
ACM Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), October 2003

Lazy Modular Upgrades in Persistent Object Stores

Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira∗, Chuang-Hue Moh, Steven Richman
MIT Computer Science and Artificial Intelligence Laboratory

200 Technology Square, Cambridge, MA 02139

{chandra,liskov,liuba,chmoh,richman}@lcs.mit.edu

Abstract
Persistent object stores require a way to automatically up-
grade persistent objects, to change their code and storage
representation. Automatic upgrades are a challenge for such
systems. Upgrades must be performed in a way that is effi-
cient both in space and time, and that does not stop applica-
tion access to the store. In addition, however, the approach
must be modular: it must allow programmers to reason lo-
cally about the correctness of their upgrades similar to the
way they would reason about regular code. This paper pro-
vides solutions to both problems.

The paper first defines upgrade modularity conditions that
any upgrade system must satisfy to support local reasoning
about upgrades. The paper then describes a new approach
for executing upgrades efficiently while satisfying the up-
grade modularity conditions. The approach exploits object
encapsulation properties in a novel way. The paper also de-
scribes a prototype implementation and shows that our up-
grade system imposes only a small overhead on application
performance.
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1 Introduction
This paper is concerned with providing efficient automatic
upgrades for objects in a persistent object store [4]. Per-
sistent object stores provide a simple yet powerful program-
ming model that allows applications to store objects reliably
so that they can be used again later and shared with other
applications. The store acts as an extension of an object-
oriented programming language such as Java, allowing pro-
grams access to long-lived objects in a manner analogous
to how they manipulate ordinary objects whose lifetime is
determined by that of the program.

Since persistent objects may live a long time, there may
be a need to upgrade them, that is, change their code and
storage representation. An upgrade can improve an object’s
implementation; correct errors; or even change its interface
in the face of changing application requirements. Providing
a satisfactory way of upgrading objects in a persistent object
store has been a long-standing challenge.

A natural way to define upgrades is for programmers to pro-
vide a transform function [52] for each class whose objects
need to be upgraded. A transform function initializes the
new form of an object using its current state. The system
carries out the upgrade by using the transform functions to
transform all objects whose classes are being replaced.

This way of handling upgrades introduces two problems:

1. The system must provide good semantics that let pro-
grammers reason about their transform functions lo-
cally, thus making it easy to design correct upgrades.

2. The system must run upgrades efficiently, both in space
and time.

This paper provides solutions to both problems.

The paper first introduces a set of upgrade modularity con-
ditions that constrain the behavior of an upgrade system.
Any upgrade system that satisfies the conditions guarantees
that when a transform function runs, it only encounters ob-
ject interfaces and invariants that existed when its upgrade
was defined. The conditions thus allow transform functions
to be defined modularly: a transform function can be con-
sidered an extra method of the class being replaced, and can
be reasoned about like the rest of the class. This is a natu-
ral assumption that programmers would implicitly make in
any upgrade system—our conditions provide a grounding for
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this assumption. This way an upgrade system provides good
semantics to programmers who design upgrades.

The paper then describes an efficient way of executing up-
grades while satisfying the upgrade modularity conditions.
Previous approaches do not provide a satisfactory solution
to this problem. An upgrade system could satisfy the con-
ditions by keeping old versions of all objects, since old ver-
sions preserve old interfaces and old object states. However
versions are expensive, and to be practical, an upgrade sys-
tem must avoid them most of the time. Some earlier sys-
tems [48, 7, 40] avoid versions by severely limiting the ex-
pressive power of upgrades (e.g., transform functions are not
allowed to make method calls); others [5, 46] limit the num-
ber of versions using a stop-the-world approach that shuts
down the system for upgrade and discards the versions when
the upgrade is complete; yet others [52] do not satisfy the
upgrade modularity conditions that enable programmers to
reason about their upgrades locally.

Our approach provides an efficient solution to this problem.
We perform upgrades lazily; we don’t prevent application
access to persistent objects by stopping the world but in-
stead transform objects just before they are accessed by an
application. We do this without requiring the use of ver-
sions most of the time. Also, we impose no limitations on
the expressive power of transform functions. Yet we provide
good semantics: our upgrade system satisfies the upgrade
modularity conditions and thus supports local reasoning.

Our approach exploits the fact most transform functions are
well-behaved: they access only the object being transformed
and its encapsulated subobjects. If transform functions are
well-behaved, our runtime system provides an efficient way
to enforce the upgrade modularity conditions without main-
taining versions. If they aren’t, we provide an additional
mechanism, triggers, which can be used to control the order
of transform functions to satisfy the conditions. If even trig-
gers are insufficient, we use versions but only in cases where
they are needed.

Determining whether a transform function is well-behaved
is straightforward, given an understanding of encapsulation.
Programmers can use informal reasoning to check this prop-
erty. Alternatively, the compiler can ensure this property
using static checking, provided the programming language
is extended to support ownership types [11, 12, 14, 15, 24,
25]; we sketch such an extension in the appendix. Own-
ership types offer a promising approach for making object-
oriented programs more reliable, and may become part of
future object-oriented languages.

We have implemented a prototype lazy modular upgrade
infrastructure in Thor [41, 9], a highly optimized object-
oriented database. The paper describes the prototype and
discusses the design trade-offs we made to optimize perfor-
mance in the common case. The paper presents performance
results that indicate that the infrastructure has low cost. It
has negligible impact on applications that do not use objects
that need to be upgraded. We expect this to be the common
case because upgrades are likely to be rare (e.g., once a week

or once a day). The results also show that when upgrades
are needed, the overhead of transforming an object is small.

The paper is organized as follows. Section 2 presents our
upgrade modularity conditions. Section 3 describes how our
system executes upgrades. Section 4 shows that our sys-
tem satisfies the upgrade modularity conditions. Section 5
describes our implementation and Section 6 presents perfor-
mance results. Section 7 discusses related work. Section 8
concludes. The appendix describes ownership types, which
can be used to check statically that transform functions are
well-behaved.

2 Semantics of Upgrades
This section describes the upgrade model. It also defines the
upgrade modularity conditions and explains why they make
it easy for programmers to reason about upgrades.

2.1 System Model
We assume a persistent object store (e.g., an object-oriented
database) that contains conventional objects similar to what
one might find in an object-oriented programming language
such as Java. Objects refer to one another and interact by
calling one another’s methods. The objects belong to classes
that define their representation and methods. Each class
implements a type. Types are arranged in a hierarchy. A
type can be a subtype of one or more types. A class that
implements a type implements all supertypes of that type.

We assume that applications access persistent objects within
atomic transactions, since this is necessary to ensure consis-
tency for the stored objects; transactions allow for concur-
rent access and they mask failures. An application transac-
tion consists of calls on methods of persistent objects as well
as local computation. A transaction terminates by com-
mitting or aborting. If the commit succeeds, changes be-
come persistent. If instead the transaction aborts, none of
its changes affect the persistent objects.

Upgrades in a persistent object store can be used to improve
an object’s implementation, to make it run faster, or to cor-
rect an error. They can also be used to extend the object’s
interface, e.g., by providing it with additional methods, or
even to change the object’s interface in an incompatible way,
so that the object no longer behaves as it used to, e.g., by
removing one of its methods or redefining what a method
does. Incompatible upgrades are probably not common but
they can be important in the face of changing application
requirements.

2.2 Defining Upgrades
An upgrade is defined by describing what should happen
to classes that need to be changed. The information for
a class that is changing is captured in a class-upgrade. A
class-upgrade is a tuple:

〈old-class, new-class, TF〉
A class-upgrade indicates that all objects belonging to old-
class should be transformed, through use of the transform
function, TF, into objects of new-class. TF takes an old-class
object and a newly allocated new-class object and initializes
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the new-class object from the old-class object. The upgrade
system causes the new-class object to take over the identity
of the old-class object, so that all objects that used to refer
to the old-class object now refer to the new-class object.

