
1

Tuning Support Vector Machines for

Minimax and Neyman-Pearson

Classification
Mark A. Davenport, Richard G. Baraniuk, and Clayton D. Scott,

Abstract

This paper studies the training of support vector machine (SVM) classifiers with respect to the minimax

and Neyman-Pearson criteria. In principle, these criteria can be optimized in a straightforward way using a

cost-sensitive SVM. In practice, however, because these criteria require especially accurate error estimation,

standard techniques for tuning SVM parameters, such as cross-validation, can lead to poor classifier perfor-

mance. To address this issue, we first prove that the usual cost-sensitive SVM, here called the 2C-SVM,

is equivalent to another formulation called the 2ν-SVM. We then exploit a characterization of the 2ν-SVM

parameter space to develop a simple yet powerful approach to error estimation based on smoothing. In an

extensive experimental study we demonstrate that smoothing significantly improves the accuracy of cross-

validation error estimates, leading to dramatic performance gains. Furthermore, we propose coordinate descent

strategies that offer significant gains in computational efficiency, with little to no loss in performance.

F

1 INTRODUCTION

In binary classification, false alarms and misses typically have different costs. Thus, a common approach

to classifier design is to optimize the expected misclassification (Bayes) cost. Often, however, this approach

is impractical because either the prior class probabilities or the relative cost of false alarms and misses is

unknown. In such cases, two alternatives to expected misclassification cost are the minimax and Neyman-

Pearson (NP) criteria. In this paper, we study the training of support vector machine (SVM) classifiers with

respect to these two criteria, which require no knowledge of prior class probabilities or misclassification

costs. In particular, we develop a method for tuning SVM parameters based on a new strategy for error

• M. D. and R. G. are with the Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005. They are supported
by NSF grant CCF-0431150 and the Texas Instruments Leadership University Program.
Email: {md, richb} – at – rice.edu, Web: dsp.rice.edu.

• C. S. is with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109. He was
partially supported by NSF Vertical Integration of Research and Education grant 0240068 while a postdoctoral fellow at Rice University.
Email: cscott – at – eecs.umich.edu, Web: www.eecs.umich.edu/∼cscott.

2

estimation. Our approach, while applicable to training SVMs for other performance measures, is primarily

motivated by the minimax and NP criteria.

To set notation, let (xi, yi)n
i=1 denote a random sample from an unknown probability measure, where

xi ∈ Rd is a training vector and yi ∈ {−1,+1} is the corresponding label. For a classifier f : Rd → {+1,−1},

let

PF (f) = Pr(f(x) = +1|y = −1) and (1)

PM (f) = Pr(f(x) = −1|y = +1) (2)

denote the false alarm and miss rates of f , respectively. When there is no reason to favor false alarms or

misses, a common strategy is to select classifiers operating at equal error rate or the break even point, where

PF (f) = PM (f) [1]–[3]. Of course, many classifiers may satisfy this constraint. We seek the best possible,

the minimax classifier, which is defined as

f∗MM = arg min max
f

{PF (f), PM (f)}. (3)

An alternative approach is the NP paradigm [1], [4], which naturally arises in settings where we can

only tolerate a certain level of false alarms. In this case we seek the lowest miss rate possible provided

the false alarm rate satisfies some constraint. Specifically, given a user-specified level α, the NP-optimal

classifier is defined as

f∗α = arg min
f :PF (f)≤α

PM (f). (4)

It can be shown that if we consider

min
f

γPF (f) + (1− γ)PM (f), (5)

then both f∗MM and f∗α are equal to the solution of (5) for the appropriate values of γ. Thus, training

an SVM for minimax and NP classification can be accomplished using a cost-sensitive SVM by tuning

the parameter γ to achieve the desired error constraints. Observe that tuning parameters for minimax

and NP criteria is very different from tuning parameters for a Bayesian criterion like that in (5) in one

critical respect: to minimize the minimax or NP criteria, one must use estimates of PF (f) and PM (f) to

determine the appropriate γ. As a result, for minimax and NP classification it is extremely important to

have accurate estimates of PF (f) and PM (f), whereas since γ is pre-defined for Bayesian criteria, error

estimates can be less accurate (e.g., biased) and still lead to good classifiers.

To tackle the issue of accurate error estimation in cost-sensitive SVMs, we adopt a particular formulation

called the 2ν-SVM [5]. We prove that this cost-sensitive SVM is equivalent to the more common 2C-

SVM [6]–[8] and provide a careful characterization of its parameter space in Section 2. We then leverage

this characterization to develop a simple but powerful approach to error estimation based on smoothing

3

cross-validation (CV) error estimates in Section 3, which also describes computationally efficient strategies

for parameter selection. We conduct a detailed experimental evaluation in Sections 4 and 5 and

demonstrate the superior performance of (i) our approaches to estimation relative to conventional

CV and (ii) our approach to minimax and NP classification relative to SVM-based approaches more

commonly used in practice. Section 6 concludes with a brief discussion. Our results build on those

published in [9]–[11]. Our software — based on the LIBSVM package [12] — is available online at

www.dsp.rice.edu/software.

2 COST-SENSITIVE SUPPORT VECTOR MACHINES

2.1 Review of SVMs

Conceptually, a support vector classifier is constructed in a two-step process [13]. In the first step, we

transform the xi via a mapping Φ : Rd → H where H is a Hilbert space. In the second step, we find

the hyperplane in H that maximizes the margin — the distance between the decision boundary and the

closest training vector (from either class) to the boundary. If w ∈ H and b ∈ R are the normal vector and

affine shift (or bias) defining the max-margin hyperplane, then the support vector classifier is given by

fw,b(x) = sgn(〈w,Φ(x)〉H + b).

The max-margin hyperplane is the solution of a simple quadratic program:

(P) min
w,b

1
2
‖w‖2

s.t. yi(〈w,Φ(xi)〉H + b) ≥ 1 for i = 1, . . . , n.

One can show via a simple geometric argument that for any w satisfying the constraints in (P) the two

classes are separated by a margin of 2/‖w‖; hence minimizing the objective function of (P) is equivalent

to maximizing the margin. This problem can also be solved via its dual formulation obtained via the

Karush-Kuhn-Tucker (KKT) conditions [14], where we substitute w =
∑n

i=1 αiyiΦ(xi) and solve for the

optimal α ∈ Rn. Note first that w depends only on the xi for which αi 6= 0, which are called the support

vectors. Second, observe that with this substitution the quadratic program depends on the training data

only through 〈Φ(xi),Φ(xj)〉H for all possible pairs of training vectors. Hence, rather than choosing Φ

directly, we can instead choose a kernel operator k : Rd × Rd → R. If k is positive definite, then this

defines a space H and a mapping Φ such that k(x,x′) = 〈Φ(x),Φ(x′)〉H, which allows us to compute

inner products in H without explicitly evaluating Φ.

