
1

Regularized Matrix Computations
Andrew E. Yagle

Department of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

Abstract— We review the basic results on: (1) the
singular value decomposition (SVD); (2) sensitivity
and conditioning of solutions of linear systems of equa-
tions; (3) regularization; and (4) iterative solution of
linear systems of equations. These are applied to the
specific problem of computing a matrix null vector.

I. SINGULAR VALUE DECOMPOSITION

A. Basics

The singular value decomposition (SVD) of any
(M ×N) matrix A is

A = USV H

UHU = I
U isM ×M

V HV = I
V isN ×N

σ1 ≥ . . . ≥ σN

S isM ×N

S =




σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 · · · 0 σN

0 0 · · · 0
...

... · · · ...
0 0 · · · 0




(1)

• S is depicted in (1) for M > N (“tall” matrix A);
• If M < N use the transpose of the S in (1) (for a
”reclining” matrix A);
• Important: S has the same dimensions as A;
• This also specifies the sizes of U and V .

Geometrically, the SVD shows that any linear oper-
ator can be regarded as the following:

1. An orthonormal rotation V H , followed by
2. Scaling the rotated axes by σi, where
3. Singular values σi ≥ 0, followed by
4. An orthonormal rotation U .

An example of a singular value decomposition:

[
1.704 0.128
−.928 1.104

]
=

[
.8 .6
−.6 .8

] [
2 0
0 1

] [
.96 .28
−.28 .96

]T

B. Computation

The SVD can be computed by solving the follow-
ing two eigenvalue problems:

AAH = (USHV H)(V SUH) = U(SHS)UH

AHA = (V SHUH)(USV H) = V (SHS)V H

→ (AAH)ui = σ2
i ui and (AHA)vi = σ2

i vi

(2)

• U is the matrix of eigenvectors for AAH ;
• V is the matrix of eigenvectors for AHA;
• This is why A = USV H instead of A = USV ;
• AAH and AHA have same positive eigenvalues σ2

i

• If M 6= N , there are some extra zero eigenvalues.

Although this is not how the SVD is actually com-
puted, it will do here.

Using Matlab [U,S,V]=svd(A) changes the signs
of the last column of U and the last row of V . You
should be able to see why this makes no difference.

The null vector of overdetermined A is the last col-
umn of V if M > N and the singular values are in
decreasing order (usually, but check first!).

For convenience, this paper will omit pathological
cases such as repeated eigenvalues, defective (non-
diagonalizable) matrices, and the like.

II. APPLICATIONS OF THE SVD

Inserting the SVD A = USV H into linear system
Ax = b results in

Ax = (USV H)x = b → S(V Hx) = (UHb) (3)

This gines the solutions to the following 4 problems.

A. Over-Determined Systems

If M > N, the system Ax = b is overdetermined
(more equations than unknowns). Then there is al-
most surely no solution to the system Ax = b. How-
ever the x that minimizes (recall U is unitary)

||Ax−b|| = ||UH(USV H)x−UHb|| = ||S(V Hx)−UHb||
(4)

is easily seen to be the solution to the first N rows of
(3), since we can solve the first N rows exactly, while
the last M −N rows will always have zero on the left
side, so the best we can do is replace the right side
with zero as well.

To obtain a closed-form solution, premultiply (3)
by V SH . This multiplies the last M − N rows by
zero, yielding

S(V Hx) = (UHb) → (V (SHS)V H)x = (V SHUH)b
→ (AHA)x = AHb

(5)

which is the pseudo-inverse or Penrose inverse.

2

A special case is finding the null vector of an
overdetermined system. We solve (AHA)x = 0, i.e.,
find the eigenvector of AHA associated with its zero
eigenvalue. From the definition of SVD above, x is
the column VN of V (NOT V H) associated with min-
imum singular value σN = 0. Indeed, the rank of A
can be found by counting the number of non-zero σi.

B. Under-Determined Systems

If M = N and σN > 0, then the system is nonsin-
gular and the solution is

x = V diag[1/σ1, 1/σ2 . . . 1/σN]UHb (6)

“If real life were only like this!”–Woody Allen line in
Annie Hall (Oscar winner for Best Picture of 1977,
beating out Star Wars).

