTs and standard SRM
yield suboptimal rates like those in Theorem 7 for standard clas-
sification. Subsequently, we were able to obtain the optimal rate
with DDTs using a spatially adaptive penalty (which favors un-
balanced trees) and a penalized empirical risk procedure [30],
[23]. A similar modification works here. That same spatially
adaptive penalty may be used to obtain optimal rates for NP
classification. Thus, NP-SRM is suboptimal because it does not
promote the learning of an unbalanced tree, which is the kind
of tree we would expect to accurately approximate a member of
the box-counting class. For further discussion of the importance
of spatial adaptivity in classification see [28].

E. Implementing Dyadic Decision Trees

The importance of DDTs stems not only from their theoretical
properties but also from the fact that NP-SRM may be imple-
mented exactly in polynomial time. In Appendix V, we provide
an explicit algorithm to accomplish this task. The algorithm is
inspired by the work of Blanchard, Schäfer, and Rozenholc [34]
who extend an algorithm of Donoho [35] to perform standard
penalized ERM for DDTs.

VII. CONCLUSION

We have extended several results for learning classifiers from
training data to the NP setting. Familiar concepts such as em-
pirical and SRM have counterparts with analogous performance
guarantees. Under mild assumptions on the hierarchy of classes,
NP-SRM allows one to deduce strong universal consistency and
rates of convergence. We have examined rates for DDTs, and
presented algorithms for implementing NP-SRM with both his-
tograms and DDTs.

This work should be viewed as an initial step in translating the
ever growing field of supervised learning for classification to the
NP setting. An important next step is to evaluate the potential
impact of NP classification in practical settings where different

11We do not present this refined analysis here because it is somewhat spe-
cialized to DDTs and would require a substantial amount of additional space,
detracting from the focus of the paper.
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class errors are valued differently. Toward this end, it will be
necessary to translate the theoretical framework established here
into practical learning paradigms beyond decision trees, such as
boosting and support vector machines (SVMs). In boosting, for
example, it is conceivable that the procedure for “reweighting”
the training data could be controlled to constrain the false alarm
error. With SVMs or other margin-based classifiers, one could
imagine a margin on each side of the decision boundary, with the
class margin constrained in some manner to control the false
alarm error. If the results of this study are any indication, the
theoretical properties of such NP algorithms should resemble
those of their more familiar counterparts.

APPENDIX I
PROOF OF THEOREM 5

Define the sets

Our goal is to show

Lemma 2:

Proof: We show the contrapositive

So suppose . By Lemma 1

In particular, . Since for some
, it follows that .

To show , first note that

since . By the definition of NP-SRM

where

and in the last step we use again. Since
, it follows that from which we

conclude

The lemma now follows by subtracting from both sides.

The theorem is proved by observing

where the second inequality comes from Remark 1 in Section III
and a repetition of the argument in the proof of Theorem 3.

APPENDIX II
PROOF OF THEOREM 6

We prove the theorem in the case of VC classes, the case of
finite classes being entirely analogous. Our approach is to apply
the Borel–Cantelli lemma [36, p. 40] to show

and

It then follows that the second inequality must hold with
equality, for otherwise there would be a classifier that strictly
outperforms the optimal classifier given by the NP lemma
(or equivalently, there would be an operating point above the
receiver operating characteristic), a contradiction.

First consider the convergence of to . By the
Borel–Cantelli lemma, it suffices to show that for each

So let . Define the events

Since , we
have

(9)

To bound the second term we use the following lemma.

Lemma 3:
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Proof: The relative Chernoff bound [37] states that if
Binomial , then for all ,

. Since Binomial , the lemma follows by
applying the relative Chernoff bound with .

It now follows that

To bound the first term in (9) we use the following lemma.

Lemma 4: There exists such that for all ,
.

Proof: Define

Since and , we may
choose such that implies . Suppose
and consider . Since we have

and since we conclude .

It now follows that, for the integer provided by the lemma

where in the last line we use Theorem 5.
Now consider the convergence of to . As before,

it suffices to show that for each

Let and define the sets

Arguing as before, it suffices to show

and

The first expression is bounded using an analogue of Lemma
3. To bound the second expression we employ the following
analog of Lemma 4.

Lemma 5: There exists such that implies
.

Proof: Define

Since and , we
may choose such that there exists satisfying
i) and ii) . Sup-

pose and . Since we have

Since we conclude .

The remainder of the proof now proceeds as in the case of the
false alarm error.

APPENDIX III
PROOF OF THEOREM 7

Define the sets

Observe

where the next to last step follows from Theorem 5 and
Lemma 3, and the last step follows from the assumption

.
Thus, it suffices to show decays at the desired

rate whenever . For such we have

Since , we know . By assumption,
. Furthermore, from the discussion

prior to the statement of Theorem 7, we know
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for sufficiently large. Combining these facts yields

Plugging in gives

(10)

as desired.
For the miss probability, it can similarly be shown that

Thus, it suffices to consider . Our strategy is to
find a tree for some such that

and

both decay at the desired rate. The result will then follow by the
oracle inequality implied by .

Let be a dyadic integer (a power of two) such that
and and .

Note that this is always possible by the assumptions
and . Recall that

denotes the partition of into hypercubes of side
length . Define to be the collection of all cells in
that intersect the optimal decision boundary . By the box
counting hypothesis (A1), for all .

