ACM International Symposium on Software Testing and Analysis (ISSTA), July 2002. Winn&GMa&IGSOFT Distinguished Paper Award.

Korat: Automated Testing Based on Java Predicates

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov
MIT Laboratory for Computer Science
200 Technology Square
Cambridge, MA 02139 USA

{chandra,khurshid,marind@Ics.mit.edu

ABSTRACT cate (i.e., a method that returns a boolean) from the method's pre-
This paper presents Korat, a novel framework for automated testing condition. One of the key contributions of Korat is a technique for
of Java programs. Given a formal specification for a method, Korat automatic test case generation: given a predicate, and a bound on
uses the method precondition to automatically generate all (noni- the size of its inputs, Korat generates all nonisomorphic inputs for
somorphic) test cases up to a given small size. Korat then executeswhich the predicate returnsie . Korat uses backtracking to sys-
the method on each test case, and uses the method postcondition @ematically explore the bounded input space of the predicate. Korat
a test oracle to check the correctness of each output. generatesandidateinputs and checks their validity by invoking

the predicate on them. Korat monitors accesses that the predicate
To generate test cases for a method, Korat constructs a Java predimakes to all the fields of the candidate input. If the predicate returns
cate (i.e., a method that returns a boolean) from the method’s pre-without reading some fields of the candidate, then the validity of the
condition. The heart of Korat is a technique for automatic test case candidate must be independent of the values of those fields—Korat
generation: given a predicate and a bound on the size of its inputs,uses this observation to prune large portions of the search space.
Korat generates all (nonisomorphic) inputs for which the predicate Korat also uses an optimization to generate only nonisomorphic test
returns true. Korat exhaustively explores the bounded input spacecases. (Section 3.4 gives a precise definition of nonisomorphism.)
of the predicate but does so efficiently by monitoring the predicate’s This optimization reduces the search time without compromising
executions and pruning large portions of the search space. the exhaustive nature of the search.

This paper illustrates the use of Korat for testing several data struc- Korat lets programmers write specifications in any language as long
tures, including some from the Java Collections Framework. The as the specifications can be automatically translated into Java predi-
experimental results show that it is feasible to generate test casesates. We have implemented a prototype of Korat that uses the Java
from Java predicates, even when the search space for inputs is veryModeling Language (JML) [20] for specifications. Programmers
large. This paper also compares Korat with a testing framework can use JML to write method preconditions and postconditions, as
based on declarative specifications. Contrary to our initial expec- well as class invariants. JML uses Java syntax and semantics for
tation, the experiments show that Korat generates test cases muctexpressions, and contains some extensions such as quantifiers. A

faster than the declarative framework. large subset of JML can be automatically translated into Java pred-
icates. Programmers can thus use Korat without having to learn a
1. INTRODUCTION specification language much different than Java. Moreover, since

Manual software testing, in general, and test data generation, in ML specifications can call Java methods, programmers can use the
particular, are labor-intensive processes. Automated testing canfUll €xpressiveness of the Java language to write specifications.
significantly reduce the cost of software development and main- . . .
tenance [4]. This paper presents Korat, a novel framework for au- To see an illustration of the use of Korat, consider a method that
tomated testing of Java programs. Korat uses specification-based€MoVes the minimum element from a balanced binary tree. The
testing [5, 13, 15, 25]. Given a formal specification for a method, _(|mp||C|t)_prec_ond|t|on for this method requires the input to satisfy
Korat uses the method precondition to automatically generate all its class invariant: the input must be a binary tree and the tree must
nonisomorphic test cases up to a given small size. Korat then eXe_be balanced. Korat uses the code that checks the class invariant
cutes the method on each test case, and uses the method postcondiS the predicate for generating all nonisomorphic balanced binary
tion as a test oracle to check the correctness of each output. trees bounded by a given size. Good programming practice [21]
suggests that implementations of abstract data types provide predi-
To generate test cases for a method, Korat constructs a Java predic@t€S (known as thepOk or checkRep methods) that check class
invariants—Korat then generates test cases almost for free. Korat
Permission to make digital or hard copies of all or part of this work for invokes the method on each of the generated trees and checks the
personal or classroom use is granted without fee provided that copies arepgstcondition in each case. If a method postcondition is not (explic-
not made or distributed for profit or commercial advantage and that copies itly) specified, Korat can still be used to test partial correctness of

bear this notice and the full citation on the first page. To copy otherwise, to -
republish, to post on servers, or to redistribute to lists, requires prior specific the method. In the binary tree example, Korat can be used to check

permission and/or a fee. the class i_nvariant at the en_d of the remove methpd, to see_that the
ISSTA'02July 22-24, 2002, Rome, Italy. tree remains a balanced binary tree after removing the minimum
Copyright 2002 ACM 1-58113-562-9%5.00 element from it.

123

import java.util.*; public static Finitization finBinaryTree(int NUM_Node) {

class BinaryTree { Finitization f = new Finitization(BinaryTree.class);
private Node root; // root node ObjSet nodes = f.createObjects("Node", NUM_Node);
private int size; // number of nodes in the tree /I #Node = NUM_Node
static class Node { nodes.add(null);
private Node left; // left child f.set("root", nodes); /I root in null + Node
private Node right; // right child f.set("size", NUM_Node); /I size = NUM_Node

f.set("Node.left", nodes); // Node.left in null + Node

} f.set("Node.right", nodes); // Node.right in null+ Node
public boolean repOk() { return f;
/I checks that empty tree has size zero }
if (root == null) return size == 0;
Set visited = new HashSet(); Figure 2: Finitization description for the BinaryTree example

visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);
while ('workList.isEmpty()) {
Node current = (Node)workList.removeFirst();
if (current.left != null) {
/I checks that tree has no cycle
if (lvisited.add(current.left))
return false;
workList.add(current.left);

@ right lef @ Ief @ lef @ right
right }@
CIC: CHC
}

if (current.right != null) { Figure 3: Trees generated forfinBinaryTree(3
/I checks that tree has no cycle 9 ' 9 y @)

if (lvisited.add(current.right))
return false;
workList.add(current.right);)
} predicate that checks the representation invariant (or class invari-

ant) of the corresponding data structure [21]. In this cesgEk

I checks that size is consistent checks if the input is a tree with the corraite .

if (visited.size() != size) return false;
return true;

} Each object of the clasinaryTree represents a tree. Thize

} field contains the number of nodes in the tree. Objects of the in-
ner classNode represent nodes of the trees. The metheDk
first checks if the tree is empty. If nakpOk traverses all nodes
reachable fromoot , keeping track of the visited nodes to detect
We have used Korat to test several data structures, including somegycles. (The methoddd from java.util.Set returnsfalse if
from the Java Collections Framework. The experimental results the argument already exists in the set.)
show that it is feasible to generate test cases from Java predicates,
even when the search space for inputs is very large. In particular, To generate trees that have a given number of nodes, the Korat
our experiments indicate that it is practical to generate inputs to search algorithm uses tfiaitizationdescription shown in Figure 2.
achieve complete statement coverage, even for intricate methodsThe statements in the finitization description specify bounds on the
that manipulate complex data structures. This paper also comparesrumber of objects to be used to construct instances of the data struc-
Korat with the Alloy Analyzer [16], which can be used to generate ture, as well as possible values stored in the fields of those objects.
test cases [22] from declarative predicates. Contrary to our initial Most of the finitization description shown in the figure is automat-
expectation, the experiments show that Korat generates test casegally generated from the type declarations in the Java code. In
much faster than the Alloy Analyzer. Figure 2, the paramet&fUNMNode specifies the bound on number

of nodes in the tree. Each reference field in the tree is aitkier or
The rest of this paper is organized as follows. Section 2 illustrates points to one of thélode objects. Note that the identity of these ob-
the use of Korat on two examples. Section 3 presents the algorithmijects is irrelevant—two trees atgomorphicif they have the same
that Korat uses to explore the search space. Section 4 describegranching structure, irrespective of the actual nodes in the trees.
how Korat checks method correctness. Section 5 presents the ex-

perimental results. Section 6 reviews related work, and Section 7 Korat automatically generates all nonisomorphic trees with a given