To reduce sensitivity to outliers and allow for non-separable data, it is usually desirable to relax the

constraint that each training vector is classified correctly through the introduction of slack variables, i.e.,

replace the constraints of (P) with yi(〈w, Φ(xi)〉H + b) ≥ 1 − ξi where ξi ≥ 0. If ξi > 0, this means that

the corresponding xi lies inside the margin and is called a margin error. To penalize margin errors while

4

retaining a convex optimization problem, one typically adds a
∑n

i=1 ξi penalty to the objective function.

There are essentially two ways of doing this, which result in two different SVM formulations. The original

SVM adds C
∑n

i=1 ξi to the objective function, where C > 0 is a cost parameter selected by the user; hence

we call this formulation the C-SVM [15]. An alternative (but equivalent) formulation is the ν-SVM [16].

The ν-SVM instead adds 1
n

∑n
i=1 ξi − νρ, and replaces the constraints with yi(〈w,Φ(xi)〉H + b) ≥ ρ − ξi,

where ν ∈ [0, 1] is again a user-supplied parameter, and ρ is a variable to be optimized. The advantage

of the ν formulation is that ν serves as an upper bound on the fraction of margin errors and a lower

bound on the fraction of support vectors [16].

2.2 Cost-Sensitive SVMs

Cost-sensitive extensions of both the C-SVM and the ν-SVM have been proposed — the 2C-SVM and the

2ν-SVM. We first consider the 2C-SVM proposed in [6]. Let I+ = {i : yi = +1} and I− = {i : yi = −1}.

The 2C-SVM quadratic program has primal formulation

(P2C) min
w,b,ξ

1
2
‖w‖2 + Cγ

∑

i∈I+

ξi + C(1− γ)
∑

i∈I−

ξi

s.t. yi(〈w,Φ(xi)〉H + b) ≥ 1− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

and dual formulation

(D2C) min
α

1
2

n∑

i,j=1

αiαjyiyjk(xi,xj)−
n∑

i=1

αi

s.t. 0 ≤ αi ≤ Cγ for i ∈ I+

0 ≤ αi ≤ C(1− γ) for i ∈ I−
n∑

i=1

αiyi = 0

where γ ∈ [0, 1] controls the tradeoff between the two types of errors. Note that it is also possible to

parameterize the 2C-SVM through the parameters C+ = Cγ and C− = C(1 − γ), which is somewhat

more common in the literature [6]–[8].

Similarly, [5] proposed the 2ν-SVM as a cost-sensitive extension of the ν-SVM. The 2ν-SVM has primal

(P2ν) min
w,b,ξ,ρ

1
2
‖w‖2 − νρ +

γ

n

∑

i∈I+

ξi +
1− γ

n

∑

i∈I−

ξi

5

s.t. yi(〈w, Φ(xi)〉H + b) ≥ ρ− ξi for i = 1, . . . , n

ξi ≥ 0 for i = 1, . . . , n

ρ ≥ 0

and dual

(D2ν) min
α

1
2

n∑

i,j=1

αiαjyiyjk(xi,xj)

s.t. 0 ≤ αi ≤ γ

n
for i ∈ I+

0 ≤ αi ≤ 1− γ

n
for i ∈ I−

n∑

i=1

αiyi = 0,

n∑

i=1

αi ≥ ν.

As with the 2C-SVM, the 2ν-SVM has an alternative parameterization. Instead of ν and γ, we can use

ν+ and ν−. If we let n+ = |I+| and n− = |I−|, then

ν =
2ν+ν−n+n−

(ν+n+ + ν−n−)n
, γ =

ν−n−
ν+n+ + ν−n−

=
νn

2ν+n+
,

or equivalently

ν+ =
νn

2γn+
, ν− =

νn

2(1− γ)n−
.

This parameterization is more awkward to deal with in establishing the theorems below, but ν+ and

ν− have a more intuitive meaning than ν and γ, as illustrated below by Proposition 1. Furthermore,

Proposition 3 shows that (D2ν) is feasible if an only if (ν+, ν−) ∈ [0, 1]2; thus this parameterization lends

itself naturally towards simple uniform grid searches and a number of additional heuristics that aid in

accurate and efficient parameter selection, as described in Section 3.

2.3 Properties of the 2ν-SVM

Before establishing the relationship between the 2C-SVM and the 2ν-SVM, we establish some of the basic

properties of the 2ν-SVM. We begin by briefly repeating a result of [5] concerning the interpretation of

the parameters in the (ν+, ν−) formulation.

Proposition 1 ([5]): Suppose that the optimal objective value of (D2ν) is not zero. For the optimal solution

of (D2ν), let ME+ and ME− denote the fraction of margin errors from classes +1 and −1, and let SV+

and SV− denote the fraction of support vectors from classes +1 and −1. Then

ME+ ≤ ν+ ≤ SV+

ME− ≤ ν− ≤ SV−.

6

Returning to the (ν, γ) formulation, we establish the following result concerning the feasibility of (D2ν).

Proposition 2: Fix γ ∈ [0, 1]. Then (D2ν) is feasible if and only if ν ≤ νmax ≤ 1, where

νmax =
2min(γn+, (1− γ)n−)

n
.

Proof: First, assume that ν ≤ νmax. Then there exists an α that satisfies the constraints of (D2ν).

Specifically, let

αi =
νmax

2n+
=

min(γ, (1− γ)n−/n+)
n

≤ γ

n
, i ∈ I+

and

αi =
νmax

2n−
=

min(γn+/n−, 1− γ)
n

≤ 1− γ

n
, i ∈ I−.

Then
∑

i∈I+
αi +

∑
i∈I+

αi = νmax ≥ ν and
∑n

i=1 αiyi = 0. Thus (D2ν) is feasible.

Now assume that α is a feasible point of (D2ν). Then
∑n

i=1 αi ≥ ν and
∑

i∈I+
αi =

∑
i∈I− αi. Combining

these we obtain ν ≤ 2
∑

i∈I+
αi. Since 0 ≤ αi ≤ γ/n for i ∈ I+, we see that ν ≤ 2

∑
i∈I+

αi ≤ 2γn+/n, and

therefore ν ≤ 2γn+/n. Similarly, ν ≤ 2(1− γ)n−/n. Thus ν ≤ νmax.