This mechanism preserves object state and identity. The
preservation is crucial, because the whole point of a per-
sistent store is to maintain object state. When objects are
upgraded, their state must survive, albeit in a modified form
as needed in the new class. Furthermore, a great deal of ob-
ject state is captured in the web of object relationships. This
information is expressed by having objects refer to other ob-
jects. When an object is upgraded it must retain its identity
so that objects that referred to it prior to the upgrade still
refer to it.

An upgrade is a set of one or more class-upgrades. When
an upgrade changes the interface of a class C incompati-
bly, so that its objects no longer behave as they used to,
this may affect other classes, including subclasses of C and
classes that use types C no longer implements. All affected
classes have to be upgraded as well, so that the new sys-
tem as a whole remains type correct. A complete upgrade
contains class-upgrades for all classes that need to change
due to some class-upgrade already in the upgrade [5, 28, 30,
52]. Completeness is checked using rules analogous to type
checking.

Our system accepts an upgrade only if it is complete. At this
point we say the upgrade is installed. Once an upgrade has
been installed, it is ready to run. An upgrade is executed by
running transform functions on all affected objects, i.e., all
objects belonging to the old classes.

2.3 Upgrade Modularity Conditions
As we mentioned in the introduction, an upgrade system
must guarantee that when a transform function runs, it en-
counters only interfaces that existed at the time its upgrade
was installed and states that satisfy its object’s invariants.
This guarantee means the transform function writer need
not be concerned, when reasoning about correctness of up-
grades, with object interfaces and object invariants that ex-
isted in the past or will exist in the future. Instead, the
transform function can be thought of as an extra method of
the old-class: the writer can assume the same invariants and
interfaces as are assumed for the other methods.

The job of the upgrade system is to run upgrades in a way
that supports this modularity property. There are two dif-
ferent problems that must be solved. First is the question
of how to order upgrades relative to application transactions
and to other upgrades. Second is the issue of how to order
the transform functions belonging to a single upgrade.

2.3.1 Ordering Upgrades
The requirement for ordering of entire upgrades is simple:
upgrades are transactions and thus must be serialized rela-
tive to application transactions and to one another: a later
upgrade must appear to run after an earlier one.

An upgrade transaction transforms all objects of old-classes.

We view each transform function as running in its own trans-
action; each such transform transaction is the execution of a
transform function on one object. The entire upgrade trans-
action thus consists of the execution of all the transform
transactions for that upgrade.

Now we can state the serializability requirement. A similar
condition is given in [52]. We use the notation [A1; A2] to
mean that A1 ran before A2.

M1. If we have [A; TF(x)], where A is either an applica-
tion transaction that is serialized after TF’s upgrade
is installed, or A is a transform function from a later
upgrade, this has the same effect as [TF(x); A].

An upgrade system that stops the world to run an upgrade
transaction and only allows application transactions to con-
tinue after that transaction completes (e.g., [5, 46]) satis-
fies this condition trivially, since the order [A; TF(x)] won’t
occur for either later application transactions or later up-
grades. An upgrade system that doesn’t stop the world will
have to ensure that when it runs A before some transform
that must be serialized before A, the effect will be the same
as if they ran in the opposite order.

2.3.2 Order within Upgrades
Condition M1 says nothing about how the upgrade system
chooses the ordering of transforms within an upgrade. The
following two conditions constrain this order.

M2. If TF(x) and TF(y) are from the same upgrade and
TF(x) (transitively) uses y and we have [TF(y);TF(x)],
this has the same effect as [TF(x); TF(y)].

M3. If TF(x) and TF(y) are from the same upgrade and
TF(x) does not (transitively) use y and TF(y) does
not (transitively) use x, then [TF(y); TF(x)] has the
same effect as [TF(x); TF(y)].

Here TF(x) uses y if TF(x) reads/writes a field of y or calls
a method of y. Transitively uses means that this action may
occur via uses of intermediate objects, e.g., TF(x) calls a
method of z, which calls a method of y.

Condition M2 states that if transform function TF(x) uses
object y, the behavior of the system must be the same as
if TF(x) ran before TF(y). Condition M3 states that for
unrelated objects, the behavior of the system must be inde-
pendent of the order in which their transforms ran; in this
case the upgrade system can choose whatever order it wants
for the two transforms.

Some upgrade systems satisfy Condition M2 by using ver-
sions (so that when TF(x) runs it sees the old version of
y); this is the approach taken in [5, 46]. Others avoid the
problem altogether by limiting the expressive power of trans-
forms so that they cannot make method calls, as in [48, 7,
40]. A third possibility (and the direction we follow) is to
satisfy M2 by controlling the order of transforms so that
when TF(x) uses y, x is transformed before y.
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Conditions M1-M3 together ensure upgrade modularity: trans-
form functions encounter the expected interfaces and object
invariants because upgrades run in upgrade order, applica-
tion transactions do not interfere with transform functions,
transform functions of unrelated objects do not interfere
with each other, and transform functions of related objects
appear to run in a pre-determined order (namely an object
appears to be transformed before its subobjects). Thus these
conditions allow transform functions to be reasoned about
locally, as extra methods of old classes. Writers of transform
functions can assume the same invariants and interfaces as
are assumed for the other methods of old classes.

3 Executing Upgrades
This section describes our lazy upgrade system.

Stopping the world to run an upgrade is undesirable since it
can make the system unavailable to applications for a long
time. Our system avoids delaying applications by running
the upgrade incrementally just in time.

The system runs each transform function as an individual
transaction. These transactions are interleaved with appli-
cation transactions. When an application transaction A is
about to use an object that is due to be transformed, the
system interrupts A and runs the transform function at that
point; this way we ensure that application transactions never
observe untransformed objects.

The transform transaction T must be serialized before A
in the commit order since A uses the transformed object
initialized by T . Therefore, if T reads or modifies an object
modified by A or if T modifies an object read by A, the
system aborts A. A is highly unlikely to abort, however;
we discuss how our techniques avoid having to abort A in
Sections 4.3 and 4.4.

When T finishes executing, it commits. Then the system
continues running A, or if A was aborted, it reruns A.

Our system does not require that an earlier upgrade com-
plete before a later upgrade starts since this might delay
the later upgrade for a long time. Instead many upgrades
can be in progress at once and several transforms may be
pending for an object. The system runs pending transforms
for an object in upgrade order. While running transform
transaction T , the system might encounter an object that
has pending transforms from upgrades earlier than the one
that defined T ; in this case, the system interrupts T (just as
it interrupted A) to run the pending transforms.

4 Enforcing the Modularity Conditions
The lazy approach described in Section 3 ensures that trans-
forms of individual objects run in upgrade order and that
applications running after an upgrade never observe objects
that need to be transformed. But it does not enforce the
upgrade modularity conditions discussed in Section 2.3, and
thus it does not provide the desired semantics that allow
programmers to reason locally about their transform func-
tions. For example, it’s possible that application transaction

Figure 1: Stack Object With Encapsulated Linked List
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Figure 2: An Object Encapsulation Hierarchy

A1 uses object x causing it to be transformed and changing
its interface incompatibly; later A2 uses y and when TF(y)
runs it uses x and encounters the unexpected interface.

For the system to provide good semantics, we must prevent
this kind of occurrence. Our approach is based on object
encapsulation. Object encapsulation is important in any
object-oriented program because it gives programmers the
ability to reason locally about program correctness. In our
upgrade system, however, object encapsulation provides an
additional benefit: it allows our system to support the up-
grade modularity conditions without needing versions.