Figure 1: BinaryTree example

concludes. number of nodes. For example, fimBinaryTree(3) , Korat
generates the five trees shown in Figure 3. As another example, for
2. EXAMPLES finBinaryTree(7) , Korat generates 429 trees in less than one

This section presents two examples to illustrate how programmers Sécond.
can use Korat to test their programs. These examples, a binary tree]
data structure and a helagata structure, illustrate methods that \We nextillustrate how programmers can use Korat to check correct-

manipulate linked data structures and array-based data structuresNess of methods. The JML annotations in Figure 4 specify partial
respectively. correctness for the examplemove method that removes from a

BinaryTree a node that is in the tree. Thermal _behavior an-
notation specifies that if the preconditiorduires) is satisfied

at the beginning of the method, then the postconditimsyres)

is satisfied at the end of the method and the method returns with-
out throwing an exception. (The helper methad checks that

the tree contains the given node.) Implicitly, the clasariant

'The term “heap” refers to the data structure (priority queues) and is added to the precondition and the postcondition. Korat uses the
not to the garbage-collected memory. JML tool-set to translate annotations into runtime Java assertions.

2.1 Binary tree

This section illustrates the generation and testing of linked data
structures using simple binary trees. The Java code in Figure 1
declares a binary tree and definesrdggOk method, i.e., a Java

124

/l@ public invariant repOKk(); // class invariant public static Finitization finHeapArray(int MAX_size,

/I for BinaryTree int MAX_length,
/*@ public normal_behavior /I specification for remove int MAX_elem) {
@ requires has(n); I precondition Finitization f = new Finitization(HeapArray.class);
@ ensures 'has(n); 1 postcondition /I size in [0..MAX_size]
@* f.set("size", new IntSet(0, MAX_size));
public void remove(Node n) { f.set("array",
/I ... method body /I array.length in [0..MAX_length]
} new IntSet(0, MAX_length),
/I array[] in null + Integer([0..MAX_elem])
Figure 4: Partial specification for BinaryTree.remove . fneW IntegerSet(0, MAX_elem).add(null));
return f;

}
public class HeapArray {

private int size; // number of elements in the heap Figure 6: Finitization description for the HeapArray example
private Comparable[] array; // heap elements

/l@ public invariant repOk();

: ize = 0, array =
public boolean repOk() { size - B
/I checks that array is non-null size - 8 array - [Imf[”] 0
if (array == null) return false; size - 1' array - [In eger(l)]
/I checks that size is within array bounds size = 1, array = [Integer(1)]
if (size < 0 || size > array.length)
_retl_Jrn falsg;))
for (';‘/t C'h:d?s? e Sézlsm;]’g g o nonnll Figure 7: Heaps generated forffinHeapArray(1,1,1)
if (array[i] == null) return false;
/I checks that array is heapified) o)
if (>0 &) To generate heaps, the Korat search algorithm uses the finitization
f‘gm'l-é‘l’S'T;Pa’eTo(a"ay[("1)’2]) >0 description shown in Figure 6. Again, most of the finitization de-
) ' scription shown in the figure is automatically generated from the
/I checks that non-heap elements are null type declarations in the Java code. In Figure 6, the parameters
for (I?ft (Ia ;as[lﬁe,:_l - ”?rrr?lfdfnn%tgs el_++) MAXsize , MAXlength , andMAXelem bound the size of the heap,
return true: = ' the length of the array, and the elements of the array, respectively.
} The elements of the array can eitherrdd or containinteger
} objects where the integers can range fl@to MAXelem .

Figure 5: HeapArray - example Given values for the finitization parameters, Korat automatically

generates all heaps. For example, fiaHeapArray(1,1,1) ,

To test a method, Korat first generates test inputsréfoove , each Korat gt_anerates the four heaps shown in Figure 7. As another ex-
input is a pair of a tree and a node. The precondition defines valid @MPI€, in less than one second, fioHeapArray(5,5,5) » Ko-
inputs for the method: the tree must be valid and the node must at generates 1919 heaps. Note that Korat requires onkepia

be in the tree. Given a finitization for inputs (which can be written Method (which can use the full Java language) and finitization to
reusing the finitization description for trees presented in Figure 2), 9enerate all heaps. Writing a dedicated generator for complex data
Korat generates all nonisomorphic inputs. Fsnove , the number Structures [2] is much more involved than writirgOk .

of input pairs is the product of the number of trees and the number .

of nodes in the trees. After generating the inputs, Korat invokes W& next illustrate how programmers can use Korat to check par-
the method (with runtime assertions for postconditions) on each fial correctness of thextractMax — method that removes and re-

input and reports a counterexample if the method fails to satisfy tUrns the largest element fromkeapArray . The JML annota-
the correctness criteria. tions in Figure 8 specify partial correctness for theractMax

method. Thenormal _behavior specifies that if the input heap is

valid and non-empty, then the method returns the largest element
22 Heap array in the original heap and the resulting heap after execution of the

method is valid. The JML keywordgesult and\old denote,
respectively, the object returned by the method and the expressions
Sthat should be evaluated in the pre-state. JML annotations can also
express exceptional behavior of methods. The exaraxutep-
tional _behavior specifies that if the input heap is empty, the
method throws arfilegalArgumentException

This section illustrates the generation and checking of array-based
data structures, using the heap data structure [8]. The (bihaap
data structure can be viewed as a complete binary tree—the tree i
completely filled on all levels except possibly the lowest, which is
filled from the left up to some point. Heaps also satisfy tieap
property—for every noden other than the root, the value afs
parent is greater than or equal to the value.ofThe Java code in
Figure 5 declares an array-based heap and defines the correspon
ing repOk method that checks if the input is a valigapArray .

dl: 0 check the methodxtractMax , Korat first uses a finitization

to generate all nonisomorphic heaps that satisfy eithemtine

mal _behavior precondition or thexceptional ~ _behavior pre-
condition. Next, Korat invokes the method (with runtime assertions
for postconditions) on each input and reports a counterexample if
any invocation fails to satisfy the correctness criteria.