Finally, we see that

νmax =
2min(γn+, (1− γ)n−)

n
≤ 2 min(n+, n−)

n
≤ 1,

as desired.

From this we obtain the following result concerning the (ν+, ν−) formulation.

Proposition 3: (D2ν) is feasible if and only if ν+ ≤ 1 and ν− ≤ 1.

Proof: From Proposition 2 we have that (D2ν) is feasible if and only if

ν ≤ 2min(γn+, (1− γ)n−)
n

.

Thus, (D2ν) is feasible if and only if

2ν+ν−n+n−
(ν+n+ + ν−n−)n

≤
2min

(
ν−n+n−

ν+n++ν−n−
, ν+n+n−

ν+n++ν−n−

)

n
,

and thus ν+ν− ≤ min(ν−, ν+), or ν+ ≤ 1 and ν− ≤ 1.

2.4 Relationship Between the 2ν-SVM and 2C-SVM

The following theorems extend the results of [17] and relate (D2C) and (D2ν). The first shows how

solutions of (D2C) are related to solutions of (D2ν), and the second shows how solutions of (D2ν) are

related to solutions of (D2C). The third theorem, the main result of this section, shows that increasing

ν is equivalent to decreasing C. These results collectively establish that (D2C) and (D2ν) are equivalent

in that they explore the same set of possible solutions. However, despite their theoretical equivalence,

in practice the 2ν-SVM lends itself towards more effective parameter selection procedures. The theorems

7

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

ν
+

ν
−

E

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

ν
+

ν
−

E

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

ν
+

ν
−

E

(a) (b) (c)

Fig. 1. Effect of 3-D smoothing on bECV
MM for “banana” dataset for (ν+, ν−) ∈ [0, 1]2. Results are for a representative

kernel parameter value. (a) CV estimate: bECV
MM. (b) Smoothed CV estimate: bESM

MM. (c) Estimate of EMM based on an
independent test set.

and their proofs are inspired by their analogues for (DC) and (Dν). However, note that the introduction

of the parameter γ somewhat complicates the proofs of these theorems, which are given in the Appendix.

Theorem 1: Fix γ ∈ [0, 1]. For any C > 0, let αC be an optimal solution of (D2C) and set ν =
∑n

i=1 αC
i /(Cn). Then α is an optimal solution of (D2C) if and only if α/(Cn) is an optimal solution

of (D2ν).

Theorem 2: Fix γ ∈ [0, 1]. For any ν ∈ (0, νmax], assume (D2ν) has a nonzero optimal objective value,

so that ρ > 0, and set C = 1/(ρn). Then α is an optimal solution of (D2C) if and only if α/(Cn) is an

optimal solution of (D2ν).

Theorem 3: Fix γ ∈ [0, 1] and let αC be an optimal solution of (D2C). Define

ν∗ = lim
C→∞

∑n
i=1 αC

i

Cn

and

ν∗ = lim
C→0

∑n
i=1 αC

i

Cn
.

Then 0 ≤ ν∗ ≤ ν∗ = νmax ≤ 1. For any ν > ν∗, (D2ν) is infeasible. For any ν ∈ (ν∗, ν∗] the optimal

objective value of (D2ν) is strictly positive, and there exists at least one C > 0 such that the following

holds: α is an optimal solution of (D2C) if and only if α/(Cn) is an optimal solution of (D2ν). For any

ν ∈ [0, ν∗], (D2ν) is feasible with an optimal objective value of zero and a trivial solution.

Remark: Consider the case where the training data can be perfectly separated by a hyperplane in H. In

this case, as C → ∞, margin errors are penalized more heavily, and thus for some sufficiently large C,

the solution of (D2C) will correspond to the separating hyperplane. Thus there exists some C∗ such that

αC∗ (corresponding to the separating hyperplane) is an optimal solution of (D2C) for all C ≥ C∗. In this

case, as C →∞,
∑n

i=1 αC
i /Cn → 0, and thus ν∗ = 0. Note also that we can easily restate Theorem 3 for

the alternative (C+, C−) and (ν+, ν−) parameterizations if desired.

8

3 SUPPORT VECTOR ALGORITHMS FOR MINIMAX AND NP CLASSIFICATION

In order to apply either the 2C-SVM or the 2ν-SVM to the problems of minimax or NP classification,

we must set the free parameters appropriately. In light of Theorem 3, it might appear that it makes no

difference which formulation we use, but given the critical importance of parameter selection to both of

these problems, any practical advantage that one method offers over the other is extremely important. In

our case, the 2C-SVM faces a number of problematic issues involved with an unbounded parameter space,

such as numerical issues for very large or small parameter values and a certain degree of arbitrariness in

selecting the starting points, ending points, and spacing for any grid search. Since the parameter space of

the 2ν-SVM is bounded, we can conduct a simple uniform grid search over [0, 1]2 to select (ν+, ν−). Thus

we will restrict our attention to the 2ν-SVM. Our approach is to obtain estimates of the error rates over a

grid of possible parameter values and then use these estimates to select the best parameter combination.

The central focus of our study (which will be based on simulations across a wide range of data sets)

concerns how to most accurately and efficiently perform this error estimation and parameter selection

process.

To be concrete, we will describe the algorithm for the radial basis function (Gaussian) kernel, although

the method could easily be adapted to other kernels. We consider a 3-D grid of possible values for

ν+, ν−, and the kernel bandwidth parameter σ. For each possible combination of parameters we begin

by obtaining CV estimates of the false alarm and miss rates, which we denote P̂CV
F and P̂CV

M . Note

that we slightly abuse notation and that P̂F and P̂M should be thought of as arrays indexed by ν+,

ν−, and σ. (This is distinct from the notation established earlier where PF and PM are functionals that

map classifiers to error rates.) We next select the parameter combination that minimizes ÊCV, where for

minimax classification we set ÊCV = ÊCV
MM = max{P̂CV

F , P̂CV
M } and for NP classification we set ÊCV =

ÊCV
NP(α) where ÊCV

NP(α) = P̂CV
M when P̂CV

F ≤ α and ÊCV
NP(α) = ∞ otherwise.