4.1 Object Encapsulation
Reasoning about a class in an object-oriented program in-
volves reasoning about the behavior of objects belonging to
the class. Typically objects point to other subobjects, which
are used to represent the containing object. Local reason-
ing about class correctness is easy to do if the subobjects
are encapsulated, that is, if all subobjects are accessible only
within the containing object. This condition supports local
reasoning because it ensures that outside objects cannot in-
teract with the subobjects without calling methods of the
containing object. And therefore the containing object is in
control of its subobjects.

However, encapsulation of all subobjects is often more than
is needed for local reasoning. Encapsulation is only required
for subobjects that the containing object depends on [38]:

• An object a depends on subobject b if a reads/writes
fields of b or calls methods of b and furthermore these
reads/writes or calls expose mutable behavior of b in a
way that affects the invariants of a.

Thus, a stack implemented using a linked list depends on the
list but not on the items contained in the list. If code outside
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could manipulate the list, it could invalidate the correctness
of the stack implementation. But code outside can safely use
the items contained in the stack because the stack doesn’t
call their methods; it only depends on the identities of the
items and the identities never change. Similarly, a set does
not depend on its elements even if it invokes a.equals(b) to
ensure that no two elements a and b in the set are equal,
provided the elements are immutable.

In general an object must encapsulate all objects it (directly
or transitively) depends on:

• An object x encapsulates object y if it maintains an
encapsulation boundary such that y and every object
it encapsulates is inside the boundary and furthermore
if z is outside the boundary, then z cannot access y.

(An object z accesses an object y if z has a pointer to
y, or methods of z obtain a pointer to y.)

Figure 1 shows a stack object implemented using a linked
list. The nodes in the linked list are encapsulated within the
stack object, so that outside objects cannot directly access
the list nodes. But the items stored in the stack are not
encapsulated in the stack object.

The encapsulation relation forms a hierarchy. Figure 2 shows
an example, where objects o2, o3, and o4 are encapsulated
within o1, object o3 is encapsulated within o2, and object
o7 is encapsulated within o6.

4.2 Encapsulation and Upgrades
Encapsulation facilitates modular upgrades in our system
because it imposes an order on transforms. If y is encap-
sulated within x, applications must access x before y and
therefore x will be transformed before y. This means that
when TF(x) runs it will see the proper interface for y.

However, if TF(x) accesses some object z referred to by x (di-
rectly or indirectly) but not encapsulated within x, it might
encounter an unexpected interface or state. Our system pro-
vides good semantics without using versions for transforms
that don’t do this. Such transforms satisfy Condition E:

E. TF(x) only uses x and objects that x encapsulates.

We say such transforms are well-behaved.

Condition E can be checked by informal reasoning, given
an understanding of encapsulation boundaries. Understand-
ing these boundaries is a fundamental part of establishing
correctness of classes: in general, correctness requires that
every object depended on is also encapsulated. Therefore
we are not asking more of the programmer than what must
already be done. Checking Condition E is also not onerous
because the programmer is viewing the transform as an ex-
tra method of the old-class. So it is reasonably simple for
the programmer to determine whether E holds.

Manual checks can be avoided if the programming language
is extended to support ownership types; in this case the

checking can be done by the compiler. Ownership types [11,
12, 14, 15, 24, 25] are used to declare dependencies: if an
object x depends on y, x’s class will declare that x owns
y. The ownership type system will then guarantee that y
cannot be accessed from outside of x, i.e., by objects that x
doesn’t own directly or transitively. Ownership types com-
bined with effects clauses [44] allow the compiler to track
what objects are used by transforms. We have defined an
extension to Java [12] that supports ownership types and ef-
fects clauses; we include a brief overview of our type system
in the appendix. With such a system in place, the compiler
can check Condition E at compile time.

4.3 Ensuring Upgrade Modularity
This section shows that our system can ensure Conditions
M1-M3, assuming Condition E holds for all TFs.

For any object x affected by an upgrade, our system guaran-
tees that x is accessed before any object encapsulated within
x. Thus the system ensures the following conditions:

S1. TF(x) runs before A uses x or any object encapsulated
within x, where A is either an application transaction
that ran after TF’s upgrade was installed, or A is a
transform function from a later upgrade.

S2. If TF(x) and TF(y) are in the same upgrade and y is
encapsulated within x, then TF(x) runs before TF(y).

Now we give informal proofs that when E holds, S1 and S2
ensure that Conditions M1-M3 hold. Our proofs consider
only adjacent transactions, but this is sufficient because M1-
M3 can be used to reorder sequences containing intervening
transactions to achieve adjacency.

M1: If we have [A; TF(x)], where A is either an application
transaction that is serialized after TF’s upgrade is installed,
or A is a transform function from a later upgrade, this has
the same effect as [TF(x); A].

Proof: Since A ran before TF(x), we know from S1 that A
does not use x or any object x encapsulates. Furthermore,
we know from E that TF(x) only uses x and objects x en-
capsulates. Therefore the read/write sets of A and TF(x)
have no object in common and thus the effect is the same as
if TF(x) ran before A.

M2: If TF(x) and TF(y) are from the same upgrade and
TF(x) (transitively) uses y and we have [TF(y);TF(x)], this
has the same effect as [TF(x); TF(y)].

Proof: Since TF(x) (transitively) uses y, we know from E
that x encapsulates y. Therefore, we know from S2 that
TF(x) runs before TF(y). Thus the condition holds trivially
because the order [TF(y); TF(x)] will not occur.

M3: If TF(x) and TF(y) are from the same upgrade and
TF(x) does not (transitively) use y and TF(y) does not
(transitively) use x, then [TF(x); TF(y)] is equivalent to
[TF(y); TF(x)].
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Proof: TF(x) and TF(y) can commute unless there is some
object z that is read by one TF and modified by the other.
If such an object exists, we know from E that both x and
y must encapsulate it. Therefore the existence of z implies
that either y is encapsulated within x and z is encapsulated
within y, or x is encapsulated within y and z is encapsu-
lated within x. But we know from S2 that an encapsulating
object is used before any object it encapsulates. Therefore
whichever object encapsulates the other, the TF for that
object must use the other before using z, which violates the
assumption that neither TF uses the other object.

When E holds we also get another benefit. Recall from Sec-
tion 3 that our system will abort an interrupted transaction
if it has a read/write conflict with a TF. However, when
E holds there will be no conflicts. This is because the in-
terrupted transaction cannot use any object that a pending
transform function will use without first causing that pend-
ing transform function to run.

4.4 Triggers and Versions
Now we consider what happens when a TF violates Condi-
tion E. Condition E states that TF(x) can only use x and
objects encapsulated within x. There are two reasons why
the condition might not hold.

The first reason is that a TF(x) might use objects that x
does not depend on (directly or transitively). For example,
the depends-on relation in Section 4.1 is intentionally limited
to not include immutable subobjects, since correctness does
not require encapsulation of such subobjects. However, if
the subobjects are no longer immutable after an upgrade and
if a transform function reads such subobjects, Condition E
would be violated. But such upgrades are unlikely to happen
in practice.

The second reason Condition E may not hold is that an
object might not encapsulate subobjects it depends on. This
might occur with cyclic objects. It also might occur in the
case of iterators [43, 35] and other similar constructs.

Consider, for example, an iterator over a set s. The itera-
tor’s job is to return a different element of the set each time
its next method is called until all elements of the set have
been returned. To do this job efficiently, the iterator needs
direct access to the objects that represent s, e.g., if s is im-
plemented using a linked list, the iterator must be able to
access the nodes in the linked list directly. But the iterator
cannot be encapsulated within s because we would like it to
be used by objects outside s.