If M < N, the system Ax = b is underdetermined
(more unknowns than equations). Then there is an
infinite number of solutions. However, the x that
minimizes ||x|| has the final (N −M) values of V Hx
equal to zero, since these values get multiplied by zero
in (3) anyways, and having them be nonzero would
only increase ||x||.

To obtain a closed-form solution, premultiply (3)
by V SH(UHU)(SSH)−1, yielding

S(V Hx) = (UHb) → V [SH(SSH)−1S]V Hx

= [V SHUH][U(SSH)−1UH]b
(7)

which, with the artful placement of parentheses
above, simplifies to

V

[
I 0
0 0

]
V Hx = x = AH(AAH)−1b (8)

since S is diagonal and the final (N −M) values of
V Hx are constrained to be zero. I haven’t seen that
formula since my graduate school days. Implement:

(AAH)z = b; x = AHz → V Hx = SHUHz (9)

so the final (N −M) values of x will indeed be zero.

III. SENSITIVITY AND CONDITIONING

A. What’s the Problem?

Consider the solution to the linear system

1
60




60 30 20
30 20 15
20 15 12







x
y
z


 =




b
c
d


 (10)

The matrix is only (3× 3), is symmetric, and has in-
teger elements. But note that while




a
b
c


 =




110
65
47


 →




x
y
z


 →




60
60
60


 (11)

a slight change in the right side yields




a
b
c


 =




111
65
47


 →




x
y
z


 →




69
24
90


 (12)

Slightly different right sides yield very different solu-
tions! This means:

• The solution to this problem will be sensitive to
noise in the data [b c d]’;
• Worse, how do we know whether the true data is
b=110 or b=111?
• The very concept of a ”right” answer is in question!

In fact, even though the matrix is nonsingular, for
practical purposes it may as well be singular, since
there are any number of solutions that could be the
“right” one.

Another example, which illustrates some ideas:

[
1 1000
0 1

] [
x
y

]
=

[
1.00
0.00

]
→

[
x
y

]
=

[
1
0

]
(13)

But changing the right side “data” slightly gives

[
1 1000
0 1

] [
x
y

]
=

[
1.00
0.01

]
→

[
x
y

]
=

[−9
0.01

]
(14)

Is data so good that an error of 0.01 is impossible?

B. Symptoms of the Problem

That 1000 suggests a problem, but in fact that by
itself isn’t it. How can we determine when a problem
will be super-sensitive?

These look like symptoms, but aren’t:
• Large elements like 1000? No–plenty of matrices
have large elements without being super-sensitive;
• The determinant? No–the determinant=1;
• The eigenvalues? No–both eigenvalues are one
(just like the identity matrix).

These don’t look like symptoms, but are:
• Although the matrix has determinant=1, changing
the lower left value from 0 to 0.001 makes the deter-
minant=0 and the eigenvalues 0 and 2;
• The singular values are 0.001 and 1000, and their
ratio is 1 million.

3

C. Condition Number

We have the following two results on the sensitivity
of the solution to a linear system of equations to per-
turbations in either the right-hand-side or elements
of the matrix. Define the condition number

κ(A) = cond(A) = ||A|| · ||A−1|| = σ1/σN (15)

||A|| = ||A||2 = σ1=maximum singular value of A.
For the above matrix, κ(A) = 1000

0.001 = 106. Now:

• Consider the linear system Ax = b:
• Perturb A to A + ∆A or:
• Perturb b to b + ∆b resulting in
• Perturb x to x + δx so that
• (A + ∆A)(x + δx) = b or A(x + δx) = (b + δb).
• Then the normalized=relative=percentage error in
the computed x is [1,p.194-5]:

||δx||/||x|| ≤ κ(A)||δb||/||b||
||δx||/||x|| ≤ κ(A)||∆A||/||A||

(16)
That is, the condition number κ(A) of A is a magni-
fying factor for perturbations in A or b. Unitary or
orthogonal matrices AH = AAH = I have κ(A) = 1,
which is the best possible. For example, the DFT
matrix has κ(A) = 1, so computing the inverse DFT
does not amplify errors at all.

A linear system with a relatively small (say κ(A) <
1000) condition number is well-conditioned, so errors
are not amplified significantly. A linear system with a
relatively large (say κ(A) > 10, 000) condition num-
ber is ill-conditioned, so that small errors can be mag-
nified significantly. An ill-conditioned system might
as well be underdetermined, even if M > N .