Construct as follows. We will take to be a cyclic DDT. A
cyclic DDT is a DDT such that when is the root
node and if is a cell with child , then

Thus, cyclic DDTs may be “grown” by cycling through the co-
ordinates and splitting at the midpoint. Define to be the cyclic
DDT consisting of all the cells in , together with their an-
cestors, and their ancestors’ children. In other words, is the
smallest cyclic DDT containing all cells in among its leaves.
Finally, label the leaves of so that they agree with the optimal
classifier on cells not intersecting , and label cells in-
tersecting with class . By this construction, satisfies

. Note that has depth .
By the following lemma we know for some .

Lemma 6: Let denote the number of leaf nodes of . Then
.

Proof: Observe that only those nodes in that intersect
can be ancestors of nodes in . By the box-counting hy-

pothesis, there are at most nodes of at depth
that can intersect . Hence, there are at most

ancestors of cells in . Since the leaf nodes of are
the children of ancestors of cells in , it follows that

.

Fig. 3. Algorithm for NP-ERM with histograms.

Applying the lemma we have

where the last step follows by the same argument that produced
(10).

To bound the approximation error, observe

where the second inequality follows from A0 and the third from
A1. This completes the proof.

APPENDIX IV
AN ALGORITHM FOR NP-SRM WITH HISTOGRAMS

NP-SRM for histograms can be implemented by solving
NP-ERM for each . This yields classifiers , .
The final NP-SRM is then determined by simply selecting
that minimizes . The challenge is in
implementing NP-ERM. Thus, let be fixed.

An algorithm for NP-ERM over is given in Fig. 3. The fol-
lowing notation is used. Let , denote the in-
dividual hypercubes of side length that comprise histograms
in . Let be the number of
class training samples in cell . Let be the largest integer
such that . For let

denote the histogram classifier having minimum empirical
miss probability among all histograms having .
Let denote the empirical miss probability of . Assume
that histogram classifiers are represented by the cells labeled
one, so that each is a collection of cells.

NP-ERM amounts to determining . The algorithm
builds up this optimal classifier in a recursive fashion. The
proof that the algorithm attains the NP-ERM solutions is
a straightforward inductive argument, and is omitted. The
computational complexity of the algorithm is . As-
suming is chosen so that NP-SRM is consistent, we have

, and hence, the complexity of NP-ERM here
is .
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APPENDIX V
AN ALGORITHM FOR NP-SRM WITH DDTS

Our theorems on consistency and rates of convergence tell
us how to specify the asymptotic behavior of and , but in
a practical setting these guidelines are less helpful. Assume
then is selected by the user (usually the maximum such that
the algorithm runs efficiently; see below) and take , the
largest possible meaningful value. We replace the symbol for
a generic classifier by the notation for trees. Let denote the
number of leaf nodes of . We seek an algorithm implementing

s.t.

Let be the set of all cells corresponding to nodes of trees
in . In other words, every is obtained by applying
no more than dyadic splits to each coordinate. Given ,
define to be the set of all that are nodes of . If

, let denote the subtree of rooted at . Given
, define

Let be the set of all such that and
for some . For each define

When write for and for . We refer to
these trees as minimum empirical risk trees, or MERTs for
short. They may be computed in a recursive fashion (described
below) and used to determine

The algorithm is stated formally in Fig. 4.
The MERTs may be computed as follows. Recall that for a

hyperrectangle we define and to be the hyperrect-
angles formed by splitting at its midpoint along coordinate .
The idea is, for each cell , to compute recur-
sively in terms of and , , starting from
the bottom of the tree and working up. The procedure for com-
puting is as follows. First, the base of the recursion. Define

, the number of class
samples in cell . When is a cell at maximum depth ,

(labeled with class ) and (labeled
with class ). Furthermore, .

Some additional notation is necessary to state the recursion:
Denote by the element of
having and as its left and right branches. Now
observe that for any cell at depth

Fig. 4. Algorithm for NP-SRM with DDTs.

This follows by additivity of the empirical miss probability .
Note that this recursive relationship leads to a recursive algo-
rithm for computing .

At first glance, the algorithm appears to involve visiting all
, a potentially huge number of cells. However, given

a fixed training sample, most of those cells will be empty. If
is empty, then is the degenerate tree consisting only of

. Thus, it is only necessary to perform the recursive update
at nonempty cells. This observation was made by Blanchard et
al. [34] to derive an algorithm for penalized ERM over for
DDTs (using an additive penalty). They employ a dictionary-
based approach which uses a dictionary to keep track of the
cells that need to be considered. Let , denote
the cells in at depth . Our algorithm is inspired by their
formulation, and is summarized in Fig. 5.

Proposition 5: The algorithm in Fig. 5 requires
operations.

Proof: The proof is a minor variation on an argument
given by Blanchard et al. [34]. For each training point there
are exactly cells in containing the point (see [34]).
Thus, the total number of dictionary elements is . For
each cell there are at most parents to
consider. For each such , a loop over is required.
The size of is . This follows because there
are possibilities for and for . To see
this last assertion note that each element of has
ancestors up to depth . Using and combining
the above observations it follows that each requires

operations. Assuming that dictionary operations
(searches and inserts) can be implemented in oper-
ations the result follows.

Unfortunately, the computational complexity has an expo-
nential dependence on . Computational and memory con-
straints limit the algorithm to problems for which [38].
However, if one desires a computationally efficient algorithm
that achieves the rates in Theorem 7 for all , there is an alterna-
tive. As shown in the proof of Theorem 7, it suffices to consider
cyclic DDT’s (defined in the proof). For NP-SRM with cyclic
DDT’s the algorithm of Fig. 5 can be can be simplified so that
it requires operations. We opted to present the
more general algorithm because it should perform much better
in practice.
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Fig. 5. Algorithm for computing minimum empirical risk trees for DDTs.
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