To allow efficient implementation of iterators, a set object
does not encapsulate the linked list, even though it depends
on it. This is because the iterator is an outside object that
can access the list. In fact, what is really happening with it-
erators is that more than one object depends on some shared
subobject. For example, both s and iterators over s depend
on the linked list.

Encapsulation violations of this sort do not prevent local rea-
soning in object-oriented programs, so long as all the code

with the shared dependencies is in the same module. If the
code is modularized like this, correctness can still be rea-
soned about locally, by considering the module as a whole.
For example, the iterator could be implemented as an in-
ner class of the set class, and modular reasoning would still
be possible [12]. However, such encapsulation violations can
lead to a violation of E.

4.4.1 Handling Violations of Condition E
When E is violated there are two possible solutions: explic-
itly order the transform functions so that Conditions M1-M3
are not violated, or use versions. Since the decision about
which approach to use requires an understanding of program
behavior, the programmer must instruct the system about
what to do.

Explicit ordering of transform functions is possible when x
and all the unencapsulated objects used by TF(x) are encap-
sulated within a containing object. For example, suppose
the linked list class is being upgraded incompatibly, and as
a result a set and all its iterators must also be transformed.
If a containing object encapsulates both the set object and
its iterator objects, we can force the set and the iterators to
be transformed before the linked list by attaching a trigger
to the class of the containing object.

A trigger is a function that takes an object as an argument
and returns a list of objects needing to be upgraded. Trig-
gers are defined as part of an upgrade (in addition to the
class-upgrades); such a definition identifies the class being
triggered and provides the code for the trigger. The system
runs the trigger when an object of the class is first used (af-
ter the upgrade is installed); then it processes the list (in
list order) and runs any pending transform functions on the
objects in the list. The trigger on an object x must be re-
stricted to use only objects x depends on and furthermore to
only read those objects. The uses restriction ensures that the
trigger itself can be reasoned about modularly; the read-only
restriction guarantees that the trigger cannot affect system
state. Given these restrictions, triggers provide M1-M3 be-
cause they control order: they provide M1 and M2 because
[A; TF(x)] and [TF(y); TF(x)] cannot occur.

When there is no containing object, or when there is no
way to ensure a correct order for transforms (e.g., because
a group of objects with cyclic dependencies is being trans-
formed), we have to fall back on versions. In this case, we
keep old versions for any unencapsulated object used by the
offending transform function TF(x); for each such object z,
we also keep versions for all objects it depends on. Trans-
form functions must be restricted to not modify old versions
of objects. Given this restriction on transform functions, ver-
sions provide M1-M3, because immutable versions preserve
the old interfaces and object states.

Triggers and versions also ensure that a transform does not
conflict with interrupted transactions. Furthermore, the sys-
tem can interact with the user prior to installing an up-
grade to help the user include needed triggers and versions.
Therefore our system makes it highly unlikely that running
a transform will cause interrupted transactions to abort.
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4.5 Speeding up Upgrades
Our approach to executing transforms delays their execu-
tion until an object is used. We might want to execute them
sooner. For example, when a dirty page containing persis-
tent objects is written back to disk, we might want to run
pending transforms for objects on that page [5]. Or, we
might want a background process to read pages and trans-
form their objects; this might be done in conjunction with
garbage collection.

On the other hand, our proofs of Conditions M1-M3 depend
on running transforms in the correct order. Specifically we
need to be careful about Condition M2: if TF(x) uses y and
y has a pending transform from the same upgrade, we cannot
transform y before x. We also cannot transform y before x
when the upgrade affecting y is later than the one affecting
x; this constraint comes from Condition M1.

Nevertheless we can do some transforms eagerly. This is
accomplished by constructing an upgrade graph. The graph
shows an ordering for old-classes: there is an arrow from
old-class C1 to old-class C2 if transforms of C1 objects use
C2 objects. Nodes in the graph without in-arrows indicate
classes whose objects can be transformed eagerly.

The graph allows opportunistic transforms, e.g., as part of
processing an object’s page. If the persistent store maintains
extents (sets that list or contain all objects of a class [20]),
this could provide further speed up by allowing the system
to find objects eligible for transform. Furthermore, once all
objects in a class have been transformed, the node for that
class can be removed from the graph, and as a result other
classes may become eligible for transform.

5 Implementation
This section describes how we implement upgrades. We de-
scribe the general strategy and provide some details of how
the implementation works within the Thor object-oriented
database. We also sketch an alternative approach that can
be used in other persistent object systems.

Thor is a client-server system: Persistent objects reside at
servers; application transactions run at client machines on
cached copies of persistent objects. Thor uses optimistic con-
currency control [1]. Client machines track objects used and
modified by a transaction. When a transaction attempts to
commit, the client sends a commit request containing infor-
mation about used objects and states of new and modified
objects to one of the servers. The server decides whether
the transaction can commit (using two-phase commit if the
transaction used objects at more than one server) and in-
forms the client of its decision. More information about
Thor can be found in [41, 19, 1, 9].

5.1 Installing Upgrades
Upgrades are installed by interacting with one of the servers.
This server checks the upgrade for completeness. It inter-
acts with the user to determine whether Condition E holds;
if it doesn’t, this may result in a trigger or version being
added to the upgrade. If versions are needed, these are also
described by class-upgrades, marked as requiring versions.

When all needed information has been added to the upgrade,
the server notifies clients and other servers about the new
upgrade.

Information about transforms, triggers, and versions is at-
tached to class objects of old-classes. E.g., the old-class ob-
ject points to the transform function.

5.2 Running Upgrades
As mentioned, we interrupt application transactions and
transform transactions when we encounter objects that need
to be upgraded or have triggers attached to them. This pro-
cessing involves the following steps:

1. Each time an application transaction, AT, or a trans-
form transaction, TT, uses an object, we check whether
that object needs to be transformed or has an attached
trigger. If so, we interrupt AT or TT and start a
transaction T to run the transform code on that ob-
ject. This step insures that application code encoun-
ters only fully upgraded objects, and pending trans-
forms encounter objects of expected versions.

2. We run transaction T. If T conflicts with an inter-
rupted transaction (reads or modifies a modified object
or modifies a read object) we abort all the interrupted
transactions including AT.

3. When T completes, we create a version for objects it
modifies, if that is indicated.

4. If T has triggered some other transforms we run them
provided they are defined by upgrades no later than
the upgrade that caused T to run. Note that T is
finished executing at this point; we don’t interrupt it
to run these additional transforms.

5. When there are no triggered transforms left to run,
we continue running the interrupted AT or TT, unless
these were aborted.

6. When processing is complete (either because the AT
is ready to commit, or because the AT was forced to
abort), we commit all completed transactions in their
completion order. If some transaction’s commit fails,
we abort those that haven’t committed yet and then
rerun them in the same order as before. Then we rerun
the application transaction if it aborted.

5.3 Implementation in Thor
This section describes an approach that takes advantage of
the runtime infrastructure of Thor. We describe an alternate
approach in Section 5.4 that does not assume this infrastruc-
ture, and thus could be used in any system. More informa-
tion about the Thor upgrade implementation is contained
in [42, 21].

Objects in Thor refer to one another using orefs [19]. These
are references particular to one of the servers: they iden-
tify a page at that server and an object number within that
page. Since these references would be expensive to use when
running transactions, Thor client machines swizzle pointers
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when they are first used, so that they can be followed ef-
ficiently to locate the object being referred to in the client
cache. Swizzling is done using an indirection table called the
ROT (resident object table). A swizzled pointer points to
an entry in the ROT. That entry either points to the object
in the client cache, or it is empty.