The elements of the heap are storedriay . The elements imple-
ment the interfac€omparable , providing the methodompareTo
for comparisons. The methadpOk first checks for the special
case wherarray is null . If not, repOk checks that theize of

the heap is within the bounds of theay . Then,repok checks 3. TEST CASE GENERATION

that the array elements that belong to the heap arewibt and The heart of Korat is a technigue for test case generation: given
that they satisfy the heap property. FinatgpOk checks that the a Java predicate and a finitization for its input, Korat automati-
array elements that do not belong to the heamatte . cally generates all nonisomorphic inputs for which the predicate

125

/*@ public normal_behavior

@ requires size > 0;

@ ensures \result == \old(array[0]);

@ also public exceptional_behavior

@ requires size == 0;

@ signals (lllegalArgumentException €) true;
@*/

public Comparable extractMax() {
/I ... method body
}

Figure 8: Partial specification for HeapArray.extractMax

void koratSearch(Predicate p, Finitization f) {
intialize(f);
while (hasNextCandidate()) {
Object candidate = nextCandidate();

try {
if (p.invoke(candidate))
output(candidate);
} catch (Throwable t) {}
backtrack();

Figure 9: Pseudo-code of the Korat search algorithm

returnstrue . Figure 9 gives an overview of the Korat search algo-
rithm. The algorithm uses finitization (described in Section 3.1)

to bound thestate spacgSection 3.2) of predicate inputs. Korat
uses backtracking (Section 3.3) to exhaustively explore the state
space. Korat generateandidateinputs and checks their validity

by invoking the predicate on them. Korat monitors accesses that the

predicate makes to all the fields of the candidate input. To monitor

public static Finitization finBinaryTree(int NUM_Node,

int MIN_size,
int MAX_size) {

Finitization f = new Finitization(BinaryTree.class);

ObjSet nodes = f.createObjects("Node", NUM_Node);

nodes.add(null);

f.set("root", nodes);

f.set("size", new IntSet(MIN_size, MAX_size));

f.set("Node.left", nodes);

f.set("Node.right", nodes);

return f;

}

Figure 10: Generated finitization description for BinaryTree

In Figure 10, thecreateObjects method specifies that the in-
put contains at mostUMNode objects from theNode. The set
method specifies the field domain for each field. In the skeleton, the
fieldsroot , left , andright are specified to contain eitheall

or aNode object. Thesize field is specified to range between
MIN_size andMAXsize using the utility classntSet . The Korat
package provides several additional classes for easy construction of
class domains and field domains.

Once Korat generates a finitization skeleton, programmers can fur-
ther specialize or generalize it. For example, the skeleton shown in
Figure 10 can be specialized by settMiN_size to0 andMAXsize

to NUMNode. We presented another specialized finitization in Fig-
ure 2. Note that programmers can use the full expressive power of
the Java language for writing finitization descriptions.

the accesses, Korat instruments the predicate and all the methods3-2 State space

that the predicate transitively invokes (Section 3.5). If the predicate
returns without reading some fields of the candidate, the validity of

We continue with th@®inaryTree example to illustrate how Korat
constructs the state space for the inputefgOk using the finitiza-

the candidate must be independent of the values of those fields—tion presented in Figure 2. Consider the case when Korat is invoked

Korat uses this observation to prune the search. Korat also usedor finBinaryTree(3) _
an optimization that generates only nonisomorphic test cases (Secthe specified objects: orinaryTree

tion 3.4).

This section first illustrates how Korat generates valid inputs for
predicate methods that take only the implibis argument. Sec-
tion 3.6 shows how Korat generates valid inputs for Java predicates
that take multiple arguments.

3.1 Finitization

,i.e.,NUMNode = 3. Korat first allocates
object and thre@&lode ob-
jects. The thre®lode objects form theNode class domain. Korat
then assigns a field domain and a unique identifier to each field.
The identifier is the index into theandidate vectarin this exam-

ple, the vector has eight elements; there are total of eight fields: the
singleBinaryTree object has two fieldspot andsize , and the
threeNode objects have two fields eadeft andright

For this example, aandidateBinaryTree input is a sample valu-
ation of those eight fields. The state space of inputs consists of all

To generate a finite state space of a predicate’s inputs, the searchyossible assignments to those fields, where each field gets a value

algorithm needs #éinitization i.e., a set of bounds that limits the

size of the inputs. Since the inputs can consist of objects from sev- 5ot | jeft | andright

from its corresponding field domain. Since the domain for fields
has four elementsi@ll and threeNodes

eral classes, the finitization specifies the number of objects for eachfrgm theNode class domain), the state space Hasl * (4 4)% =

of those classes. A set of objects from one class forelass do-
main The finitization also specifies for each field the set of classes
whose objects the field can point to. The set of values a field can
take forms itsfield domain Note that a field domain is a union of
some class domains.

In the spirit of using the implementation language (which program-
mers are familiar with) for specification and testing, Korat provides
a Finitization class that allows finitizations to be written in
Java? Korat automatically generates a finitizatiskeletorfrom the
type declarations in the Java code. For BiearyTree example

214 potential candidates. FotUMNode= n, the state space has

(n 4+ 1)?"*! potential candidates. Figure 11 shows an example

candidate that is a valid binary tree on three nodes. Not all valua-
tions are valid binary trees. Figure 12 shows an example candidate
that is not a treerepOk returnsfalse for this input.

3.3 Search

To systematically explore the state space, Korat orders all the el-
ements in every class domain and every field domain (which is a
union of class domains). The ordering in each field domain is con-

presented in Figure 1, Korat automatically generates the skeletonSistent with the orderings in the class domains, and all the values

shown in Figure 10.

2The initial version of Korat provided a special-purpose language
for more compact descriptions of finitizations, sketched in the com-

126

that belong to the same class domain occur consecutively in the
ordering of each field domain.

ments in the examples in Figures 2 and 6.

BinaryTree NO Nt N2 @ date. WhenepOk executes on this candidatepOk returnstrue

root size left right left right left right right and the field-ordering that Korat builds[is2,3,4,5,6,7,1] LI

@ @ repOk returnstrue , Korat outputs all (nonisomorphic) candidates
that have the same values for the accessed fields as the current can-
didate. (Note thatepOk may not access all reachable fields before
Figure 11: Candidate input that is a valid BinaryTree returningtrue .) The search then backtracks to the next candidate.

) Recall that Korat orders the values in the class and field domains.
BinaryTree NO N1 N2 @ Additionally, each execution apOk on a candidate imposes an
oot sze left rght left right left right ot order on the fields in the field-ordering. Together, these orders in-
@ @ duce a lexicographic order on the candidates. The search algorithm

described here generates inputs in the lexicographical order. More-

over, for non-deterministiepOk methods, our algorithm provides
Figure 12: Candidate input that is not a valid BinaryTree . the following guarantee: all candidates for whiepOk always re-
turnstrue are generated; candidates for whiepOk always re-
turnsfalse are never generated; and candidates for whéplok
sometimes returngue and sometimefalse may or may not be

Each candidate input is a vectorfidld domain indicefto the cor-
generated.

responding field domains. For our running example withvNode
= 3, assume that thBode class domain is ordered aso[N:,N:],
and the field domains fawot , left , andright are ordered as

[null ,No,NiNo]. (null - by itself forms a class domains.) The do- The efficiency of the pruning depends on teeOk method. An

main of thesize field has a single elemerg, According to this ill-written renOk . for example. miaht alwavs read the entire in-
ordering, the candidate inputs in Figures 11 and 12 have candidate repox pie, mig y

vectors[1, 0,2, 3,0,0,0,0] and[1, 0,2, 2, 0,0,0, 0], respectively. put b_efore returning, thereby fqrcmg Kor_at to explore almost every

candidate. However, our experience indicates that naturally written
repOk methods, which returfalse as soon as the first invariant
violation is detected, induce very effective pruning.