Although the first bound is often cited for explain-
ing the significance of κ(A), the second bound is ac-
tually much tighter [1].

IV. REGULARIZATION

In the real world, condition numbers are large
(σ1 >> σN), matrices that are supposed to have null
vectors don’t (σN 6= 0), etc. What are we to do?

The solution is regularization, which means replac-
ing the original problem with a different problem
whose solution:

• Roughly matches the desired solution (low bias);
• Is less sensitive to perturbations of, and noise in,
the data (low variance);
• Has a parameter that allows bias-variance tradeoff.

We now discuss some regularization techniques:

A. Truncated SVD

Without loss of generality, scale the problem so
σ1 >> 1 >> σN . Going right to left, rewrite (6):

x =
N∑

i=1

vi(uH
i b/σi) (17)

which shows that the component of x in the direction
vN is most sensitive to noise in the data, since its
magnification factor 1/σN is largest. However, what
is magnified is the component of the data in direction
uN , not vN .

Truncated SVD simply truncates the sum in (17)
at i = (N−K), where the smallest K singular values
σN−K+1 . . . σN < ε for some threshold ε. Any noise
in the data is magnified so much that these terms
vi(uH

i b/σi) are meaningless anyways, so we may as
well eliminate them and accept the loss.

This seems like a bad idea–Eliminate the most sig-
nificant terms?! But it works better than it sounds
if the noise is white (equally spread out over all ui).
This is because the data b was constructed from Ax,
so the components of b in the direction uN is known
to be small. So these components are known to have
low signal-to-noise ratios.

For example, if A is a lowpass operator, the data
b will have only low frequencies in it. So eliminating
the high frequencies in b only discards components
having low signal-to-noise ratios. The inverse filter
magnifies these components in an attempt to restore
high frequencies, but magnifies the noise much more.
So dump the high frequencies altogether, and restore
only the low frequencies. Remember that A is a low-
pass operator, not an ideal lowpass filter, so there is
work to be done even at the low frequencies!

Truncated SVD has two problems:

• We have to compute and store the SVD to use it;
• The truncated solution has “ringing,” e.g., Gibbs’s
phenomenon in truncated Fourier series.

The latter can be solved by gradually windowing the
small singular value components to zero, rather than
sharply cutting them off. But if we are doing that,
we don’t need to compute the SVD, as we now show.

B. Tikhonov Regularization

This most-commonly-used (I think) regularization
technique works as follows. In its simplest form, in-
stead of just minimizing ||Ax − b||, we minimize the
cost functional

||Ax− b||2 + λ2||x||2 (18)

4

This can be interpreted in several ways:

• Penalize spikes in x which are likely due to noise;
• Trade off (using λ) mean square error and size x;
• Incorporate a Gaussian prior on x with Gaussian
noise Ax− b;
• A classical bias-variance tradeoff using λ.

The x minimizing (18) can be derived using deriva-
tives, but a more elegant derivation is as follows. We
want the least-squares solution to

[
A
λI

]
x =

[
b
0

]
(19)

since the mean square error for this problem is (18).
The solution is the pseudo-inverse (see above)

(AHA + λ2I)x = [AH λI]
[

b
0

]
= AHb (20)

so we merely need to add λ2 to the diagonal of AHA.

C. Analysis of Tikhonov Regularization

This has the following advantages:

• It is simple–no SVD required;
• It preserves the (e.g., sparse) structure of AHA;
• Analysis of its effects is easy.

The effects of Tikhonov regularization are easily seen
to be as follows:

• Squared singular values σ2
i are now bounded away

from zero by λ2;

• Condition number is reduced from σ1
σN

to
√

σ2
1+λ2√

σ2
N

+λ2
;

• Singular values become
√

σ2
i + λ2;

• As λ → 0, the effects of regularization disappear;
• The solution (17) is modified to (note right side)

x =
N∑

i=1

vi
σi

σ2
i + λ2

(uH
i b) (21)

Thus the magnification factor 1/σi is replaced with
the gentler magnification factor σi/(σ2

i + λ2) which
is bounded. For this reason, Tikhonov regularization
is also known as damped least squares.