The most interesting part of the implementation is the tech-
nique we use to keep down the cost of Step 1. This step is
critical because it requires a test on every method call to de-
termine whether the object whose method is being called is
due to be upgraded or has an attached trigger. If the system
is to perform well, this test must be inexpensive.

We reduce the cost of this test by maintaining the following
invariant:

R1. While an application transaction is running, all non-
empty entries in the ROT are for up-to-date objects
whose triggers already ran.

This invariant means that while we are running an appli-
cation transaction, we discover upgrades and triggers when
we fill empty ROT entries. ROT entries are filled less often
than they are used; therefore we avoid the need to test for
upgrades and triggers in the normal case of running method
calls on objects that are already in the ROT. As part of fill-
ing a ROT entry we look at the object’s class object; this is
how we discover a pending transform.

The client machine establishes R1 as follows. When it learns
of a new upgrade, it clears all ROT entries for objects of old-
classes of the upgrade, and it aborts the current transaction
if it used objects of these classes. This processing is ex-
pensive but the expense is acceptable because upgrades are
installed infrequently, e.g., no more than once an hour or
once a day.

The invariant is not enough to ensure correct behavior while
running transforms, however, because objects in the ROT
may be too recent for the transform (i.e., already trans-
formed due to a later upgrade). In this case, if the object is
versioned the transform needs to find the appropriate earlier
version to use. Therefore, as part of making a method call
we test whether we are running an application transaction or
a transform transaction. This test is fast: it involves looking
at a boolean variable that, because it is used so frequently,
ends up in a register or the fastest hardware cache. If the
test indicates that we are running a transform transaction,
the system does extra processing to find the version if one is
needed.

When a transform transaction completes, there might be
some old versions in the ROT that were placed there because
they were needed to run the transform. These old versions
are removed from the ROT at that point.

5.3.1 Versions
When a transform transaction commits, the system deter-
mines whether a version is needed. If not, it stores the new
object in the same page as the old one if there is room. The

new object can actually be bigger than the old one and yet
be stored in the same page because orefs are logical, not
physical, and because the ROT allows the client machine to
move objects around in the cache. If the new version is too
big to fit in the page, the original object is changed to a
special small surrogate object that points to the new object.
If a version is needed, the original object is changed to a
surrogate that points to both the old and new versions; the
new version is placed in the object’s page if possible.

5.3.2 Commits
As part of committing an application transaction, the client
sends the servers information about all objects that were
transformed during processing of that transaction. For each
transformed object it sends the new state, plus the state
of the surrogate if one is needed. (Only objects are sent
and not their containing pages because Thor uses object-
shipping [19].)

5.4 Alternative Approach
The approach described above requires the Thor infrastruc-
ture. In particular it relies on the fact that there is an in-
direction table that can be cleared when the client machine
learns of a new upgrade. Many systems will not have a
ROT and therefore require a different approach. This sec-
tion sketches a technique that will work in any environment.

The approach is quite straightforward. Objects typically
point to a dispatch vector containing an entry for each of
their methods. All objects of the class point to the same
dispatch vector. We take advantage of the dispatch vector
to handle upgrades.

When a class is due for an upgrade, e.g., it is an old-class,
as part of installing the upgrade we modify its dispatch vec-
tor to point to special versions of the methods. When such
a method runs, we know the object is due to be upgraded
(or has an attached trigger that needs to run). The method
carries out the check in Step 1: it checks the boolean to
determine whether the call is coming from an application
transaction or a transform transaction. In either case it pro-
ceeds as discussed in Section 5.3.

Additionally, methods of upgraded objects with older ver-
sions also do the check, and if they are called by a transform,
they carry out the processing to get to the right version.

This approach of using dispatch vectors avoids some version
checks done by our implementation: checks are done only in
objects due to be upgraded, and in upgraded objects where
there are earlier versions.

6 Performance
To evaluate our approach we extended the Thor system to
support upgrades and conducted a performance study. The
goal of the study was to evaluate the overhead imposed by
the upgrade infrastructure on application performance.

Thor is a good basis for this study because it performs well.
Earlier studies showed that it delivers comparable perfor-
mance to a highly-optimized persistent object system im-
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plemented in C++ even though the C++ system did not
support transactions [41].

We evaluated two kinds of overhead, the baseline overhead
and the transform overhead. The baseline overhead is our
main concern. This is the overhead that occurs during nor-
mal case execution, when the system does not encounter
any objects that need to be upgraded; the overhead is due to
checks used to determine whether an upgrade is needed. The
transform overhead is the overhead for running transforms.
Every upgrade system has such costs; the only concern is
whether our transform overhead is reasonable.

We evaluated the overhead by comparing the performance of
an application running in two systems, the original Thor sys-
tem prototype (ThorBase), and the prototype that supports
upgrades (ThorUpgrades). The prototype does not include
upgrade installation at the server and subsequent notifica-
tion to the client. Instead, we configured the client with
a sequence of “dormant” upgrades and activated upgrades
while running applications.

Our application workloads are based on the single-user OO7
Benchmark [18]; this benchmark is intended to capture the
characteristics of various CAD applications, but does not
model any specific application. We used OO7 because it is
a standard benchmark for measuring object storage system
performance. The OO7 database contains a tree of assembly
objects with leaves pointing to three composite parts chosen
randomly from among 500 such objects. Each composite
part contains a graph of atomic parts linked by bidirectional
connection objects, reachable from a single root atomic part;
each atomic part has three connections. We used the small
OO7 database configuration, where each composite part con-
tains 20 atomic parts. This is a very small database (where
a stop-the-world approach would be acceptable) but it is
sufficient to allow us to measure the baseline and transform
overheads. Our workload choice is conservative for our over-
head study because OO7 accesses a large number of small
objects and we expect the overhead to be proportional to
the number of objects accessed.

We considered both read-only and read-write transaction
workloads in our analysis, since upgrades have a different
commit cost in workloads with and without modifications.
We used the read-only T1 dense traversal, which performs
a depth-first traversal of the entire composite part graph
(touching every atomic part), and the read-write T2b traver-
sal, which performs a T1 traversal modifying all atomic
parts.

Our experiments used a system configuration with a single
client and a single server, running on the same machine. The
test machine had a 600MHz Intel Pentium III processor and
512MB of memory, and ran Linux 2.4.7.

6.1 Baseline
This section considers the baseline overhead imposed by the
upgrade infrastructure when the system does not encounter
objects that need to be upgraded. The baseline experiments
evaluate two types of application accesses: fast access to an
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Figure 3: Baseline (no-upgrade) traversal times

object already installed in the ROT and the slower access
to an object that needs to be installed in the ROT. The
upgrade infrastructure introduces a small extra cost for an
access of an object resident in the ROT, namely a check of
the global flag that indicates whether the current transaction
is an application or transform transaction. For an access of
an object that isn’t resident in the ROT, the upgrade code
introduces a larger extra cost, which includes the expense
of checking if a trigger or transform needs to be run for the
object.

To evaluate these costs, we compared application execution
times for ThorBase and ThorUpgrades in two environments:
with a fully-populated ROT, and with an initially empty
ROT. The full ROT comparison is the expected case for
most application executions. Conversely, the empty ROT
comparison represents a worst case for baseline performance
in ThorUpgrades: the maximum amount of work must be
performed for each nonresident object access. This is a case
that we would not expect to occur normally, as typically only
a few empty ROT entrees are encountered when a transac-
tion runs.

Figure 3 shows the execution times for these experiments.
The figure shows the costs of running traversals T1 and T2b.
We did not include the cost of committing these transactions
since we wanted to focus on the extra costs in ThorUpgrades
for running the traversals. Also the experiments use a hot
cache, since otherwise the cost of fetching objects into the
cache would dominate execution time. In either case, the
upgrade infrastructure introduces a minimal overhead that
is less than 2%.