3.1 Accurate error estimation: Smoothed cross-validation

While CV estimates are relatively easy to calculate, they tend to have a high variance, and hence some

parameter combinations will look much better than they actually are due to chance variation. However,

we have observed across a wide range of datasets for the 2ν-SVM that P̂CV
F and P̂CV

M appear to vary

smoothly as functions of (ν+, ν−, σ) but also appear to be somewhat “noisy” as illustrated in Fig. 1 (a).

This motivates a simple heuristic to improve upon CV: smooth P̂CV
F and P̂CV

M with a low-pass filter W

and then calculate ÊSM using the smoothed CV estimates. Ignoring the kernel parameter, we describe

the approach in Algorithm 1. We also consider two approaches to selecting the kernel parameter. We can

apply a 2-D filter to the error estimates for (ν+, ν−) ∈ [0, 1]2 as in Algorithm 1 separately for each value of

σ, or alternatively, a 3-D filter to the error estimates, smoothing across different kernel parameter values.

Fig. 1 illustrates the effect of 3-D smoothing on an example dataset, demonstrating that ÊSM more closely

resembles the estimate of E obtained from an independent test set. In our experiments, the filter is chosen

9

to be a simple low-pass filter. Several possible filters can be used (for example, Gaussian filters, median

filters, etc.), and all result in similar performance gains. The key to all these smoothing approaches is

that they perform some kind of local averaging to reduce outlying estimates. We will see that both 2-D

and 3-D methods are extremely effective in a quantitative sense in Section 5.

3.2 Efficient and accurate error estimation: Coordinate descent

The additional parameter in the 2ν-SVM can render a full grid search somewhat computationally

expensive, especially for large data sets. Fortunately, a simple speed-up heuristic exists. Again inspired by

the smoothness of P̂CV
F and P̂CV

M , we propose a coordinate descent search. Several variants are possible,

but the simplest one we employ, denoted 2-D coordinate descent, is described in Algorithm 2. It essentially

consists of a sequence of orthogonal line searches that continues until it converges to a local optimum. To

incorporate a kernel parameter, we can either repeat this approach for each value of the kernel parameter,

or consider the natural 3-D extension of this algorithm. Smoothing can also easily be incorporated into

this framework by conducting “tube searches”: adding additional adjacent line searches adjacent to the

line searches in Algorithm 2 that are then filtered to yield smoothed estimates along the original line

searches.

4 EXPERIMENTAL SETUP

4.1 Performance evaluation

In order to evaluate the heuristics described above and to compare the 2ν-SVM to methods more

commonly used in practice, we conduct a detailed experimental study. We compare the algorithms on a

collection of 11 benchmark datasets representing a variety of dimensions and sample sizes.1 The datasets

comprise a mixture of synthetic and real data. For each of the first 9 data sets, we have 100 permutations

of the data into training and test sets, and for the last two we have 20 permutations. We use the different

permutations to generate a more reliable performance estimate for each algorithm. For a given algorithm,

we train a classifier for each permutation of training data and then evaluate our performance metric

using the corresponding permutation of the test data. We then average the scores over all permutations.

Specifically, for each approach, we estimate P̂CV
F and P̂CV

M for various parameter combinations using

5-fold CV. We then select the appropriate parameters, retrain our classifiers on the full set of training

data, and then estimate PF (f) and PM (f) using the independent test data. Our performance metric is

max{PF (f), PM (f)} for minimax classification, and for NP classification we use the Neyman-Pearson score,

1
α

max {PF (f)− α, 0}+ PM (f) (6)

1. We use the following datasets, which can be obtained with documentation from http://ida.first.fhg.de/projects/bench: banana,
breast-cancer, diabetes, flare-solar, heart, ringnorm, thyroid, twonorm, waveform, image, splice.

10

Algorithm 1 Smoothed Grid Search
for a vector of values of ν+ do

for a vector of values of ν− do
ÊCV ← CV estimate of E

end for
end for
ÊSM ← W (ÊCV)
select ν+, ν− minimizing ÊSM

train SVM using selected ν+, ν−

Algorithm 2 Coordinate Descent
(ν0

+, ν0
−) ← (0.5, 0.5)

i ← 0
repeat

estimate E for ν+ = νi
+ and a vector of values of ν−

estimate E for ν− = νi
− and a vector of values of ν+

set νi+1
+ , νi+1

− to minimize ÊCV

increment i
until νi

+ = νi−1
+ and νi

− = νi−1
−

train SVM using νi
+, νi

−

proposed in [18]. It can be shown that the global minimizer of (6) is the optimal NP classifier. Furthermore,

the NP score has additional properties, desirable from a statistical point of view: it can be reliably

estimated from data, it tolerates small violations of the false alarm constraint, and as α draws closer

to 0, a stiffer penalty is exacted on classifiers that violate the constraint [18]. To evaluate performance on

unbalanced datasets, we repeated these experiments retaining only 10% of the negatively labeled training

data.

In order to compare multiple algorithms on multiple datasets, we use the two-step procedure advocated

in [19]. First we use the Friedman test, a statistical test for determining whether the observed differences

between the algorithms are statistically significant. When reporting results from the Friedman test, we

give the p-value. Next, once we have rejected the null-hypothesis (that the differences have occurred

by chance) we apply the Nemenyi test, which involves computing a ranking of the algorithms for each

dataset, and then an average ranking for each algorithm. Along with these rankings, we provide the so-

called critical difference for a significance level of 0.05. (If the average ranking of two algorithms differs

by more than this value, which depends on the desired p-value and the number of algorithms being

compared against each other, then the performance of the two algorithms is significantly different with a

p-value of at most 0.05.) See [19] for a more thorough discussion of and motivation for these techniques.

4.2 Implementation

In all experiments we use a radial basis function (Gaussian) kernel and consider a logarithmically

spaced grid of 50 points of σ ∈ [10−4, 104] and a 50 × 50 regular grid of (ν+, ν−) ∈ [0, 1]2. For the 2-

11

D smoothing approach, we apply a 3 × 3 Gaussian window to the error estimates for (ν+, ν−) ∈ [0, 1]2

separately for each value of σ. For the 3-D smoothing approach we apply a 3× 3× 3 Gaussian window

to the error estimates, smoothing across different kernel parameter values. The standard deviation of the

Gaussian window is set to the length of one grid interval. (There does not seem to be much change in

performance for different window sizes and widths.) We have implemented the 2ν-SVM (available online

at www.dsp.rice.edu/software) by modifying the popular LIBSVM package [12].