D. Generalized Tikhonov Regularizaion

Tikhonov regularization can be generalized as fol-
lows. Suppose we wish not for x to be small, but for
the components of x to be smoothly varying. Then
penalize not ||x|| but ||Bx|| for a suitable matrix B:

• If x=samples of a 1-D signal, Bx takes differences;
• If x=samples of an image, Bx is the Laplacian.

The cost functional is modified to

||Ax− b||2 + λ2||Bx||2; B =




1 0 . . .
−1 1 . . .
.


 (22)

and modifying the above derivation results in

(AHA + λ2BHB)x = AHb (23)

which still preserves the structure of AHA.

E. Example of Generalized Tikhonov

To show how well this can work, even on a trivially
small example, return to

1
60




60 30 20
30 20 15
20 15 12







x
y
z


 =




111
65
47


 (24)

This system has the solution

[x, y, z] = [69, 24, 90]. (25)

Suppose we are interested, for physical reasons, in
obtaining a smooth solution. Although we don’t
“know” this, perturbing 111 to 110 yields the solution

[x, y, z] = [60, 60, 60]. (26)

We define the matrices A,B, b as, respectively,

1
60




60 30 20
30 20 15
20 15 12


 ;




1 0 0
−1 1 0
0 −1 1


 ;




111
65
47


 (27)

Then we solve the following system:

(AT A + λ2BT B)x = AT b (28)

obtaining these solutions for λ2=0 and 0.001:



x
y
z


 =




69.00
24.00
90.00


 → A




x
y
z


 =




111.0
65.0
47.0







x
y
z


 =




61.24
61.53
56.39


 → A




x
y
z


 =




110.8
65.2
47.1




(29)
Thus we have found a smooth solution that satisfies
the system almost exactly. Note that it is not nec-
essarily true that the “exact” solution is [60, 60, 60];
there is no exact solution to this problem.

5

F. Using Basis Functions

Another way of regularizing an inverse problem is
to represent the solution in terms of basis functions.
This reduces the dimension of the problem, since we
only need to solve for the basis function coefficients.
It also introduces bias, since the solution cannot be
represented exactly using the basis functions.

For example, downsampling an image assumes that
the image is in fact bandlimited, and thus was over-
sampled originally. The bias appears as aliasing
(hopefully small) and the regularization appears not
only as fewer unknowns to solve for, but better condi-
tioned unknowns as well, since high-frequency com-
ponents are no longer being sought. This reduces the
variance in the problem, at the price of bias.

Still another way of regularizing an inverse problem
is discussed in the next section.

V. ITERATIVE ALGORITHMS

Linear systems of equations in image and signal
processing are not solved using Gaussian elimination
(not in this lifetime, anyways!). Instead, iterative al-
gorithms are used. These have several advantages:

• Since the major computation at each iteration is
Ax̂, the sparseness or structure of A can be exploited
to reduce computation and storage;
• A need not be computed or stored; just compute
matrix element aij when needed;
• A rough reconstruction of the image often appears
after a few iterations;
• Convergence behavior of the algorithm can some-
times be studied in detail, and modifed (see below);
• Often we don’t want to solve the problem exactly.

Following are some commonly-used algorithms for
solving linear systems of equations:

A. Conjugate Gradient (CG)

This is the most commonly used algorithm, al-
though it requires a Hermitian matrix A. It reduces
||Ax−b||2 at each iteration using a gradient/steepest
descent approach. It can also be interpreted as suc-
cessive projection on the Krylov space, spanned by

{b, Ab, A2b, A3b . . . ANb} (30)

This sounds good until one notices that Aib con-
verges to the eigenvector associated with the max-
imum eigenvalue of A, so it is actually quite ill-
conditioned. Hence CG is usually viewed as an it-
erative algorithm, although in theory it terminates
after N recursions. BiConjugate Gradient is used to
solve AHAx = AHb instead of Ax = b.

B. Landweber Iteration

This algorithm is known in many fields under many
names (e.g., optics):

xn+1 = xn + AH(b−Axn); x0 = 0
z = Axn; xn+1 = xn + AHb−AHz

(31)
The second form exploits the sparseness and/or
structure of A which is usually not present in AHA;
AHb is of course only computed once.