In practice, our search algorithm prunes large portions of the search
space, and thus enables Korat to explore very large state spaces.

The search starts with the candidate vector set to all zeros. For
each candidate, Korat sets fields in the objects according to the val-
ues in the vector. Korat then invokespOk to check the validity of) .
the current candidate. During the executioneok , Korat mon- 3.4 Nonisomorphism

itors the fields thatepOk accesses. Specifically, Korat builds a To further optimize the search, Korat avoids generating multiple
field-ordering a list of the field identifiers ordered by the first time ~ candidates that are isomorphic to one another. Our optimization is
repOk accesses the corresponding field. Consider the invocation of based on the following definition of isomorphism.

repOk from Figure 1 on the candidate shown in Figure 12. In this

caserepOk accesses only the fieldopt ,No.left ,No.right] (in Definition: LetO, ..., O, be some sets of objegts from:las;es.
that order) before returningise . Hence, the field-ordering that LetO = O1 U ... U O,, and suppose that candidates consist only
Korat builds is[0,2,3] . of objects fromO. (Pointer fields of objects ii® can either be

null or point to other objects i®.) Let P be the set consisting
After repOk returns, Korat generates the next candidate vector back-0f null and all values of primitive types (such as) that the
tracking on the fields accessedrepOk . Korat firstincrementsthe fields of objects inO can contain. Further, let € O be a special
field domain index for the field that is last in the field-ordering. If root object, and leO¢ be the set of all objects reachable from
the domain index exceeds the domain size, Korat resets that indexr in C. Two candidatesC and C’, areisomorphiciff there is a
to zero, and increments the domain index of the previous field in permutationt on O, mapping objects fron®; to objects fromO;
the field-ordering, and so on. (The next section presents how Koratfor all 1 < i < n, such that:
generates_ only nonisomorphic candi(_jates by resetting adomain_in- Vo,0' € Oc. Yf € fields(o). ¥p € P.
dex for a field to zero even when the index does not exceed the size o.f==0' in C iff 7(0).f==(0') in C’ and

of the field domain.) o.f==pin C iff x(0).f==pin C".

Continuing with our example, the next candidate takes the next The operator= is Java’s comparison by object identity. Note that
value forNo.right , which isN; by the above order, whereas the isomorphism is defined with respect to a root object. Two candi-

other fields do not change. This prunes from the search alan- dates are defined to be isomorphic if the parts of their object graphs
didate vectors of the forrft, _2,2, _ _, .,] that have the (par- reachable from the root object are isomorphic. In case@bk ,

tial) valuation: root =No, No.left =N;, No.right =N;. This prun- the root object is thenis object that is passed as an implicit argu-
ing does not rule out any valid data structure becagisek did not ment torepOKk .

read the other fields, and it could have returfesk irrespective

of the values of those fields. Isomorphism between candidates partitions the state spadednto

morphism partitions Recall the lexicographic ordering induced
Continuing further with our example, the next candidate is the valid by the ordering on the values in the field domains and the field-
tree shown in Figure 11. Before executirgpOk on this candi- orderings built byrepOk executions. For each isomorphism parti-
date, Korat also initializes the field-ordering i[@2,3] . Note tion, Korat generates only the lexicographically smallest candidate
that, if repOk accesses fields in a deterministic order, this is con- in that partition.
sistent with the first three fields thafpOk is going to access, be-
cause the values of the first two fields in the field-ordering were not Conceptually, Korat avoids generating multiple candidates from the
changed when constructing this candidate from the previous candi-same isomorphism partition by incrementing field domain indices

127

class SomeClass {
boolean somePredicate(X X, Y y) {..}

Figure 13: Predicate method with multiple arguments

by more than one: while backtracking on a fiefdin the field-
ordering, Korat checks for how much to increment the field domain
index of f as follows. Suppose thgtcontains a pointer to an ob-
ject oy that belongs to a class domaip. Recall that all objects

in a class domain are ordered. Ligtbe the index ofos in cy.

For instance, in the example ordering used abovéifBmary-

Tree(3) , field domain index for right corresponds to the class
domainNode and class domain indeix

Further, Korat finds all fieldg’ such thatf’ occurs beforef in the
field-ordering andf’ contains a pointer to an objeg} of the same
class domaircy. Leti’ be the index ob’; in ¢y, and letm; be
the maximum of all such indiceg. (If there is no such fieldf’
beforef in the field-orderingm =-1.) In the example candidate
for Figure 12, backtracking ofi =No.right givesmy =1.

Then, during backtracking ofi, Korat checks ifi; is greater than
my. If iy < my, Korat increments the field domain index pby

one. Ifiy > my, Korat increments the field domain index pf

so that it contains a pointer to an object of the class domain after
cs. If no such domain exists, i.ez; is the last domain for the field

f, Korat resets the field domain index ¢fto zero and continues
backtracking on the previous field in the field-ordering. The actual

Korat implementation uses caching to speed up the computation of

mg.

For example, Korat fofinBinaryTree(3) generates only the
five trees shown in Figure 3. Each tree is a representative from
an isomorphism partition that has six distinct trees, one for each of
3! permutations of nodes.

3.5 Instrumentation

class SomeClass_somePredicate {
SomeClass This;
X X
Yy
boolean repOk() {
return This.somePredicate(x, Y);
}

Figure 14: Equivalent repOk method

a Java predicate that takes two arguments (beshites). In order

to generate inputs for this predicate, Korat generates an equivalent
repOk method shown in Figure 14. Korat then generates inputs to
therepOk method using the technique described earlier.

4. TESTING METHODS

The previous section focused on automatic test case generation
from a Java predicate and a finitization description. This section
presents how Korat builds on this technique to check correctness of
methods. Korat uses specification-based testing: to test a method,
Korat first generates test inputs from the method’s precondition,
then invokes the method on each of those inputs, and finally checks
the correctness of the output using the method’s postcondition.

The current Korat implementation uses the Java Modeling Lan-
guage (JML) [20] for specifications. Programmers can use JML
annotations to express method preconditions and postconditions, as
well as class invariants; these annotations use JML keywerds
quires , ensures , andinvariant , respectively. Each annotation
contains a boolean expression; JML uses Java syntax and semantics
for expressions, and contains some extensions such as quantifiers.
Korat uses a large subset of JML that can be automatically trans-
lated into Java predicates.

JML specifications can express severatmalandexceptional be-
haviorsfor a method. Each behavior has a precondition and a post-
condition: if the method is invoked with the precondition being
satisfied, the behavior requires that the method terminate with the
postcondition being satisfied. Additionally, normal behaviors re-

To monitorrepOk ’s executions, Korat instruments all classes whose quire that the method return without an exception, whereas excep-
objects appear in finitizations by doing a source to source transla-tional behaviors require that the method return with an exception.
tion. For each of the classes, Korat adds a special constructor. ForKorat generates inputs for all method behaviors using:timeplete
each field of those classes, Korat adds an identifier field and specialmethod precondition that is a conjunction of: 1) the class invariant

get andset methods. In the code faepOk and all the meth-
ods thatrepOk transitively invokes, Korat replaces each field ac-
cess with an invocation of the correspondgey or set method.
Arrays are similarly instrumented, essentially treating each array
element as a field.