The overhead would be similar if we use the dispatch vector
approach presented in Section 5.4.

6.2 Executing Upgrades
The next experiments measure the transform overhead. We
installed an upgrade and ran a database traversal that en-
counters objects that need to be transformed. The specific
upgrade used in these experiments upgrades the atomic part
class. Because the goal was to measure the transform over-
head, the upgrade uses a trivial transform that minimizes
application-specific costs (transforms defined by program-
mers might do other computations). The new atomic part
class has the same methods and fields as the old class, and
the transform just copies the fields from the old object to
the new. As before, all experiments used a hot cache.
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To estimate the transform cost we compared the traversal ex-
ecution times of ThorUpgrades without upgrades and Thor-
Upgrades with an atomic part upgrade installed just before
the traversal. In these experiments all traversals visit each
atomic part multiple times; the version check and transform
cost is incurred only on the first visit. By counting the num-
ber of objects transformed in traversals T1 (read-only) and
T2b (read-write) (9,880 in both cases) we computed the av-
erage cost of running a transform in both types of traversals;
this is 11.3 µsec for T1 and 11.5 µsec for T2b. This cost in-
cludes the processing to start and end a transform as well as
the cost to check whether the transform conflicts with the
interrupted transaction (Steps 1-3 in Section 5.2). The cost
is an over-estimate of the overhead since it includes both the
overhead and the running of the transform.

The above calculation does not reflect the entire cost of up-
grades because it does not include the cost of committing
the transaction that activates the upgrades. There is a com-
mit cost associated with each transformed object. The cost
is low if the object was modified by the application trans-
action (assuming the new object fits in its page and does
not require a version), since the application’s modifications
have to be shipped to the server anyway. Transformed ob-
jects not modified by the transaction incur an additional cost
since they must be sent to the server in the commit message.

To estimate the average extra commit cost we compared the
commit times for T1 and T2b in ThorUpgrades with and
without upgrades. Since T1 is read-only, each transformed
object incurs the extra commit cost of being sent to the
server; the average commit cost per upgraded object is 19.9
µsec. T2b modifies every transformed object and the addi-
tional commit cost per upgraded object is 1.0 µsec.

Time per object (µsec) T1 T2b
Transform 11.3 11.5
Commit 19.9 1.0

Table 1: Extra Upgrade Cost

Table 1 summarizes the extra upgrade costs. The results
indicate that our overhead per transform is reasonable. It
reflects costs that are incurred by every lazy upgrade sys-
tem. Each such system must identify objects needing to be
transformed, run the transforms, and commit the changes.

7 Related Work
There has been much research on software upgrades and data
transformation covering a broad range of research topics.
The work on schema or class versioning (e.g., [26, 49, 22])
considers multiple co-existing versions of a schema or class.
The work on object instance evolution (e.g., [8, 31]) considers
selective transformation of some but not all objects in a class.
The work on hot-swapping of modules (e.g., [36, 32, 37])
is concerned with updating a class while there is executing
code that is using objects of the class; this work considers
issues of type safe access to the same object via multiple
potentially incompatible interfaces but does not enforce the
upgrade modularity conditions that allow programmers to
reason locally about the correctness of their upgrades.

Here we focus on work on schema evolution in persistent ob-
ject stores (such as object-oriented databases), since this is
the work most closely related to our own. In these systems
the database has one logical schema to which modifications
of class definitions are applied; all object instances are con-
verted (eagerly or lazily, but once and forever) to conform to
the latest schema. The schema evolution approach is used
in Orion [7], OTGEN [40], O2 [29, 52], GemStone [17, 48],
Objectivity/DB [47], Versant [50], and PJama [6, 5] systems,
and is the only approach available in commercial RDBMS.
An extensive survey of the previous schema evolution sys-
tems can be found in [30].

None of the previous schema evolution systems provide a
way of executing upgrades efficiently both in space and time,
while allowing programmers to reason locally about the cor-
rectness of their upgrades. To be practical, systems must
avoid keeping old versions of objects most of the times. Some
earlier systems [48, 7, 40] avoid versions by severely limiting
the expressive power of upgrades (e.g., transform functions
are not allowed to make method calls). Others [5, 46] limit
the number of versions using a stop-the-world approach that
shuts down the system for upgrade and discards the versions
when the upgrade is complete

Very few systems support lazy conversion and complex (fully
expressive) transforms. The work on O2 [29, 52] was the first
to identify the problem posed by deferred complex trans-
forms and incompatible upgrades. This work introduced an
upgrade modularity condition that is based on the equiva-
lence of lazy and eager conversion. This condition is weaker
than our Conditions M1-M3 because it does not consider the
interleavings of transforms from the same upgrade.

O2 ensures type safety for deferred complex transforms us-
ing a “screening” approach similar to versioning. Unlike our
approach, however, analysis in O2 does not take encapsu-
lation into account. When an incompatible upgrade occurs
after a complex transform is installed, O2 either activates an
eager conversion or avoids transform interference by keeping
versions for all objects. This approach is unnecessarily con-
servative (it switches to eager execution even when E holds).
Also, O2 does not solve the problem of applications modi-
fying objects that are then used by transforms from earlier
upgrades; this is unsafe because it violates Condition M1.

Implementation details for commercial systems supporting
lazy conversion with complex transforms are generally not
available. We found limited information for O2, e.g., we
found no information about the mechanisms for supporting
the atomicity of individual transforms, or about the perfor-
mance impact of upgrade support on normal case operation.
The O2 screening approach co-locates versions of upgraded
objects physically near the new version of the object [33].
This requires database reorganization when versions are cre-
ated. In contrast, our system does not require co-location
of object versions; this allows us to preserve clustering of
non-upgraded objects without database reorganization and
furthermore, we are often able to preserve clustering for up-
graded objects as well. Preserving clustering is important for
system performance because of its impact on disk access [34].
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Some implementation issues caused by complex user-defined
transforms arise in eager as well as lazy systems, e.g., ei-
ther has to support arbitrary order of transforms and ac-
cess to potentially incompatible transformed objects. The
PJama system [5, 30] keeps old and new versions to solve
this problem. To provide recoverability and reduce memory
demands when converting large datasets, it performs incre-
mental partitioned conversion that creates partitions with
old and new versions, and at the end of conversion deletes
the old copies by copying the converted partitions. Like our
system, PJama uses write-ahead logging to support conver-
sion atomicity and recoverability.

8 Conclusions
Persistent object stores provide a simple yet powerful pro-
gramming model that allows applications to store objects
reliably so that they can be used again later and shared
with other applications. Providing a satisfactory way of up-
grading objects in a persistent object store has been a long-
standing challenge. Upgrades must be performed in a way
that is efficient both in space and time, and that does not
stop application access to the store. In addition, however,
the approach must be modular: it must allow programmers
to reason locally about the correctness of their upgrades sim-
ilar to the way they would reason about regular code. This
paper provides solutions to both problems.

This paper defines upgrade modularity conditions that any
upgrade system must satisfy to support local reasoning about
upgrades. These conditions are more general than earlier
definitions [52]: they apply to both lazy and stop-the-world
upgrade systems; they also apply to both systems that use
versions and systems that don’t.

The paper also describes a new approach for executing up-
grades efficiently while satisfying the upgrade modularity
conditions. The approach exploits object encapsulation prop-
erties in a novel way. The paper proves that our upgrade sys-
tem satisfies the upgrade modularity conditions when trans-
forms are well-behaved. We also show that the conditions
hold through the use of triggers and versions.