4.3 Alternative approaches

In order to provide a reference for comparison, we also consider two alternative approaches, bias-shifting

and the balanced ν-SVM. In bias-shifting, which is the most common approach taken in the literature,

we train a standard (cost-insensitive) SVM and then adjust the bias of the resulting classifier to achieve

the desired error rates. Note that we do not expect that bias-shifting will perform as well as the 2ν-SVM

since in [20] it was shown that the cost-sensitive SVM is superior to bias-shifting in the sense that it will

generate an ROC with a larger area under its curve. In our experiments we search over a uniform grid

of 50 points of the parameter ν and also apply a 3 × 3 smoothing filter to smooth the error estimates

across different values of ν and σ.

A common motivation for minimax classification is that some datasets are unbalanced in the sense

that they have many more samples from one class than from the other. In light of Proposition 1, another

possible algorithm is to use a 2ν-SVM with ν+ = ν−. We refer to this method as the balanced ν-SVM. Since

ν+ and ν− are upper bounds on the fractions of margin errors from their respective classes, we might

expect that this method will be superior to the traditional ν-SVM for minimax classification. Note that

this method has the same computational complexity as the traditional ν-SVM. For the balanced ν-SVM

we search over a uniform grid of 50 points of the parameter ν+ = ν− and again apply a 3× 3 smoothing

filter to smooth the error estimates across different σ.

5 RESULTS AND DISCUSSION

5.1 Effects of smoothing

In Fig. 2 we examine how smoothing impacts the accuracy of the error estimates for each of our datasets.

We compare the CV error estimates and the test error estimates for the parameter combination selected

using the CV estimates. We then repeat this for smoothed error estimates. We compute the bias and

variance of the two estimation approaches by averaging over different permutations. From Fig. 2, we

see that smoothing leads to significant reductions in both bias and variance across all data sets. Notice

also that the bias is always negative. This validates our intuition that the “noise” in the CV estimates

can lead to selecting parameter combinations that look better than they really are. The bias and variance

reductions translate into a drastic improvement on the resulting classifiers. The results of smoothing on

12

our benchmark datasets are shown in Table 1, and they clearly indicate that both 2-D and 3-D smoothing

offer a statistically significant gain in performance, with 3-D smoothing offering a slight edge.

5.2 Coordinate descent

Table 2 shows that 3-D smoothing combined with either 2-D or 3-D coordinate descent offers gains

in performance as well, which is particularly helpful since these methods speed up the parameter

selection process considerably. Note that smoothing again makes a tremendous impact on the resulting

performance, even in the absence of a complete grid search. Perhaps somewhat surprisingly, we observe

that 2-D and 3-D coordinate descent behave similarly, despite 3-D coordinate descent being considerably

more greedy.

5.3 Comparison with other methods

We now compare the 2ν-SVM strategies to the balanced ν-SVM and traditional ν-SVM with bias-shifting.

Table 3 provides the results of the Nemenyi test for the 3-D smoothed grid-search approach (labeled

3D-SGS), the 2-D and 3-D coordinate descent methods (labeled 2D-CD and 3D-CD — both use 3-D

smoothing), the balanced ν-SVM without bias-shifting (labeled Bal ν-SVM), and the traditional ν-SVM

with bias-shifting (labeled ν-SVM). For the case of minimax classification on balanced balanced datasets,

the 2ν-SVM methods appear to exhibit stronger performance, but this is not statistically significant.

However, for the unbalanced case, there is a clear and significant difference, with the 2ν-SVM methods

being clearly superior. The 3D-SGS method appears to be the best performing overall, but the coordinate

descent methods exhibit very similar performance. For the case of NP classification, the 2ν-SVM methods

clearly outperform the traditional ν-SVM methods and also outperform the balanced ν-SVM. Perhaps the

most surprising result is that the 3-D coordinate descent method is not only competitive with the full

grid search, but performs even better than the grid search on the unbalanced datasets. This may be

a consequence of the fact that by ignoring many parameter combinations, coordinate descent is less

sensitive to noisy error estimates. In essence, coordinate descent can act as a simple form of complexity

regularization, thus preventing overfitting.

6 CONCLUSION

We have demonstrated that, when learning with respect to the minimax or NP criteria, the 2ν-SVM,

in conjunction with smoothed cross-validation error estimates, clearly outperforms methods based on

raw (unsmoothed) error estimates, as well as the bias-shifting strategies commonly used in practice. Our

approach exploits certain properties of the 2ν-SVM and its parameter space, which we analyzed and

related to the 2C-SVM. Our experimental results imply that accurate error estimation is crucial to our

algorithm’s performance. Simple smoothing techniques lead to significantly improved error estimates,

13

−0.2

−0.15

−0.1

−0.05

0

0.05

B
ia

s

ba
na

na

br
ea

st−
ca

nc
er

dia
be

te
s

fla
re

−s
ola

r
he

ar
t

rin
gn

or
m

th
yr

oid

tw
on

or
m

wav
ef

or
m

im
ag

e
sp

lic
e

Before smoothing
After smoothing

(a) Effect of smoothing on the bias of bECV
MM.

0

1

x 10
−4

V
ar

ia
nc

e

ba
na

na

br
ea

st−
ca

nc
er

dia
be

te
s

fla
re

−s
ola

r
he

ar
t

rin
gn

or
m

th
yr

oid

tw
on

or
m

wav
ef

or
m

im
ag

e
sp

lic
e

Before smoothing
After smoothing

(b) Effect of smoothing on the variance of bECV
MM.

Fig. 2. Effect of smoothing on bECV
MM.

TABLE 1
Average ranking of each smoothing approach for the 2ν-SVM. (Friedman p-values are < 0.01 for all cases; Nemenyi

critical difference at 0.05 is 1.10.)

M
in

im
ax Smoothing Balanced Unbalanced

None 2.91 2.91
2-D 1.73 1.64
3-D 1.36 1.45

N
P

Smoothing Balanced Unbalanced
None 2.73 2.64
2-D 2.09 2.00
3-D 1.18 1.36

which translate into better parameter selection and a dramatic improvement in performance. We have

also illustrated a computationally efficient variant of our approach based on coordinate descent.

The primary intuition underlying the gains achieved by our approach lie in minimizing the impact of

outlying error estimates. When estimating errors for a large grid of parameter values, a poor estimator

is likely to be overly optimistic at a few parameter settings simply by chance. Our smoothing approach

performs a weighted local averaging to reduce outlying estimates. This may also explain the suprising

14

TABLE 2
Average ranking of each coordinate descent approach for the 2ν-SVM. (Friedman p-values are < 0.05 for all cases;

Nemenyi critical difference at 0.05 is 1.92.)