To monitor the field accesses and build a field-ordering, Korat uses

an approach similar to thebserverpattern [11]. Korat uses the
special constructors to initialize all objects in a finitization with
an observer. The search algorithm initializes each of the identifier
fields to a unique index into the candidate vector. Spegialand

set methods first notify the observer of the field access using the
field’s identifier and then perform the field access (return the field’s
value or assign to the field).

3.6 Predicates with multiple arguments

The discussion so far described how Korat generates inputs that satof a pair ofBinaryTree this

isfy arepOk method. This section describes how Korat generalizes

for all objects reachable from the input parameters and 2) a disjunc-
tion of the preconditions for all behaviors. In the text that follows,
we refer to complete precondition simply as precondition.

4.1 Generating test cases

Valid test cases for a method must satisfy its precondition. To gen-
erate valid test cases, Korat uses a class that represents method'’s
inputs. This class has one field for each parameter of the method
(including the implicitthis parameter) and @pOk predicate that

uses the precondition to check the validity of method’s inputs. Given
a finitization, Korat then generates all inputs for which tlejsOk
returnstrue ; each of these inputs is a valid input to the original
method.

We illustrate generation of test cases usingrémove method for
BinaryTree from Section 2. For this method, each input consists
and aNode n, and the precondi-

tion is this.has(n) . Figure 15 shows the class that Korat uses

this technique to generate inputs that satisfy any Java predicate, infor the method’s inputs. For this class, Korat creates the finitization

cluding predicates that take multiple arguments. Figure 13 shows skeleton that reuses the finitization finaryTree

128

, as shown in

class BinaryTree_remove {
BinaryTree This; /I the implicit "this" parameter
BinaryTree.Node n; // the Node parameter
/l@ invariant repOk();
public boolean repOk() {
return This.has(n);
}

Figure 15: Class representingBinaryTree.remove

public static Finitization

finBinaryTree_remove(int NUM_Node) {
Finitization f =

new Finitization(BinaryTree_remove.class);
Finitization g = BinaryTree.finBinaryTree(NUM_Node);
f.includeFinitization(g);
f.set("This", g.getObjects(BinaryTree.class));
f.set("n", [***/);
return f;

Figure 16: Finitization skeleton for BinaryTree _remove

Figure 16. The commernt*/ indicates that Korat cannot auto-
matically determine an appropriate field domainror

To create finitization foBinaryTree _remove , the programmer
modifies the skeleton, e.g., by replacifg/ with g.get("root")

or g.getObjects(BinaryTree.Node.class) to set the domain

for the parameten to the domain for the fieldoot or to the set

of nodes from the finitizatiory, respectively. Given a value for
NUNMNode, Korat then generates all valid test cases, each of which
is a pair of a tree (with the given number of nodes) and a node from
that tree.

4.1.1 Dependent and independent parameters
For theremove method, the precondition makes the parameters
This andn explicitly dependent. When the parameters are inde-

Testing framework
JUnit [IML+JUnit [Korat

[testing activity

generating test cases V
generating test oracle V V
running tests V V V

Table 1: Comparison of several testing frameworks for Java.
Automated testing activities are indicated with v

method on each of the inputs and checks each output wébtar-

acle To check partial correctness of a method, a simple test oracle
could justinvokeepOk in thepost-statdi.e., the state immediately
after the method’s invocation) to check if the method preserves its
class invariant. If the result ifalse , the method under test is
incorrect, and the input provides a concrete counterexample. Pro-
grammers could also manually develop more elaborate test oracles.
Programmers can also check for properties that relate the post-state
with the pre-state(i.e., the state just before the method’s invoca-
tion).

The current Korat implementation uses the JML tool-set to auto-
matically generate test oracles from method postconditions, as in
the JML+JUnit framework [6]. The JML tool-set translates JML
postconditions into runtime Java assertions. If an execution of a
method violates such an assertion, an exception is thrown to indi-
cate a violated postcondition. Test oracle catches these exceptions
and reports correctness violations. These exceptions are different
from the exceptions that the method specification allows, and Korat
leverages on JML to check both normal and exceptional behavior
of methods. More details of the JML tool-set and translation can
be found in [20].

pendent, programmers can instruct Korat to generate all test casedcorat also uses JML+JUnit to combine JML test oracles with JU-
by separately generating all possibilities for each parameter andnit [3], a popular framework for unit testing of Java modules. JUnit
creating all valid test cases as the Cartesian product of these possiautomates test execution and error reporting, but requires program-

bilities.

We next compare Korat with another approach for generating all

valid (nonisomorphic) test cases, which uses the Cartesian prod-

uct even for dependent parameters. Consider a methedth n
parameters and preconditiog,.. Suppose that a set of possibil-
ities S;, 1 < ¢ < n, is given for each of the parameters. All
valid test cases from¥; x ... x S, can be then generated by cre-
ating all n-tuples from the product, followed by filtering each of
them throughm,.... (This approach is used in the IML+JUnit test-
ing framework [6] that combines JML [20] and JUnit [3].) Note
that this approach requires manually constructing possibilities for
all parameters, some of which can be complex data structures.

Korat, on the other hand, constructs data structures from a simple

description of the fields in the structures. Further, in terms of Ko-
rat's search ofepOk ’s state space, the presented approach would

correspond to the search that tries every candidate input. Korat

mers to provide test inputs and test oracles. JML+JUnit, thus, au-
tomates both test execution and correctness checking. However,
JML+JUnit requires programmers to provide sets of possibilities
for all method parameters: it generates all valid inputs by gener-
ating the Cartesian product of possibilities and filtering the tuples
using preconditions. Korat additionally automates generation of
test cases, thus automating the entire testing process. Table 1 sum-
marizes the comparison of these testing frameworks.

5. EXPERIMENTAL RESULTS

This section presents the performance results of the Korat pro-
totype. We used Java to implement the search for valid noniso-
morphicrepOk inputs. For automatic instrumentation @pOk

(and transitively invoked methods), we modified the sources of the
Sun’sjavac compiler. We also modifieghvac to automatically
generate finitization skeletons. For checking method correctness,
we slightly modified the JML tool-set, building on the existing

improves on this approach by: 1) pruning the search based on theJML+JUnit framework [6]
accessed fields and 2) generating only one representative from each '

isomorphism partition.

4.2 Checking correctness

We first present Korat’s performance for test case generation, then
compare Korat with the test generation that uses Alloy Analyzer [16],
and finally present Korat's performance for checking method cor-

To check a method, Korat first generates all valid inputs for the rectness. We performed all experiments on a Linux machine with a
method using the process explained above. Korat then invokes thePentium 111 800 MHz processor using Sun’s Java 2 SDK1.3.1 JVM.

