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Abstract—Several signal processing applications can
be formulated as the computation of the null vector
of a Hermitian Toeplitz matrix. These include ar-
ray processing, spectral estimation, and beamform-
ing algorithms applied directly to data rather than
to its autocorrelation, and some blind deconvolution
algorithms. When the data are noisy, the matrix is
nonsingular, and the closest singular Toeplitz matrix
(in the mean square norm) to the given matrix must
be computed. Two major approaches have been used
for this problem: (1) alternatingly subtracting off the
outer product of minimum singular vectors and aver-
aging along diagonals; and (2) structured total least
squares. Both require many iterations of computa-
tionally intensive singular value decompositions. We
present a new algorithm that is: (1) non-iterative; and
(2) requires only solution of a Toeplitz system of equa-
tions. Several interesting linear algebra issues arise.
Numerical examples illustrate the new algorithm.
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I. INTRODUCTION

A. Background

Several problems in signal processing can be
formulated as computation of the null vector of
a Hermitian Toeplitz matrix. For example, let
{X−M , . . .X0 . . . XM} with X−k = X∗

k be a complex-
valued time series modelled by finite Fourier series

Xk =

M
∑

n=1

xnejωnk, |k| ≤ M (1)

for unknown real {xn} and {ωn}. These unknown
model parameters can be computed from the data
by computing the null vector of a Hermitian Toeplitz
matrix with (m, n)th element Xm−n and computing
the roots of the polynomial whose coefficients are el-
ements of its Hermitian symmetric null vector ~a:





X0 · · · XM

. . .
. . .

. . .

X−m · · · X0









a0

...
a∗
0



 =





0
0
0





a0z
M +

.. . + a0 = 0 → z = ejωn . (2)

Alternatively, the Xk might be real and even and the
Fourier coefficients xn conjugate symmetric.

This problem arises in 1D array processing, spec-
tral estimation, beamforming, detection of resonance
frequencies, and many other applications.

In practice, the data Xk are noisy, so that the
above matrix is not singular. A simple likelihood
function argument shows that if the noise is addi-
tive zero-mean white Gaussian (in either time or fre-
quency), then the likelihood is maximized when the
given data {Xk} are perturbed as little as possible
(in the mean square norm sense) to make the ma-
trix drop rank. The difficulty is that the Hermitian
Toeplitz structure of the matrix must be maintained.

B. Other Spectral Estimation Algorithms

Most spectral estimation algorithms, such as Pis-
arenko method, MUSIC, and ESPRIT, operate not
on the data but on the autocorrelation function es-
timated from the data. This has the advantage that
additive white noise tends to be concentrated in the
subspace spanned by the singular vectors associated
with the minimum singular values, since the autocor-
relation of zero-mean white noise is an impulse.

However, autocorrelation-based methods can be
inappropriate, for the following three reasons:

• Only a small number of data points are available,
not a long time series of data;
• Estimation of autocorrelation from data, which is
always inexact due to end effects, is impractical;
• In practice, the additive noise is often neither white
nor uncorrelated with the data.

Hence an approach that operates directly on the data,
rather than on the autocorrelation, is desirable. TLS
Prony method is an example of this. However, TLS
Prony uses the TLS solution (minimum singular vec-
tor of the matrix), which does not preserver the Her-
mitian Toeplitz structure of the matrix. The above
problem is an improvement on TLS Prony.

Two major approaches are known for this problem.
First is an iterative algorithm alternating between:

• Computing the nearest (in Frobenius norm) lower
rank matrix using the singular value decomposition,
by subtracting the outer product of the minimum
singular vectors times the minimum singular value;
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• Computing the nearest (in Frobenius norm)
Toeplitz matrix by averaging along the diagonals.

The other is structured total least squares, which iter-
atively perturbs the matrix closer to singularity, aver-
aging along the diagonals in each iteration to preserve
Toeplitz structure (standard TLS is one iteration).

Both of these approaches have been applied suc-
cessfully. However, the enormous computation of re-
peatedly computing the singular value decomposition
of the matrix for possibly many iterations, suggests
that a much simpler algorithm is desirable.