M
in

im
ax

Smoothing CD Balanced Unbalanced
None 2-D 4.18 4.18
None 3-D 3.91 4.00
2-D 2-D 2.73 2.82
3-D 2-D 2.00 2.00
3-D 3-D 2.18 2.00

N
P

Smoothing CD Balanced Unbalanced
None 2-D 3.82 4.36
None 3-D 3.55 3.64
2-D 2-D 2.64 3.36
3-D 2-D 1.91 1.91
3-D 3-D 3.09 1.73

TABLE 3
Average ranking of the 2ν-SVM methods, the balanced ν-SVM, and the ν-SVM with bias-shifting. (Friedman p-values

are < 0.001 for all cases except unbalanced minimax classification, for which the p-value is 0.502; Nemenyi critical
difference at 0.05 is 1.92.)

M
in

im
ax

Method Balanced Unbalanced
3D-SGS 2.73 2.00
2D-CD 2.64 2.64
3D-CD 2.73 2.00
ν-SVM 3.64 4.09

Bal ν-SVM 3.27 4.27

N
P

Method Balanced Unbalanced
3D-SGS 2.36 3.18
2D-CD 2.18 2.09
3D-CD 2.73 1.64
ν-SVM 4.91 4.18

Bal ν-SVM 2.82 3.91

performance of our greedy coordinate descent speed-up: By ignoring many parameter combinations, the

algorithm reduces its exposure to such outliers.

APPENDIX

In [17] Chang and Lin illustrate the relationship between (Dν) and (DC) — which denote the dual

formulations of the ν-SVM and C-SVM respectively. We follow a similar course. First we rescale (D2C)

by Cn in order to compare it with (D2ν). This yields:

(D′
2C) min

α

1
2

n∑

i,j=1

αiαjyiyjk(xi,xj)− 1
Cn

n∑

i=1

αi

15

s.t. 0 ≤ αi ≤ γ

n
, i ∈ I+

0 ≤ αi ≤ 1− γ

n
, i ∈ I−

n∑

i=1

αiyi = 0.

In order to prove the theorems in Section 2.4, we take advantage of the equivalence of (D2C) and (D′
2C).

We will establish the relationship between (D2ν) and (D′
2C), which by rescaling establishes the theorems

in Section 2.4 relating (D2ν) and (D2C). We begin with the following lemmata:

Lemma 1: Fix γ ∈ [0, 1] and ν ∈ [0, νmax]. There is at least one optimal solution of (D2ν) that satisfies
∑n

i=1 αi = ν. In addition, if the optimal objective value of (D2ν) is not zero, then all optimal solutions of

(D2ν) satisfy
∑n

i=1 αi = ν.

Proof: This lemma was proved in [17] for the ν-SVM. The proof relies only on the form of the objective

function of the dual formulation of the ν-SVM, which is identical to that of (D2ν). Thus, we omit it for

the sake of brevity and refer the reader to [17].

Lemma 2: Fix γ ∈ [0, 1], C > 0, and ν ∈ [0, 1]. Assume (D′
2C) and (D2ν) share one optimal solution αC

with
∑n

i=1 αC
i = ν. Then α is an optimal solution of (D′

2C) if and only if it is an optimal solution of

(D2ν).

Proof: The analogue of this lemma for (D′
C) and (Dν) is proved in [17]. The proof depends only on

the form of the objective functions, which are identical to those of (D′
2C) and (D2ν), and on the analogue

of Lemma 1. Thus, we again refer the reader to [17].

For the proofs of Theorems 1 and 2, we will need to employ the Karush-Kuhn-Tucker (KKT)

conditions [14]. Specifically, α is an optimal solution of (D′
2C) if and only if there exist b ∈ R and

λ, ξ ∈ Rn satisfying the conditions:

n∑

j=1

αjyiyjk(xi,xj) − 1
Cn

+ byi = λi − ξi, ∀ i (7)

λiαi = 0, λi ≥ 0, ξi ≥ 0, ∀ i (8)

ξi

(γ

n
− αi

)
= 0, 0 ≤ αi ≤ γ

n
, i ∈ I+ (9)

ξi

(
1− γ

n
− αi

)
= 0, 0 ≤ αi ≤ 1− γ

n
, i ∈ I− (10)

n∑

i=1

αiyi = 0. (11)

Similarly, α is an optimal solution of (D2ν) if and only if there exist b, ρ ∈ R and λ, ξ ∈ Rn satisfying:

n∑

j=1

αjyiyjk(xi,xj) − ρ + byi = λi − ξi, ∀ i (12)

λiαi = 0, λi ≥ 0, ξi ≥ 0, ∀ i (13)

16

ξi

(γ

n
− αi

)
= 0, 0 ≤ αi ≤ γ

n
, i ∈ I+ (14)

ξi

(
1− γ

n
− αi

)
= 0, 0 ≤ αi ≤ 1− γ

n
, i ∈ I− (15)

n∑

i=1

αiyi = 0,

n∑

i=1

αi ≥ ν, ρ

(
n∑

i=1

αi − ν

)
= 0. (16)

Note that the two sets of conditions are mostly identical, except for the first and last two of the conditions

for (D2ν). Using this observation, we can prove Theorems 1 and 2.

Proof of Theorem 1: If αC is an optimal solution of (D′
2C) then it is a KKT point of (D′

2C). By setting

ν =
∑n

i=1 αC
i and ρ = 1/(Cn), we see that αC also satisfies the KKT conditions for (D2ν) and thus is an

optimal solution of (D2ν). From Lemma 2 we therefore have that α is an optimal solution of (D′
2C) if and

only if it is an optimal solution of (D2ν). Thus, α is an optimal solution of (D2C) if and only if α/(Cn)

is an optimal solution of (D2ν).

Proof of Theorem 2: If αν is an optimal solution of (D2ν) then it is a KKT point of (D2ν). From

condition (12) we have

n∑

i=1

n∑

j=1

αν
j yiyjk(xi,xj)− ρ + byi

αν

i =
n∑

i=1

(λi − ξi)αν
i

which, by applying (13) and (14), reduces to

n∑

i,j=1

αν
i αν

j yiyjk(xi,xj)− ρ

n∑

i=1

αν
i = −γ

n

n∑

i=1

ξi.