The paper describes a prototype implementation that sup-
ports fully expressive, modular, lazy upgrades. The imple-
mentation is done in Thor [41, 9]. The paper also describes
an alternate implementation approach that can be used in
any persistent object system.

The paper presents results of a performance study indicat-
ing the infrastructure has low cost. It has negligible impact
on applications that do not use objects that need to be up-
graded. We expect this to be the common case because
upgrades are likely to be rare (e.g., once a week or once a
day). The results also show that when upgrades are needed,
the overhead of transforming an object is small.

Thus the paper describes a complete solution to the problem
of upgrading persistent objects.
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O1. Every object has an owner.

O2. The owner can either be another object or world.

O3. The owner of an object does not change over time.

O4. The ownership relation forms a tree rooted at world.

Figure 4: Ownership Properties

o5 o6

o7
o2 o4

o1

o3

world

Figure 5: An Ownership Relation

Appendix

A Ownership Types

Ownership types provide a statically enforceable way of spec-
ifying object encapsulation. The idea is that an object can
own subobjects it depends on, thus preventing them from
being accessible outside. Ownership types can also be used
to statically check Condition E presented in Section 4. This
section presents an overview of our type system; more details
can be found in [12].

The key to the type system is the concept of object owner-
ship. Every object has an owner. The owner can either be
another object or a special owner called world. Our type sys-
tem statically guarantees the ownership properties shown in
Figure 4. Figure 5 presents an example ownership relation.
We draw an arrow from x to y if x owns y. In the figure, the
special owner world owns objects o1, o5, and o6; o1 owns o2
and o4; o2 owns o3; and o6 owns o7.

Ownership allows a program to statically declare encapsula-
tion boundaries that capture dependencies:

• An object must own all the objects it depends on.

The system then enforces encapsulation: if y is inside the
encapsulation boundary of z and x is outside, then x cannot
access y. (An object x accesses an object y if x has a pointer
to y, or methods of x obtain a pointer to y.) In Figure 5, o7
is inside the encapsulation boundary of o6 and o1 is outside,
so o1 cannot access o7. An object is only allowed to access:
1) itself and objects it owns, 2) its ancestors in the ownership
tree and objects they own, and 3) globally accessible objects,
namely objects owned by world.1 Thus, o1 can access all
objects in the figure except for o3 and o7.

1Note the analogy with nested procedures: proc P1 {var x2;
proc P2 {var x3; proc P3 {...}}}. Say xn+1 and Pn+1 are
children of Pn. Pn can only access: 1) Pn and its children, 2)
the ancestors of Pn and their children, and 3) global variables
and procedures.

1 class TStack<stackOwner, TOwner> {
2 TNode<this, TOwner> head = null;
3
4 void push(T<TOwner> value) {
5 TNode<this, TOwner> newNode =
6 new TNode<this, TOwner>(value, head);
7 head = newNode;
8 }
9 T<TOwner> pop() {
10 if (head == null) return null;
11 T<TOwner> value = head.value(); head = head.next();
12 return value;
13 }
14 }
15
16 class TNode<nodeOwner, TOwner> {
17 TNode<nodeOwner, TOwner> next; T<TOwner> value;
18
19 TNode(T<TOwner> v, TNode<nodeOwner, TOwner> n) {
20 this.value = v; this.next = n;
21 }
22 T<TOwner> value() { return value; }
23 TNode<nodeOwner, TOwner> next() { return next; }
24 }
25
26 class T<TOwner> { }
27
28 class TStackClient<clientOwner> {
29 void test() {
30 TStack<this, this> s1 = new TStack<this, this> ();
31 TStack<this, world> s2 = new TStack<this, world>();
32 TStack<world, world> s3 = new TStack<world, world>();
33 /* TStack<world, this> s4 = new TStack<world, this> (); */
34 }}

Figure 6: Stack of T Objects
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Figure 7: Ownership Relation for TStacks s1, s2, s3

A.1 Owner Polymorphism
We present our type system in the context of a Java-like
language augmented with ownership types. Every class def-
inition is parameterized with one or more owners. The first
owner parameter is special: it identifies the owner of the
corresponding object. The other owner parameters are used
to propagate ownership information. Parameterization al-
lows programmers to implement a generic class whose ob-
jects have different owners.

An owner can be instantiated with this, with world, or with
another owner parameter. Objects owned by this are en-
capsulated objects that cannot be accessed from outside.
Objects owned by world can be accessed from anywhere.

Figure 6 shows an example.2 A TStack is a stack of T ob-
jects. It is implemented using a linked list. The TStack

2The example shows type annotations written explicitly.
However, many of them can be automatically inferred.
See [14, 11] for details.
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1 class C<cOwner, sOwner, tOwner> where (sOwner <= tOwner) {
2 ...
3 TStack<sOwner, tOwner> s;
4 }

Figure 8: Using Where Clauses to Constrain Owners

class is parameterized by stackOwner and TOwner. stack-
Owner owns the TStack object; TOwner owns the T objects
contained in the TStack. The code specifies that the TStack
object owns the nodes in the list; therefore the list nodes
cannot be accessed from outside the TStack object.

The type of TStack s1 is instantiated using this for both
the owner parameters. This means that TStack s1 is owned
by the TStackClient object that created it and so are the T
objects in s1. TStack s2 is owned by the TStackClient object,
but the T objects in s2 are owned by world. TStack s3 is
owned by world and so are the T objects in s3. The ownership
relation for s1, s2, and s3 is depicted in Figure 7 (assuming
the stacks contain two elements each). (The dotted line
indicates that every object is transitively owned by world.)

A.2 Constraints on Owners
For every type T 〈x1, ..., xn〉 with multiple owners, our type
system statically enforces the constraint that (x1 ¹ xi) for
all i ∈ {1..n}. Recall from Figure 4 that the ownership
relation forms a tree rooted at world. The notation (y ≺ z)
means that y is a descendant of z in the ownership tree.
The notation (y ¹ z) means that y is either the same as
z, or y is a descendant of z in the ownership tree. Thus,
the type of TStack s4 in Figure 6 is illegal because (world
6¹ this). For a method m〈xn+1, ..., xk〉(...){...} of an object
of type T 〈x1, ..., xn〉, the restriction is that (x1 ¹ xi) for
all i ∈ {1..k}. (These constraints are needed to provide
encapsulation in the presence of subtyping. [11] illustrates
this point with an example.)

To check ownership constraints modularly, it is sometimes
necessary for programmers to specify additional constraints
on class and method parameters. For example, in Figure 8,
the type of s is legal only if (sOwner ¹ tOwner). We al-
low programmers to specify such additional constraints us-
ing where clauses [27, 45], and our type system enforces the
constraints. For example, in Figure 8, class C specifies that
(sOwner ¹ tOwner). An instantiation of C that does not
satisfy the constraint is illegal.

A.3 Subtyping
The rule for declaring a subtype is that the first owner pa-
rameter of the supertype must be the same as that of the
subtype; in addition, of course, the supertype must satisfy
the constraints on owners. The first owners have to match
because they are special, in that they own the correspond-
ing objects. Thus, TStack〈stackOwner, TOwner〉 is a subtype
of Object〈stackOwner〉. But T〈TOwner〉 is not a subtype of
Object〈world〉 because the first owners do not match.

A.4 Inner Classes
Our inner classes are similar to the member inner classes in
Java. Inner class definitions are nested inside other classes.