C. New Algorithm

This paper proposes a new algorithm for finding
the closest reduced-rank Hermitian Toeplitz matrix
to a given Hermitian Toeplitz matrix. The error cri-
terion is not the Frobenius norm (sum of squared
magnitudes of matrix elements) of the perturbation,
which weights lower-indexed values of Xk more than
higher-indexed values, since they occur more often in
the matrix. For example, X0 appears M+1 times
along the main diagonal, while XM appears only
twice (once as XM and once as X−M = X∗

M ).
The new algorithm has three advantages over the

previous algorithms mentioned above:

• It requires no singular value decompositions, only
the solution of a single Toeplitz system of equations;
• It is non-iterative, hence no convergence issues;
• The least-squares error criterion applied to the
{Xk}, rather than to the Toeplitz matrix, is more
suitable in many signal processing applications.

II. Noisy Data: Computation of Nearest

Singular Hermitian Toeplitz Matrix

A. Background

The algorithm is based on a result that goes back
to Kronecker: A Hankel matrix has rank M if and
only if its elements hi+j−1 are Fourier coefficients of
a strictly proper rational function whose denomina-
tor has degree M. Suppose that this rational function
has M distinct poles ejωi all on the unit circle. Then
the elements hi+j−1 can be expanded as

hn =

M
∑

i=1

Cie
jωin. (3)

for some constants Ci. The function ĥn closest (in
the least-squares norm) to hn that reduces the matrix
rank from M to M-1 is determined by discarding the
term with the smallest |Ci|. This is similar to model
order reduction techniques in linear system theory.

More precisely, suppose the ωi are all rational num-
bers, and let N be the least common multiple of their
denominators. Then hn is periodic with period N,
and the ejωin are orthogonal functions. Parseval’s
theorem then proves discarding the term with the
smallest |Ci| produces the minimum perturbation in
the least-squares norm of a period of hn.

There are three problems with this approach:

• How to compute poles from a nonsingular matrix;
• There is no reason to believe the poles will lie on
the unit circle, as required by the above model;
• Hence the terms are not orthogonal, and discarding
the term with the smallest |Ci| may not be optimal.

B. Toeplitz Matrix Extension

We can solve all of these problems by dealing
with Hermitian Toeplitz matrices instead of Hankel
matrices; this explains the use of Toeplitz matrices
throughout this paper. We first fit a model to the
Hermitian Toeplitz matrix (2) by extending it to







X1 . . . XK+1 X
. . .

. . .
. . .

. . .

X∗ X∗
K+1

. . . X1






(4)

and choosing X so that this matrix is singular. This
clearly fits a model of order K+1 to (2). To reduce
the rank of (2) from K+1 to K, we reduce the model
order from K+1 to K by discarding the term with
smallest |Ci| in the polar expansion.

But there is a problem: setting the determinant of
this matrix to zero produces a quadratic equation in
X if the Xk are real, and an equation of the form

XX∗ + A∗X + AX∗ + B = 0 →

(X + A)(X + A)∗ = |X + A|2 = |A|2 − B (5)

for some constants A and B. The quadratic equation
has two solutions for X ; the above equation has an
infinite number of solutions! This is not surprising;
there are not enough data points to uniquely deter-
mine the poles from the data. What is to be done?

C. Structures of Null Vectors

Some matrix theory: Let J be the exchange matrix
with ones on the main antidiagonal and zeros else-
where; note J2 = I is the identity matrix. Then a
Hankel matrix can be converted to a Toeplitz matrix
by pre or post-multiplying by J , which does not affect
the rank. However, the Hermitian Toeplitz structure
imposes a certain type of Hermitian structure on the
null vector. To see this note that for any Toeplitz
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matrix T we have JTJ = T T , while for Hermitian
Toeplitz matrices JTJ = T ∗. The null vector ~a of a
Hermitian Toeplitz matrix has the structure

0 = T~a = JT ∗J~a → 0 = T (CJ~a∗) → ~a = CJ~a∗.
(6)

But consistency requires that ~a satisfy

~a = CJ~a∗ → CJ~a∗ = CC∗~a → |C| = 1 (7)

so that the constant C must lie on the unit circle.
Real symmetric Toeplitz matrices can have a null vec-
tor that may be either symmetric or antisymmetric.
Hermitian Toeplitz matrices can have a null vector
that has the Hermitian structure defined above for
any constant |C| = 1, so C lies on the unit circle.

This explains the ambiguity in the choice of X
making the extended matrix singular. For real sym-
metric matrices, the two X ’s lead to symmetric
(C=1) or antisymmetric (C=-1) structure in the null
vector. For Hermitian matrices, the infinite number
of X ’s from solving (5) lead to an infinite number of
choices for the constant |C| = 1 → C = ejθ.