By assumption, (D2ν) has a nonzero optimal objective value. Thus from Lemma 1,
∑n

i=1 αν
i = ν, and

ρ =
1
ν

n∑

i,j=1

αν
i αν

j yiyjk(xi,xj) +
γ

n

n∑

i=1

ξi

 > 0.

Thus we can choose C = 1/(ρn) > 0 so that αν is a KKT point of (D′
2C). From Lemma 2, we have that α

is an optimal solution of (D′
2C) if and only if it is an optimal solution of (D2ν). Hence, α is an optimal

solution of (D2C) if and only if α/(Cn) is an optimal solution of (D2ν).

We will need the following lemmata to prove Theorem 3.

Lemma 3: Fix γ ∈ [0, 1] and ν ∈ [0, 1]. If the optimal objective value of (D2ν) is zero and there is a

C > 0 such that the optimal solution of (D′
2C), αC , satisfies

∑n
i=1 αC

i = ν, then ν = νmax and any α is an

optimal solution of (D2ν) if and only if it is an optimal solution of (D′
2C) for all C > 0.

Proof: Setting ρ = 1/Cn, αC is a KKT point of (D2ν). Hence, if the optimal objective value of (D2ν)

is zero, then
∑n

i=1

∑n
j=1 αC

i αC
j yiyjk(xi,xj) = 0. The kernel k is (by definition) positive definite, so we

have
∑n

j=1 αC
j yiyjk(xi,xj) = 0. Thus, conditions (7) and (12) become

− 1
Cn

+ byi = λi − ξi for i = 1, . . . , n,

17

or

− 1
Cn

+ b = λi − ξi for i ∈ I+

− 1
Cn

− b = λi − ξi for i ∈ I−.

Assume first that b ≥ 0; then

λi − ξi < 0 for i ∈ I−.

This implies that ξi > 0 for all i ∈ I− since both λi and ξi are nonnegative. Therefore, in order for the

first conditions of (9) and (14) to hold, we need αC
i = (1−γ)/n for all i ∈ I−. From the first conditions of

(11) and (16) we have that
∑

i∈I+
αC

i =
∑

i∈I− αC
i . Therefore we need

∑
i∈I+

αC
i = (1− γ)n−/n ≤ γn+/n.

Hence, if (1− γ)n− > γn+, then we have reached a contradiction, and thus b < 0.

Therefore, assume without loss of generality that b ≥ 0 (since we can always relabel the points so that

this would be true), in which case (1 − γ)n− ≤ γn+ and αC
i = (1 − γ)/n for all i ∈ I−. There are three

possibilities for i ∈ I+:

1) λi − ξi < 0

2) λi − ξi > 0

3) λi − ξi = 0.

In Case 1, we must have ξi > 0 for all i ∈ I+. For the first conditions of (9) and (14) to hold, we need

αC
i = γ/n for all i ∈ I+. The requirement that

∑
i∈I+

αC
i =

∑
i∈I− αC

i (from the first conditions of (11)

and (16)) and the fact that αC
i = (1− γ)/n for all i ∈ I− imply that

n∑

i=1

αC
i = 2n+γ/n = 2n−(1− γ)/n = νmax.

Furthermore, since the optimal objective value of (D2ν) is zero, the objective function for (D′
2C) in this

case becomes

min
α

− 1
Cn

n∑

i=1

αi.

This is minimized by αC (since
∑n

i=1 αC
i = νmax), hence αC is an optimal solution of (D′

2C) for all C > 0.

In Case 2 λi > 0 for all i ∈ I−. For the first conditions of (8) and (13), λiα
C
i = 0, to hold, we need αC

i = 0

for all i ∈ I+. However, the requirement that
∑

i∈I+
αC

i =
∑

i∈I− αC
i and the fact that αC

i = (1− γ)/n for

all i ∈ I− lead to a contradiction if I− is nonempty. Hence all the training vectors are in the same class,

and αC
i = 0 for all i. Thus,

n∑

i=1

αC
i = 0 = νmax.

Furthermore, if all the data are from the same class, then αC = 0 is an optimal solution of (D′
2C) for all

C > 0.

18

In Case 3, where λi − ξi = 0, either λi = ξi 6= 0 or λi = ξi = 0 for each i ∈ I+. However, λi = ξi 6= 0

leads to a contradiction because the conditions (8) and (13) together with (9) and (14) require both αC
i = 0

and αC
i = γ/n. Thus, λi = ξi = 0 and the KKT conditions involving λi and ξi impose no conditions on

αC
i for i ∈ I+. Since αC

i = (1− γ)/n for all i ∈ I−, and (1− γ)n− ≤ γn+, we can satisfy

∑

i∈I+

αC
i =

∑

i∈I−

αC
i = (1− γ)n+/n.

Thus,
∑n

i=1 αC
i = νmax. Hence, by setting b = 1/(Cn), αC is an optimal solution of (D′

2C) for all C > 0.

Therefore, in all three cases we have that ν = νmax and that αC is an optimal solution of (D′
2C) for all

C > 0. Hence, if αC is an optimal solution of (D′
2C) and for ν =

∑n
i=1 αC

i the optimal objective value of

(D2ν) is zero, then ν = νmax and αC is an optimal solution of (D′
2C), for all C > 0. The lemma follows

by combining this with Lemma 2.

Lemma 4: If αC is an optimal solution of (D′
2C), then

∑n
i=1 αC

i is a continuous decreasing function of

C on (0,∞).

Proof: The analogue of this lemma for (D′
C) is proved in [17]. Since the proof depends only on the

form of the objective function and the analogues of Theorems 1 and 2 and Lemma 3, we omit the proof

and refer the reader to [17].

We are now ready to prove the main theorem:

Proof of Theorem 3: From Lemma 4 and the fact that for all C, 0 ≤ ∑n
i=1 αC

i ≤ νmax, we know that

the above limits are well-defined and exist.

For any optimal solution of (D′
2C), condition (7) holds:

n∑

j=1

αC
j yiyjk(xi,xj)− 1

Cn
+ b = λi − ξi for i ∈ I+

n∑

j=1

αC
j yiyjk(xi,xj)− 1

Cn
− b = λi − ξi for i ∈ I−.