The Landweber iteration is very easy to analyze.
Initializing with x0 = 0, after n iterations we have

xn = (I −AHA)nx0 +
n−1∑

i=0

(I −AHA)i(AHb)

= (AHA)−1[I − (I −AHA)n]AHb

(32)
where we have set C = (I −AHA) in the identity

I + C + C2 + . . . + Cn−1 = (I −C)−1(I −Cn) (33)

Recalling AHA = V (SHS)V H and I = V V H yields

xn =
N∑

i=1

(vi)
1− (1− σ2

i)n

σi
(uH

i b) (34)

C. Stopping the Landweber Iteration

This equation (34) demonstrates the following:

• If 0 < σ2
i < 2, then |1−σ2

i | < 1 and (1−σ2
i)n → 0;

• Also, the effect of nonzero x0 will decay to zero, so
we may without loss of generality set x0 = 0;
• Also, xn converges to (17) (it works!);
• Different components converge at different rates;
• After n iterations, we have a damped xn like (21);
• The damping is different, but the effects similar:
• σi/(σ2

i + λ2) vs. [1− (1− σ2
i)n]/σi

• Both approach 1/σi as λ → 0 or n →∞.

This suggests that regularizing the inverse problem
can be accomplished by deliberately stopping the al-
gorithm after a few iterations, since different compo-
nents of the solution converge at different rates:

• Components with large σi will have converged;
• Components with small σi will hardly be present
(unscramble the numerator of (34); it is small);
• We have filtered out the noisy components;
• We have recovered a lowpass version of the image;
• We have even saved some time.

6

This effect was observed in a variety of iterative al-
gorithms in the 1980s. Stopping the algorithm pro-
duced better reconstructions, while letting it run
made spikes (due to noise) appear in the image.

VI. COMPUTING NULL VECTORS

A. Two Different Problems

Computing the null vector (solution to An = 0)
of rank-deficient matrix A superficially seems simple.
Let A = USV H with σN = 0. Then Avn = 0.

But this does not work in practice; σN 6= 0, due to
roundoff error if nothing else. What does work is to
declare that all singular values below some threshold
ε are in fact zero. If σN−1 >> σN this gives good
results (Matlab’s null(A) does this). Use the singu-
lar vector vN associated with the minimum singular
value σN , even if σN 6= 0. In fact, this minimizes the
normalized cost functional ||Ax||/||x||.

But if σN−2 >> σN−1 ≈ σN , then we have a prob-
lem. Do we use vN , vN−1, or a linear combination
avN + bvN−1 of the two? We call this the double
minimum problem.

And there is another problem: Are perturbations
of A greatly magnified in n? How do we define the
conditioning of a matrix whose condition number is
infinity? We call this the condition problem.

B. Condition Problem

Obviously we cannot use the previous results as
is, since κ(A) → ∞. Instead, we augment the null
vector problem and apply previous results to this.

Let n be the null vector for the rank-deficient
(M × N) matrix A, where M ≥ N . Then n is or-
thogonal to the rows of A, and augmenting A with
an extra row nH won’t alter the problem, except to
replace the rank deficiency. We now have

Ãn =
[

A
nH

]
n =

[
0
1

]
(35)

where we have normalized n so that ||n|| = 1.
The SVD of augmented matrix Ã is

Ã =
[

U 0
0 1

] 


σ1 0 0
0 σN−1 0
0 0 1


 V H (36)

since ÃHÃ = AHA + nnH (eigenvalue 0 is replaced
with 1, since n is orthogonal to other eigenvectors,
since it is orthogonal to A) and

ÃÃH =
[

AAH An = 0
nHAH = 0 nHn = 1

]
(37)

(an extra eigenvalue 1 with eigenvector [0 · · · 0, 1]T).

Assuming σ1 > 1 > σN−1 (easily arranged by scal-
ing A), we have κ(Ã) = σ1/σN−1. Hence the condi-
tioning of the null vector problem (sensitivity of n to
variations in the elements of A) is the condition num-
ber of matrix A, excluding the zero singular value.