A more useful way of seeing this ambiguity is to
apply the Levinson algorithm to (2). The extended
matrix will be singular if and only if the magnitude
of the next reflection coefficient is unity (±1 for real
symmetric matrices). The “inner product” expres-
sion in the Levinson algorithm then provides a quick
way to compute the values of X that result in the
desired reflection coefficient. This avoids comput-
ing the determinant (which is computationally ex-
pensive) and solving an equation of the form (5). A
simple example of this is given in the next section.

This still doesn’t answer the issue of which null
vector structure to choose. The answer is to note
that the poles are the roots of the polynomial hav-
ing for its coefficients the null vector elements (al-
though we don’t compute the poles this way). If the
null vector has purely Hermitian structure (~a = J~a∗),
then the poles will all: (1) lie on the unit circle; or
(2) occur in reciprocal complex conjugate quadruples
{p, p∗, 1

p
, 1

p∗
}. Since the noiseless Xk have all their

poles on the unit circle, the noisy Xk will also, if the
noise level is low. Hence we choose the reflection co-
efficient (or X) that yields a purely Hermitian null
vector (see the example given in the next section).

More precisely, we have the following summary for
various null vector structures:

structure length fixed zeros
Hermitian odd none
anti-Herm odd ±1
Hermitian even -1
anti-Herm even +1

For odd lengths, we clearly prefer the Hermitian
structure, since anti-Hermitian constrains two zeros.
For even lengths, we cannot avoid a zero constraint.
The constrained zero is then the zero that is dis-
carded (see the example in the next section).

For very large noise levels, there may be a recip-
rocal complex conjugate quadruple. A root locus ar-
gument shows that this arises from two poles on the
unit circle coalescing and then moving off the unit
circle. The poles may be moved to the unit circle.
Another possibility is a pair of real-valued poles at
reciprocal locations (e.g., 2 and 1/2). In this case it
may be desirable to discard the pole inside the unit
circle, if it decays fast enough so that its effect on Xk

is minimal.

D. Nearest Singular Toeplitz Matrix Micro-Example

The goal is to compute the singular symmetric
Toeplitz matrix nearest to the matrix





5 1 −5
1 5 1
−5 1 5



 from 4 cos(
π

2
n) + {1, 1,−1} (8)

There are two ways to compute x values that render
singular the extended matrix







5 1 −5 x
1 5 1 −5
−5 1 5 1
x −5 1 5






. (9)

The first way is to set the determinant to zero and
solve the quadratic equation

24x2 + 152x + 224 = 0 → x = −4,−7/3. (10)

The other way is to use the Levinson algorithm,
whose last recursion computes





5 1 −5
1 5 1
−5 1 5









1
− 5

12
13

12



 =





− 10

12

0
0



 . (11)

The ”inner product” for reflection coefficient ρ is

±1 = ρ = − [x −5 1 ]





1
− 5

12
13

12



 /[−
10

12
] (12)

which leads to the following results:
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ρ x null vector symmetry
+1 − 7

3
[3 2 2 3] symmetric

-1 -4 [2 -3 3 -2] antisymm.

We choose the symmetric null vector from

symmetry cubic equation three roots
symmetric 3z3+2z2+2z+3=0 –1, e±j1.403

antisymm. 2z3–3z2+3z–2=0 +1, e±j1.318

We compute the constants A and B from





5
1
−5



 =





cos(1.403(0)) (−1)0

cos(1.403(1)) (−1)1

cos(1.403(2)) (−1)2





[

A
B

]

(13)

which has the solution A=5.143 and B=-0.143. This
models the original Toeplitz matrix as





5 1 −5
1 5 1
−5 1 5



 from 5.143 cos(1.403n)−0.143(−1)n.

(14)
The closest singular symmetric Toeplitz matrix is





5.143 0.857 −4.857
0.857 5.143 0.857
−4.857 0.857 5.143



 . (15)

This was computed by keeping 5.143 cos(1.403n) and
discarding −0.143(−1)n from the above model. And
1.403 is close to the noiseless value of π

2
=1.571.

For comparison, the iterative Toeplitzation algo-
rithm described above was also run on this example.
After a half-dozen iterations the algorithm converged





5.1392 0.9275 −4.806
0.9275 5.1392 0.9275
−4.806 0.9275 5.1392



 (16)

which has null vector [1,-.361,1]’. The roots are

z2 − 0.361z + 1 = 0 → z = e±j1.389 (17)

and 1.389 is farther than 1.403 from noiseless 1.571.

References