129

’ benchmark ‘ package ‘ finitization parameters ‘ benchmark size time structures Candjdates state
- (sec) generated| considered| space
BinaryTree korat.examples NUM ,I\!Ode 3 153 1430 taa1g | 259
HeapArray korat.examples MAX _size, MAX length, 9 3.97 4862 210444 | 263
MAX _elem BinaryTree 10 14.41 16796 815100 | 272
- " N B T T 82
LinkedList java.util MIN _size, MAX size, E zggg Zggﬁg 13;23&3 392
. . NUM ,I_Entry, NUM_Object 6 121 13139 64533 | 220
TreeMap java.util MIN _size, NUMEntry, HeapArray 7 521 | 117562 519968 | 227
MAX _key, MAX _value 8 42,61 | 1005075| 5231385 229
HashSet java.util MAX _capacity, MAX_count, 8 1.32 4140 5455 %2;
MAX _hash. | E r) . 9 3.58 21147 26635 | 2
- as - oad acto_ LinkedList 10 16.73 115975 142646 | 2120
AVTree ins.namespace NUM AVPalr, MAX _child, 11 | 10175| 678570 821255 | 2185
NUM _String 12 | 690.00 | 4213597 | 5034894 | 2150
7 8.81 35 256763 | 292
TreeMap 8 90.93 64 2479398 | 211!
.. . 130
Table 2: Benchmarks and finitization parameters. Each bench- 3 214??-753 2;232 501283388 3“9
mark is named after the class for which data structures are gen- 8 1668 9355 008568 | 2142
erated; the structures also contain objects from other classes. HashSet 9 56.71 26687 | 3004597 | 2166
10 | 208.86 79451 | 10029045| 21°°
11 926.71| 277387 | 39075006 2215
5.1 Benchmarks AVTree 5 62.05| 598358 | 1330628 2°0

Table 2 lists the benchmarks for which we show Korat's perfor-
mance.BinaryTree andHeapArray are presented in Section 2.
(Additionally, HeapArray s are similar to array-based stacks an
queues, as well gava.util.Vector S.) LinkedList is the
implementation of linked lists in the Java Collections Framework,
a part of the standard Java libraries. This implementation uses
doubly-linked, circular lists that havesize field and aheader

node as a sentinel node. (Linked lists also provide methods that al-
low them to be used as stacks and queueBgeMap implements

d Table 3: Korat's performance on several benchmarks. All fini-
tization parameters are set to the size value. Time is the elapsed
real time in seconds for the entire generation. State size is
rounded to the nearest smaller exponent of two.

structures considered and the size of the state spaces show that the
the Map interface using red-black trees [8]. This implementation key to effective pruning is backtracking based on fields accessed

uses binary trees witsarent fields. Each node (implemented with during repOk 's executions. Without backtracking, and even with
inner clasEntry) also has &ey and avalue . (Setting allvalue |som9rph|sm optlmlza.tlon, Kolra.t wquld generate infeasibly many
fields tonull corresponds to the set implementationjdna.- candidates. Isomorphism optimization further reduces the number

util TreeSet) HashSet implements theset interface, backed of candidates, but it mainly reduces the number of valid structures.

by a hash table [8]. This implementation builds collision lists for))) .
buckets with the same hash code. TowlFactor parameter de- ~ FOrBinaryTree , LinkedList , TreeMap, andHashSet (with the

termines when to increase the size of the hash table and rehash thi#adFactor parameter of 1,)' the numbers of nonisomorphic struc-
elements. tures appear in the Sloane’s On-Line Encyclopedia of Integer Se-

quences [30]. For all these benchmarks, Korat generates exactly

AVTree implements théntentional namerees that describe prop- 1€ actual number of structures.

erties of services in the Intentional Naming System (INS) [1], an

architecture for service location in dynamic networks. Each nodein g 2 1 Comparison with Alloy Analyzer
an intentional name has atribute , avalue , and a set of child
nodes. INS uses attributes and values to classify services based o
their properties. The names of these properties are implemente
with arbitraryString s except that™ is a wildcard that matches
all other values. The finitization bounds the numbeawPair ob-
jects that implement nodes, the number of children for each node
and the total number dtring s (including the wildcard).

We next compare Korat's test case generation with that of the Alloy
nalyzer (AA) [16], an automatic tool for analyzing Allayodels
Alloy [17] is a first-order, declarative language based on relations.
Alloy is suitable for modeling structural properties of software. Al-
loy models of several data structures can be found in [22]. These
'models specify class invariants in Alloy, which corresponeketo
pOk methods in Korat, and also declare field types, which corre-
sponds to setting field domains in Korat finitizations.
5.2 Korat's test case generation
Table 3 presents the results for generating valid structures with our Given a model of a data structure andg@pe—a bound on the
Korat implementation. For each benchmark, all finitization param- number of atoms in the universe of discourse—AA can generate
eters are set to the same (size) value (exceplbtFactor pa- all (mostly nonisomorphic)nstancesof the model. An instance
rameter forHashSet , which is set to default 0.75). For a range valuates the relations in the model such that all constraints of the
of size values, we tabulate the time that Korat takes to generate allmodel are satisfied. Setting the scope in Alloy corresponds to set-
valid structures, the number of structures generated, the number ofting the finitization parameters in Korat. AA translates the input
candidate structures checked IepOk , and the size of the state Alloy model into a boolean formula and uses an off-the-shelf SAT
space. solver to find a satisfying assignment to the formula. Each such
assignment is translated back to an instance of the input model.
Korat can generate all structures even for very large state spacesAA adds symmetry-breaking predicates [29] to the boolean for-
because the search pruning allows Korat to explore only a tiny mula so that different satisfying assignments to the formula repre-
fraction of the state space. The ratios of the number of candidate sent (mostly) nonisomorphic instances of the input model.

130

Korat Alloy Analyzer benchmark method max. | testcases gen. ‘ test
benchmark size | struc. | total first inst. total first size | generated| time time
gen. | time | struc. gen. time inst. BinaryTree remove 3 15 0.64] 0.73
3 5] 056 0.62 6 263] 263 HeapArray extractMax 6 13139 0.87 | 1.39
4 14 | 0.58 | 0.62 28 391 | 278 LinkedList reverse 2 8 0.67 | 0.76
BinaryTree 5 42| 069 | 067| 127 2442 421 TreeMap put 8 19912 | 136.19| 2.70
6 132 | 079 | 0.66| 643 | 269.99| 6.78 HashSet add 7 13106 | 3.90 | 1.72
7 429 | 0.97 | 0.62 | 3469 | 3322.13| 12.86 AVTree Tookup 4 27734 | 433 | 14.63
3 66 | 0.53 | 0.58 78 11.99 | 6.20
HeapArray 4 320 | 057 | 059 | 889 | 171.03| 16.13
5 | 1919 | 0.73 | 063 | 1919 | 473.51| 39.58 ,
3 5 | 058 0.60 10 261 239 Table 5: Korat's performance on several methods. All upper-
‘ _ 4 15 | 055 | 0.65 46 347 | 277 limiting finitization parameters for method inputs are set to the
LinkedList 5 | 521057) 065 324 1409 351 given maximum size. These sizes give complete statement cov-
6 203 | 0.73 | 0.61 | 2777 | 14873| 5.74 : .) :
7 877 | 0.87 | 061 | 27719 | 2176.44| 1051 erage. Times are the elapsed real times in seconds for the entire
4 8 075 0.69 16 1210 | 6.35 generation of all valid test cases and testing of methods for all
TreeMap S 14 1 087 | 0.88 42 98.09 | 18.08 those inputs. These times include writing and reading of files
6 20 | 1.49| 098 | 152 | 1351.50| 50.87 With test cases
2 2 055| 065 2 235| 243 :
AVTree 3 84 | 0.65| 061 132 425| 276
4 | 5923 | 1.41| 061 | 20701 | 504.12| 3.06 N)
Our intuition was that Korat depends on the executionspbk
to “learn” the invariants of the structures, whereas AA uses a SAT
Table 4: Performance comparison. For each benchmark, per- solver that can “inspect” the entire formula (representing invari-
formances of Korat and AA are compared for a range of fini- ants) to decide how to search for an assignment. The experimental
tization values. For values larger than presented, AA does not results show that our assumption was incorrect—Korat generates
complete its generation within 1 hour. Korat's performance for structures much _faster than AA. We are now exploring a translation
larger values is given in Table 3. of Alloy models into Java (or even C) and the use of Korat (or a

similar search) to generate instances.