1 class TStack<stackOwner, TOwner> {
2 TNode<this, TOwner> head = null;
3 ...
4 TStackEnum<enumOwner, TOwner> elements<enumOwner>()
5 where (enumOwner <= TOwner) {
6 return new TStackEnum<enumOwner, TOwner>();
7 }
8 class TStackEnum<enumOwner, TOwner>
9 implements TEnumeration<enumOwner, TOwner> {
10
11 TNode<TStack.this, TOwner> current;
12
13 TStackEnum() { current = TStack.this.head; }
14
15 T<TOwner> getNext() {
16 if (current == null) return null;
17 T<TOwner> t = current.value();
18 current = current.next();
19 return t;
20 }
21 boolean hasMoreElements() { return (current != null); }
22 }
23 }
24
25 class TStackClient<clientOwner> {
26 void test() {
27 TStack<this, world> s = new TStack<this, world>();
28 TEnumeration<this, world> e1 = s.elements();
29 TEnumeration<world, world> e2 = s.elements();
30 }}
31
32 interface TEnumeration<enumOwner, TOwner> {
33 T<TOwner> getNext();
34 boolean hasMoreElements();
35 }

Figure 9: TStack With Iterator

Figure 9 shows an example. The inner class TStackEnum
implements an iterator for TStack; the elements method of
TStack provides a way to create an iterator over the TStack.
The TStack code is otherwise similar to that in Figure 6.

Recall from before that an owner can be instantiated with
this, with world, or with another owner parameter. Within
an inner class, an owner can also be instantiated with C.this,
where C is an outer class. This feature allows an inner object
to access the objects encapsulated within its outer objects.
In Figure 9, the owner of the current field inTStackEnum is
instantiated with TStack.this. The current field accesses list
nodes encapsulated within its outer TStack object.

An inner class is parameterized with owners just like a reg-
ular class. In our system, the outer class parameters are
not automatically visible inside an inner class. If an inner
class uses an outer class parameter, it must explicitly include
the outer class parameter in its declaration. In Figure 9,
the TStackEnum declaration includes the owner parameter
TOwner from its outer class. TOwner is therefore visible
inside TStackEnum. But the TStackEnum declaration does
not include stackOwner. Therefore, stackOwner is not visible
inside TStackEnum.

Note that in this example, the elements method is parame-
terized by enumOwner. This allows a program to create dif-
ferent iterators that have different owners. elements returns
an iterator of type TStackEnum〈enumOwner, TOwner〉. For
this type to be legal, it must be the case that (enumOwner ¹
TOwner). This requirement is captured in the where clause.
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1 class TStack<stackOwner, TOwner> {
2 TNode<this, TOwner> head = null;
3 ...
4 class TStackEnum<enumOwner, TOwner>
5 implements TEnumeration<enumOwner, TOwner> {
6
7 TNode<TStack.this, TOwner> current;
8 ...
9 T<TOwner> getNext() writes(this) reads(TStack.this){...}

10 boolean hasMoreElements() reads(this){...}
11 }
12 }
13
14 interface TEnumeration<enumOwner, TOwner> {
15 T<TOwner> getNext() writes(this) reads(world);
16 boolean hasMoreElements() reads(this);
17 }

Figure 10: TStack Iterator With Effects

A.5 Encapsulation Theorem
Our system provides the following encapsulation property:

Theorem 1. x can access an object owned by o only if:

1. (x ¹ o), or

2. x is an inner class object of o.

Proof. Consider the code: class C〈f, ...〉{... T 〈o, ...〉 y ...}.
Variable y of type T 〈o, ...〉 is declared within the static scope
of class C. Owner o can therefore be either 1) this, or 2)
world, or 3) a formal class parameter, or 4) a formal method
parameter, or 5) C′.this, where C′ is an outer class. We will
show that in the first four cases, the constraint (this ¹ o)
holds. In the first two cases, the constraint holds trivially.
In the last two cases, (f ¹ o) and (this≺ f), so the constraint
holds. In the fifth case, (C′.this = o). Therefore an object x
of a class C can access an object y owned by o only if either
1) (x ¹ o), as in the first four cases, or 2) x is an inner object
of o, as in the fifth case.

A.6 Effects Clauses
Our system also contains effects clauses [44] because they
are useful for specifying assumptions that hold at method
boundaries and enable modular reasoning and checking of
programs. We also use effects with ownership types to check
Condition E described in Section 4.

Our system allows programmers to specify reads and writes
clauses. Consider a method that specifies that it writes
(w1, ..., wn) and reads (r1, ..., rm). The method can write
an object x (or call methods that write x) only if (x ¹ wi)
for some i ∈ {1..n}. The method can read an object y (or
call methods that read y) only if (y ¹ wi) or (y ¹ rj), for
some i ∈ {1..n}, j ∈ {1..m}. We thus allow a method to
both read and write objects named in its writes clause.

Figure 10 shows a TStack iterator that uses effects, but is
otherwise similar to the TStack iterator in Figure 9. In the
example, the hasMoreElements method reads the this object.
The getNext method reads objects owned by TStack.this and
writes (and reads) the this object.

When effects clauses are used in conjunction with subtyping,
the effects of an overridden method must subsume the effects

1 class IntVector<vOwner> {
2 int elementCount = 0;
3 int size() reads (this) { return elementCount; }
4 void add(int x) writes(this) { elementCount++; ... }
5 }
6 class IntStack<sOwner> {
7 IntVector<this> vec = new IntVector<this>();
8 void push(int x) writes (this) { vec.add(x); }
9 }
10 void m<sO,vO> (IntStack<sO> s, IntVector<vO> v)
11 writes (s) reads (v) where !(v <= s) !(s <= v) {
12 int n = v.size(); s.push(3); assert(n == v.size());
13 }

Figure 11: Reasoning About Aliasing and Side Effects

of the overriding method. This sometimes makes it difficult
to specify precisely all the effects of a method. For example,
it is difficult to specify precisely all the read effects in the
getNext method of the TEnumeration class because TEnumer-
ation is expected to be a supertype of subtypes like TStack-
Enum and TEnumeration cannot name the specific objects
used in the getNext methods of these subtypes. To accom-
modate such cases, we allow an escape mechanism, where a
method can include world in its effects clauses.

Ownership types and effects can be used to locally reason
about the side effects of method calls in the presence of sub-
typing in object-oriented languages. Consider, for example,
the code in Figure 11, which shows an IntStack implemented
using an IntVector vec. (We adopted this example from [39].)
The example has a method m that receives two arguments:
an IntStack s and an IntVector v. The condition in the assert
statement in m can be true only if v is not aliased to s.vec.
In the example, the method m uses a where clause to spec-
ify that (v 6¹ s) and (s 6¹ v). Since the ownership relation
forms a tree (see Figure 4), this constraint implies that v
cannot be aliased to s.vec. Furthermore, IntVector.size de-
clares that it only reads objects owned by the IntVector, and
IntStack.push declares that it only writes (and reads) objects
owned by the IntStack. Therefore, it is possible to reason lo-
cally that v.size and s.push cannot interfere, and thus the
condition in the assert statement in m must be true.

A.7 Support for Modular Upgrades
Ownership types can be used to statically check a property
similar to Condition E in Section 4: they can be used to
check whether a transform function uses only owned objects.
Also, our system handles inner classes specially to ensure
Condition S1 and S2 discussed in Section 4. When a upgrade
affects a class, we attach triggers to its inner classes; this is
done automatically as part of installing the upgrade. Then
when an inner class object is used, the trigger causes the
outer object to be transformed.

A.8 Other Applications
Ownership-based type systems have also been used to pre-
vent data races [14] and deadlocks [11] in multithreaded pro-
grams, to prevent memory errors [15] in programs that use
region-based memory management, and to aid program un-
derstanding [3]. Since ownership types require little pro-
gramming overhead, their type checking is fast and scalable,
and they provide several benefits, they offer a promising ap-
proach to making object-oriented programs more reliable.
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