C. Regularization of Condition Problem

This makes sense (what else could it be?), but reg-
ularization is a problem. The obvious strategy of
applying Tikhonov regularization to Ã yields

(ÃHÃ + λ2I)x = ÃH [0 . . . 0, 1]H (38)

which becomes

(AHA + nnH + λ2I)x = n. (39)

But this has the solution x = n/(λ2+1), so Tikhonov
regularization only scales the solution n by (λ2 + 1).

This could have been anticipated. (AHA + λ2I)
has a smaller ratio of non-zero singular values than
(AHA), but the same minimum singular vector. We
must use B 6= I in the above formulation to obtain a
non-trivial answer.

D. Double Minimum Problem

If σN−2 >> σN−1 ≈ σN , then any linear combina-
tion x = avN + bvN−1 will yield a small ||Ax|/||x||.
The null space of A has dimension=2; this means
that there is no unique null vector.

Using (32) for the Landweber iteration with b = 0
and x0 6= 0 yields

xn = (I −AHA)nx0 =
N∑

i=1

vi(1− σ2
i)n(vH

i x0) (40)

This shows that all components other than σN = 0
eventually decay to zero.

The inverse power method iterates

xn+1 = (AHA)−1xn/||xn|| →
xn+1 = z/||xn||; (AHA)z = xn

(41)
since this converges to the largest eigenvalue 1/σ2

N

of (AHA)−1 and its associated eigenvector vN . Note
that convergence is very fast. The division by ||xn||
is just a scale factor to prevent divergence.

As either of these iterations proceed, all compo-
nents but vN decay to zero. However, if the iteration
is stopped, then xn = avN +bvN−1 for some constants
a and b, since all other components vN−2, vN−3 . . .
have already decayed to zero. That is, running the
algorithm to convergence is making the choice a = 1
and b = 0, when including vN−1 might be better.

7

The effects of all of this can be summarized as:

• Running the iteration to convergence leaves vN ;
• Stopping the iteration leaves xn = avN + bvN−1;
• Unless the actual answer is in fact vN , stopping the
iteration will often give a better answer, even if the
ratio a/b is wrong;
• The overall scale factor is irrelevant, so there is one
unknown a/b.

Note that even if we compute both vN and vN−1,
the appropriate relative weighting a/b of the two is
not evident unless a priori information about n is
available. So we might as well use the easy choice
dictated by stopping the inverse power method.

E. Example: Inverse Power Method

Suppose the desired signal is known to be a null
vector of the following Toeplitz system:




200.09 −0.01 −199.9 −0.01
−0.01 200.09 −0.01 −199.9
−199.9 −0.01 200.09 −0.01
−0.01 −199.9 −0.01 200.09







w
x
y
z


 =




0
0
0
0




(42)

Attempting to find this signal, we run the inverse
power method, initialized with

[w, x, y, z] = [1, 2, 3, 4] (43)

Normalizing by dividing by w at each iteration, we
get after one iteration

[w, x, y, z] = [1, 1.38, 1, 1.38] (44)

But as the iteration proceeds, the signal flattens out.
After ten iteration, we get

[w, x, y, z] = [1, 1.04, 1, 1.04] (45)

The actual signal is

[w, x, y, z] = [2, 3, 2, 3] (46)

so the iteration was closest at the first iteration, and
then moved away from it! What’s going on?

The answer is found by examining the SVD of the
above matrix, which was constructed using

U = V =




1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1




S = diag[100, 100, .05, .04]
(47)

Since the matrix is Hermitian, we have that U = V
and σi = |λi|, i.e., the SVD is essentially a matrix
eigenvalue diagonalization.

The two small singular values .05 and .04 mean
that the matrix has a nullspace of dimension=2. The
actual signal is a linear combination of v3 and v4:




2
3
2
3


 = −0.5




1
−1
1
−1


 + 2.5




1
1
1
1


 (48)

After one iteration, the inverse power method had a
linear combination of v3 and v4, even though it was
the wrong one. Meanwhile, v1 and v2 were already
eliminated. After ten iterations, only v4 was left.
Even an incorrect linear combination of v3 and v4 is
better than just v4, in this case.

VII. CONCLUSION

We have attempted to collect the basics of matrix
conditioning, sensitivity, roundoff error, and iterative
computation together here. The connections between
these various topics should now be evident.

References

[1] G.W. Stewart, Introduction to Matrix Computations,
1973.