Table 4 summarizes the performance comparison. Since AA can-5.3 Checking correctness
not handle arbitrary arithmetic, we do not genetadshSet s with Table 5 presents the results for checking methods with Korat. For
AA. For all other benchmarks, we compare the total number of each benchmark, a representative method is chosen; the results
structures/instances and the time to generate them for a range ofare similar for other methods. Methodsmove and extract-
parameter values. We also compare the time to generate the firstvax are presented in Section 2. Methaderse , from java.-
structure/instance. util.Collections , uses list iterators to reverse the order of list
elements; this method is static. Methpat , from java.util.-
Time presented is the total elapsed real time (in seconds) that eachrreeMap, inserts a key-value pair into the map; this method has
experiment took from the beginning to the end, including staf-up. three parametersh(s , key , andvalue) and invokes several helper
Start-up time for Korat is approximately 0.5 sec. (That is why in methods that rebalance the tree after insertion. Metuedin-
some cases it seems that generating all structures is faster than gerserts an element into the set. MetHookup , from INS, searches
erating the first structure or that generating all structures for a larger a database of intentional names for a givequery intentional
input is faster than generating all structures for a smaller input.) name. The correctness specifications for all methods specify sim-
Start-up time for AA is somewhat higher, approximately 2 sec, as ple containment properties (beside preservation of class invariants).
AA needs to translate the model and to start a SAT solver. AA uses
precompiled binaries for SAT solvers. For each method, th®IIN finitization parameters are set to zero
and theMAXandNUMparameters to the same size value. Thus, the
In all cases, Korat outperforms AA; Korat is not only faster for methods are checked for all valid inputs up to the maximum size,
smaller inputs, but it also completes generation for larger inputs not only for the maximum size. The results show that it is practical
than AA. There are two reasons that could account for this differ- to use Korat to exhaustively check correctness of intricate methods
ence. Since AA translates Alloy models into boolean formulas, it that manipulate complex data structures.
could be that the current (implementation of the) translation gener-
ates unnecessarily large boolean formulas. Another reason is thatAA can also be used to check correctness of Java methods by writ-
often AA generates a much greater number of instances than Ko-ing method specifications as Alloy models and defining appropriate
rat, which takes a greater amount of time by itself. One way to translations between Alloy instances and Java objects, as demon-
reduce the number of instances generated by AA is to add morestrated in the TestEra framework [22]. However, the large number
symmetry-breaking predicates. of instances generated by AA makes TestEra less practical to use
than Korat. For example, maximum sizes six and eightefor
Our main argument for developing Korat was simple: for Java pro- tractMax andput methods, respectively, are the smallest that give
grammers not familiar with Alloy, it is easier to write rapOk complete statement coverage. As shown in Table 4, for these sizes,
method than an Alloy model. (From our experience, for researchers AA cannot in a reasonable time even generate data structures that
familiar with Alloy, it is sometimes easier to write an Alloy model are parts of the inputs for these methods.
than arepOk method.) Before conducting the above experiments,
we expected that Korat would generate structures slower than AA.§, RELATED WORK

3We include start-up time, because AA does not provide generation 6.1 . SpeC|flcatlon'based teSt'Ug . .
time only for generating all instances. We eliminate the effect of There is alarge body of research on specification-based testing. An
cold start by executing each test twice and taking the smaller time. early paper by Goodenough and Gerhart [13] emphasizes its impor-

131

tance. Many projects automate test case generation from specificaKorat does not require Alloy, but JML specifications, and more im-
tions, such as Z specifications [15, 31], UML statecharts [25, 26], portantly, unlike [18], Korat does not require specifications for all
or ADL specifications [5, 28]. These specifications typically do not (helper) methods.
consider linked data structures, and the tools do not generate Java
test cases. 6.3 Software model checking

There has been a lot of recent interest in applying model checking
The TestEra framework [22] generates Java test cases from Al-tg software. JavaPathFinder [32] and VeriSoft [12] operate directly
loy [17] specifications of linked data structures. TestEra uses the on a Java, respectively C, program and systematically explore its
Alloy Analyzer (AA) [16] to automatically generate method inputs state to check correctness. Other projects, such as Bandera [7] and
and check correctness of outputs, but it requires programmers toJCAT [9], translate Java programs into the input language of ex-
learn a specification language much different than Java. Korat gen-jsting model checkers like SPIN [14] and SMV [23]. They handle
erates inputs directly from Java predicates and uses the Java Mods significant portion of Java, including dynamic allocation, object
eling Language (JML) [20] for specifications. The experimental re- references, exceptions, inheritance, and threads. They also provide
sults also show that Korat generates test cases faster and for largesutomated support for reducing program’s state space through pro-
scopes than AA. gram slicing and data abstraction.

Cheon and Leavens [6] describe automatic translation of JML spec- However, most of the work on applying model checking to software
ifications into test oracles for JUnit [3]. This framework automates has focused on checking event sequences and not linked data struc-
execution and checking of methods. However, the burden of test tyres. Where data structures have been considered, the purpose has
case generation is still on programmers: they have to provide sets ofpeen to reduce the state space to be explored and not to check the
possibilities for all method parameters. Korat builds on this frame- gata structures themselves. Korat, on the other hand, checks cor-
work by automating test case generation. rectness of methods that manipulate linked data structures.