Assume first that b ≥ 0. In this case, since αC is bounded, when C is sufficiently small, we will necessarily

have λi − ξi < 0 for all i ∈ I+. Pick such a C. Since ξi and λi are nonnegative, ξi > 0 for all i ∈ I+,

and from condition (9), αC
i = γ/n for all i ∈ I+. If γn+/n ≥ (1 − γ)n−/n, then this αC is feasible and

∑n
i=1 αC

i = νmax. However, if γn+/n < (1 − γ)n−/n then we have a contradiction, and thus it must

actually be that b < 0. In this case, for C sufficiently small, λi − ξi < 0 for all i ∈ Ii. As before, this now

implies that αC
i = (1− γ)/n for all i ∈ I−, and thus

∑n
i=1 αC

i = νmax. Hence, ν∗ =
∑n

i=1 αC
i = νmax, and

from Proposition 2 we immediately know that (D2ν) is infeasible if ν > ν∗.

For all ν ≤ ν∗, from Proposition 2 (D2ν) is feasible. From Lemma 4 we know that
∑n

i=1 αC
i is a

continuous decreasing function. Thus for any ν ∈ (ν∗, ν∗], there is a C > 0 such that
∑n

i=1 αC
i = ν, and

by Lemma 2 any α is an optimal solution of (D2ν) if and only if it is an optimal solution for (D′
2C).

19

Finally, we consider ν ∈ [0, ν∗]. If ν < ν∗, then (D2ν) must have an optimal objective value of zero

because otherwise, by the definition of ν∗, this would contradict Theorem 2. If ν = ν∗ = 0, then the

optimal objective value of (D2ν) is zero, as αν = 0 is a feasible solution. If ν = ν∗ > 0, then Lemma 1 and

the fact that feasible region of (D2ν) is bounded by 0 ≤ αi ≤ γ/n for i ∈ I+ and 0 ≤ αi ≤ (1 − γ)/n for

i ∈ I− imply that there exists a sequence {ανj}, ν1 ≤ ν2 ≤ · · · ≤ ν∗ such that ανj is an optimal solution

of (D2ν) with ν = νj ,
∑n

i=1 α
νj

i = νj , and α∗ = limνj→ν∗ ανj exists. Since
∑n

i=1 α
νj

i = νj ,

n∑

i=1

α∗i = lim
νj→ν∗

n∑

i=1

α
νj

i = ν∗.

Since the feasible region of (D2ν) is a closed set, we also immediately have that α∗ is a feasi-

ble solution of (D2ν) for ν = ν∗. Since
∑n

l,m=1 α
νj

l α
νj
mylymk(xl,xm) = 0 for all νj , we find that

∑n
l,m=1 α∗l α

∗
mylymk(xl,xm) = 0 by taking the limit. Therefore the optimal objective value of (D2ν) is

zero if ν = ν∗. Thus the optimal objective value of (D2ν) is zero for all ν ∈ [0, ν∗].

Now suppose for the sake of a contradiction that the optimal objective value of (D2ν) is zero but ν > ν∗.

By Lemma 4 there exists a C > 0 such that, if αC is an optimal solution of (D′
2C), then

∑n
i=1 αC

i = ν.

From Lemma 3, ν = νmax = ν∗ = ν∗, since
∑n

i=1 αC
i is the same for all C. This contradicts the assumption

that ν > ν∗. Thus the objective value of (D2ν) can be zero if and only if ν ≤ ν∗. In this case, w = 0 and

thus the solution is trivial.

By appropriate rescaling, this establishes the theorem.

REFERENCES

[1] A. Cannon, J. Howse, D. Hush, and C. Scovel, “Learning with the Neyman-Pearson and min-max criteria,” Tech. Rep. LA-UR

02-2951, Los Alamos National Laboratory, 2002.

[2] F. Sebastiani, “Machine learning in automated text categorization,” ACM Computing Surveys, vol. 34, pp. 1–47, 2002.

[3] S. Bengio, J. Mariéthoz, and M. Keller, “The expected performance curve,” in Proc. Int. Conf. Machine Learning, 2005, Bonn,

Germany.

[4] C. D. Scott and R. D. Nowak, “A Neyman-Pearson approach to statistical learning,” IEEE Trans. Inform. Theory, vol. 51, no.

11, pp. 3806–3819, 2005.

[5] H. G. Chew, R. E. Bogner, and C. C. Lim, “Dual-ν support vector machine with error rate and training size biasing,” in Proc.

IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), 2001, pp. 1269–1272.

[6] E. Osuna, R. Freund, and F. Girosi, “Support vector machines: Training and applications,” Tech. Rep. A.I. Memo No. 1602,

MIT Artificial Intelligence Laboratory, March 1997.

[7] K. Veropoulos, N. Cristianini, and C. Campbell, “Controlling the sensitivity of support vector machines,” in Proc. Int. Joint

Conf. on Artificial Intelligence (IJCAI), 1999.

[8] Y. Lin, Y. Lee, and G. Wahba, “Support vector machines for classification in nonstandard situations,” Tech. Rep. Technical

Report No. 1016, University of Wisconsin, Dept. of Statistics, March, 2000.

[9] M. A. Davenport, R. G. Baraniuk, and C. D. Scott, “Controlling false alarms with support vector machines,” in Proc. IEEE Int.

Conf. Acoust., Speech, and Signal Processing (ICASSP), 2006, Toulouse, France.

[10] M. A. Davenport, R. G. Baraniuk, and C. D. Scott, “Minimax support vector machines,” in Proc. IEEE Work. Stat. Signal

Processing (SSP), 2007, Madison, Wisconsin.

[11] M. A. Davenport, “Error control for support vector machines,” M.S. thesis, Rice University, Houston, Texas, April 2007.

20

[12] C. C. Chang and C. J. Lin, LIBSVM: a library for support vector machines, 2001, See http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[13] B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press, Cambridge, MA, 2002.

[14] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.

[15] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.

[16] B. Schölkopf, A. J. Smola, R. Williams, and P. Bartlett, “New support vector algorithms,” Neural Computation, vol. 12, pp.

1083–1121, 2000.

[17] C. C. Chang and C. J. Lin, “Training ν-support vector classifiers: Theory and algorithms,” Neural Computation, vol. 13, pp.

2119–2147, 2001.

[18] C. D. Scott, “Performance measures for Neyman-Pearson classification,” IEEE Trans. Inform. Theory, vol. 53, no. 8, pp. 2852–2863,

2007.

[19] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Machine Learning Research, vol. 7, pp. 1–30, 2006.

[20] F. Bach, D. Heckerman, and E. Horvitz, “Considering cost asymmetry in learning classifiers,” J. Machine Learning Research,

vol. 7, pp. 1713–1741, 2006.