6.2 Static analysis 7. CONCLUSIONS

Several projects aim at developing static analyses for verifying pro- This paper presented Korat, a novel framework for automated test-
gram properties. The Extended Static Checker (ESC) [10] uses aing of Java programs. Given a formal specification for a method,
theorem prover to verify partial correctness of classes annotatedKorat uses the method precondition to automatically generate all
with JML specifications. ESC has been used to verify absence of honisomorphic test cases up to a given small size. Korat then exe-
such errors as null pointer dereferences, array bounds violations,cutes the method on each test case, and uses the method postcondi-
and division by zero. However, tools like ESC cannot verify prop- tion as a test oracle to check the correctness of each output.
erties of complex linked data structures.
To generate test cases for a method, Korat constructs a Java predi-
There are some recent research projects that attempt to address thigate (i.e., a method that returns a boolean) from the method’s pre-
issue. The Three-Valued-Logic Analyzer (TVLA) [27] is the first ~condition. The heart of Korat is a technique for automatic test case
static analysis system to verify that the list structure is preserved generation: given a predicate and a finitization for its inputs, Korat
in programs that perform list reversals via destructive updating of generates all nonisomorphic inputs for which the predicate returns
the input list. TVLA has been used to analyze programs that ma- true . Korat exhaustively explores the input space of the predicate,
nipulate doubly linked lists and circular lists, as well as some sort- but does so efficiently by: 1) monitoring the predicate’s executions
ing programs. The pointer assertion logic engine (PALE) [24] can t0 prune large portions of the search space and 2) generating only
verify a large class of data structures that can be represented by anonisomorphic inputs.
spanning tree backbone, with possibly additional pointers that do
not add extra information. These data structures include doubly The Korat prototype uses the Java Modeling Language (JML) for
linked lists, trees with parent pointers, and threaded trees. While specifications, i.e., class invariants and method preconditions and
TVLA and PALE are primarily intraprocedural, Role Analysis [19] Postconditions. Good programming practice suggests that imple-
supports compositional interprocedural analysis and verifies simi- mentations of abstract data types should already provide methods
lar properties. for checking class invariants—Korat then generates test cases al-
most for free.
While static analysis of program properties is a promising approach
for ensuring program correctness in the long run, the current static This paper illustrated the use of Korat for testing several data struc-
analysis techniques can only verify limited program properties. For tures, including some from the Java Collections Framework. The
example, none of the above techniques can verify correctness oféxperimental results show that it is feasible to generate test cases
implementations of balanced trees, such as red-black trees. Testingfrom Java predicates, even when the search space for inputs is very
on the other hand, is very general and can verify any decidable large. This paper also compared Korat with the Alloy Analyzer,
program property, but for inputs bounded by a given size. which can be used to generate test cases from declarative predi-
cates. Contrary to our initial expectation, the experiments show that
Jackson and Vaziri propose an approach [18] for analyzing meth- Korat generates test cases much faster than the Alloy Analyzer.
ods that manipulate linked data structures. Their approach is to
first build an Alloy model of bounded initial segments of compu- Acknowledgements
tation sequences and then check the model exhaustively with AA. We would like to thank Michael Ernst, Daniel Jackson, Alexandru
This approach provides static analysis, but it is unsound with re- Salcianu, and the anonymous referees for their comments on this
spect to both the size of input and the length of computation. Korat paper. We are also grateful to Viktor Kuncak for helpful discussions
not only checks the entire computation, but also handles larger in- on Korat and Alexandr Andoni for helping us with experiments.
puts and more complex data structures than those in [18]. Further, This work was funded in part by NSF grant CCR00-86154.

132

8.
[1]

(2]

(3]

[4]

[5] J. Chang and D. J. Richardson. Structural specification-based

[10]

(11]

[12

—

(13]

(14]

(15]

(16]

REFERENCES

W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and

J. Lilley. The design and implementation of an intentional
naming system. IiProc. 17th ACM Symposium on Operating
Systems (SOSHiawah Island, Dec. 1999.

T. Ball, D. Hoffman, F. Ruskey, R. Webber, and L. J. White.
State generation and automated class tesBofware
Testing, Verification & Reliability10(3):149-170, 2000.

K. Bech and E. Gamma. Test infected: Programmers love
writing tests.Java Report3(7), July 1998.

B. Beizer.Software Testing Techniquédsternational
Thomson Computer Press, 1990.

testing: Automated support and experimental evaluation. In
Proc. 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE)ages 285-302, Sept. 1999.

Y. Cheon and G. T. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way. Technical
Report 01-12, Department of Computer Science, lowa State
University, Nov. 2001.

J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,

S. Laubach, and H. Zheng. Bandera: Extracting finite-state
models from Java source code.Rroc. 22nd International
Conference on Software Engineering (ICSE)ne 2000.

T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction
to Algorithms The MIT Press, Cambridge, MA, 1990.

C. Dematrtini, R. losif, and R. Sisto. A deadlock detection
tool for concurrent Java progranfoftware - Practice and
ExperienceJuly 1999.

D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. Research Report 159, Compaq
Systems Research Center, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid#ssign
Patterns: Elements od Reusable Object-Oriented Software
Addison-Wesley Professional Computing Series.
Addison-Wesley Publishing Company, New York, NY, 1995.

P. Godefroid. Model checking for programming languages
using VeriSoft. InProc. 24th Annual ACM Symposium on the
Principles of Programming Languages (PORpages
174-186, Paris, France, Jan. 1997.

J. Goodenough and S. Gerhart. Toward a theory of test data
selectionIEEE Transactions on Software Engineeridgne
1975.

G. Holzmann. The model checker SPIREE Transactions
on Software Engineerin@3(5), May 1997.

H.-M. Horcher. Improving software tests using Z
specifications. IfProc. 9th International Conference of Z
Users, The Z Formal Specification Notatjdr995.

D. Jackson, I. Schechter, and I. Shlyakhter. ALCOA: The
Alloy constraint analyzer. IfProc. 22nd International
Conference on Software Engineering (ICSEjnerick,
Ireland, June 2000.

133

[17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

D. Jackson, I. Shlyakhter, and M. Sridharan. A
micromodularity mechanism. IRroc. 9th ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE) Vienna, Austria, Sept. 2001.

D. Jackson and M. Vaziri. Finding bugs with a constraint
solver. InProc. International Symposium on Software Testing
and Analysis (ISSTAPortland, OR, Aug. 2000.

V. Kuncak, P. Lam, and M. Rinard. Role analysisAroc.
29th Annual ACM Symposium on the Principles of
Programming Languages (POPLFortland, OR, Jan. 2002.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java. Technical Report TR 98-06i, Department of Computer
Science, lowa State University, June 1998. (last revision:
Aug 2001).

B. Liskov. Program Development in Java: Abstraction,
Specification, and Object-Oriented Desigxddison-Wesley,
2000.

D. Marinov and S. Khurshid. TestEra: A novel framework
for automated testing of Java programsPhoc. 16th IEEE
International Conference on Automated Software
Engineering (ASE)San Diego, CA, Nov. 2001.

K. McMillan. Symbolic Model Checkindluwer Academic
Publishers, 1993.

A. Moeller and M. I. Schwartzbach. The pointer assertion
logic engine. InProc. SIGPLAN Conference on
Programming Languages Design and Implementation
Snowbird, UT, June 2001.

J. Offutt and A. Abdurazik. Generating tests from UML
specifications. IfProc. Second International Conference on
the Unified Modeling Languag®ct. 1999.

J. Rumbaugh, I. Jacobson, and G. Bode Unified
Modeling Language Reference Manuatidison-Wesley
Object Technology Series, 1998.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis
problems in languages with destructive updatingM
Trans. Prog. Lang. SystJlanuary 1998.

S. Sankar and R. Hayes. Specifying and testing software
components using ADL. Technical Report SMLI TR-94-23,
Sun Microsystems Laboratories, Inc., Mountain View, CA,
Apr. 1994.

I. Shlyakhter. Generating effective symmetry-breaking
predicates for search problems.Rroc. Workshop on Theory
and Applications of Satisfiability Testingune 2001.

N. J. A. Sloane, S. Plouffe, J. M. Borwein, and R. M.
Corless. The encyclopedia of integer sequenstsM
Review 38(2), 1996 http://www.research.att.
com/"njas/sequences/Seis.html

J. M. Spivey.The Z Notation: A Reference Manu&rentice
Hall, second edition, 1992.

W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. IRroc. 15th IEEE International
Conference on Automated Software Engineering (ASE)
Grenoble, France, 2000.

